
Contributed Libraries

Denys Duchier
Leif Kornstaedt

Version 1.2.3
December 1, 2001

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Regular Expressions 1

2 GDBM Database Interface 5

2.1 Interface . 5

2.2 Installation . 7

3 Backwards Compatibility 9

3.1 The TextPickle module . 9

4 An Example of a Server Directory 11

4.1 The ExampleDirectory Module 11

1

Regular Expressions

The regex module implements an interface to the POSIX regex library and builds
some higher level facilities on top of it. The module may be imported as follows:

import Regex at ’x-oz://contrib/regex’

Regex.is

{Regex.is +X ?B}

Returns true iff X is a regex object.

Regex.make

{Regex.make +PAT ?RE}

Creates regex object RE from virtual string pattern PAT.

Regex.search

{Regex.search +RE +TXT ?MATCH}

Returns the next MATCH of regex RE in virtual string TXT, or false if there is no
such match. RE is also permitted to be a virtual string pattern, in which case it is
automatically compiled into a regex object.

A match is a record with integer features: one for each group in the pattern and also fea-
ture 0 for the whole match. The value on each feature is a pair I#J of start and end in-
dices into TXT. If TXT is a byte string, you can simply invoke {ByteString.slice TXT I J}

to extract the match.

Regex.group

{Regex.group +N +MATCH +TXT ?GROUP}

Return the substring GROUP matched by the N group of MATCH in virtual string TXT.
MATCH should be the result of calling Regex.search on TXT.

Regex.groups

{Regex.groups +MATCH +TXT ?GROUPS}

Returns the list GROUPS of substrings of TXT corresponding to the groups of MATCH.
Group 0 (the whole match) is not included.

Regex.allMatches

{Regex.allMatches +RE +TXT ?MATCHES}

2 Chapter 1. Regular Expressions

Returns the list of all MATCHES of regular expression RE in virtual string TXT. RE
should not be anchored.

Regex.forAll

{Regex.forAll +RE +TXT +P}

Applies the 1 argument procedure P to every match of RE in TXT.

Regex.map

{Regex.map +RE +TXT +F ?RESULTS}

Applies the 1 argument function F to every match of RE in TXT and returns the corre-
sponding list of RESULTS.

Regex.foldR

{Regex.foldR +RE +TXT +F INIT ?RESULT}

Regex.foldL

{Regex.foldL +RE +TXT +F INIT ?RESULT}

The usual reduction procedure (see List module).

Regex.split

{Regex.split +RE +TXT ?STRINGS}

Splits the input TXT at every match of separator RE, and returns the resulting list of
strings.

Regex.compile

{Regex.compile +PAT +CFLAGS ?RE}

This is the more complicated version of Regex.make. The additional CFLAGS ar-
gument further parametrizes the regex compilation process. It is either an atom or
a list of atoms, from the set: extended, icase, nosub, newline. The default is
[extended newline]. See the man page for regcomp for further details.

Regex.execute

{Regex.execute +RE +TXT +IDX +EFLAGS ?MATCH}

This is the more complicated version of Regex.search. Integer IDX is the offset at
which to start the search in +TXT. EFLAGS further specify how to search: it is an atom
or list of atoms, from the set: notbol, noteol. The default is nil. See the man page
for regexec for further details.

Regex.cflags.set

Regex.cflags.get

{Regex.cflags.set +SPEC}
{Regex.cflags.get ?SPEC}

Set or get the current CFLAGS defaults, e.g. used by Regex.make.

Regex.eflags.set

Regex.eflags.get

{Regex.eflags.set +SPEC}
{Regex.eflags.get ?SPEC}

Set or get the current EFLAGS defaults, e.g. used by Regex.search.

3

Regex.replace

{Regex.replace +TXT +RE +FUN ?RES}

Replace every occurrence of RE in TXT with the result of applying FUN to the current
TXT and the current match.

Regex.replaceRegion

{Regex.replaceRegion +TXT +LO +HI +RE +FUN ?RES}

Same as above, but only operate on the region starting at LO inclusive and ending at
HI exclusive.

4 Chapter 1. Regular Expressions

2

GDBM Database Interface

The gdbm module implements an interface to the GNU GDBM database library and
builds some higher level facilities on top of it.

2.1 Interface

The module may be imported as follows:

import Gdbm at ’x-oz://contrib/gdbm’

The interface provided is similar to dictionaries and allows to store stateless Oz terms
under keys. A key is an arbitrary virtual string.

Gdbm.is

{Gdbm.is +X ?B}

Returns true iff X is a gdbm object.

Gdbm.new

{Gdbm.new +R ?DB}

This is the convenient way of creating a gdbm object DB. R is a record that describes
how to open the database. The label is the opening method, e.g. read, write, create,
or new. The first argument of the record is the file name. For example read(’/usr/local/people.db’)
asks to open the database located in /usr/local/people.db for reading only.
create(’~/data’) opens or creates the database data in the user’s home directory
and opens it both for reading and writing; new(’~/data’) is similar, but overwrites it
if it already existed.

Optional feature mode indicates with what permissions the file should be created (this
of course is only relevant for creating a new database). The mode may be specified as
an integer, with the usual Unix meaning. It may also be specified symbolically, as a
record or list of records:

[owner group(read)]

This indicates that the owner has all permission rights and that group members are
granted read access. Others have no rights. To also grant write access to group mem-
bers, you could say:

6 Chapter 2. GDBM Database Interface

[owner group(read write)]

The default is 0644: owner has read and write access; all others have read access.

Optional feature boolean fast requests updates without disk synchronization. See the
GDBM documentation for details. Default is false.

Gdbm.open

{Gdbm.open +FILE +FLAGS +MODE +BLOCK ?DB}

This is the more complicated way of opening a gdbm database. The FLAGS specify the
opening method. This is an atom or list of atoms from the set: read, write, create
(equivalently new or truncate). It may also include the atom fast (see above). Each
symbol may be abbreviated to its initial letter. MODE was described above. BLOCK is
an integer for the block size of transfers (see GDBM documentation): use 0 to get a
system dependent appropriate default.

Gdbm.get

{Gdbm.get +DB +KEY ?VAL}

Retrieves the Oz value VAL stored under KEY. The latter may be an arbitrary virtual
string. If there is no such KEY in DB, an exception is raised.

Gdbm.condGet

{Gdbm.condGet +DB +KEY DEFAULT ?VAL}

Similar to the above, but returns DEFAULT if there is no such KEY in DB.

Gdbm.put

{Gdbm.put +DB +KEY +VAL}

Stores Oz value VAL under KEY in DB. VAL must be ground and stateless.

Gdbm.firstkey

{Gdbm.firstkey +DB ?KEY}

Returns a KEY in DB (see below). There is absolutely no guarantee as to which key
this is going to be. Returns unit if the database is empty.

Gdbm.nextkey

{Gdbm.nextkey +DB +KEY ?NEXT}

Returns the NEXT key after KEY. Again, there is no guarantee as to which key this
is going to be. The only guarantee is that if you continue in this manner, you will
enumerate all the keys in the database, in some order, without repeats. Returns unit
when there are no more keys.

Gdbm.close

{Gdbm.close +DB}

Closes the database. Subsequent access attempts raise an exception.

Gdbm.remove

{Gdbm.remove +DB +KEY}

Deletes the entry for KEY if it exists.

Gdbm.reorganize

{Gdbm.reorganize +DB}

2.2. Installation 7

see the GDBM documentation.

Gdbm.keys

{Gdbm.key +DB ?KEYS}

Returns the lazy list of all KEYS in the database.

Gdbm.entries

{Gdbm.entries +DB ?ENTRIES}

Returns the lazy list of all pairs KEY#VALUE in the database.

Gdbm.items

{Gdbm.items +DB ?ITEMS}

Returns the lazy list of all values stored in the database.

Gdbm.forAll

{Gdbm.forAll +DB +P}

Calls {P VALUE} for every entry in the database.

Gdbm.forAllInd

{Gdbm.forAllInd +DB +P}

Calls {P KEY VALUE} for every entry in the database.

2.2 Installation

The GDBM library must be available on your system as a shared object library. For
Linux systems, this is normally the case. For other systems, it may need to be built
and installed. Newer versions of GDBM (e.g. 1.8.0) will automatically build a shared
object library if that is possible on your system. Thus you should download the most
recent version of GDBM from ftp://ftp.gnu.org/gnu/gdbm/1 and install it
on your system.

If, for some bizarre reason, you must use an older version, the standard distribution
needs to be patched to compile for position independent code and to create a shared
object library. Thus, for the older version 1.7.3, we provide a fix for the standard gdbm
distribution: its purpose is to automate the creation of the shared object library. Both
the standard gdbm 1.7.3 distribution and our fix can be downloaded from our ftp server:

• ftp://ftp.mozart-oz.org/pub/mozart/extras/gdbm-1.7.3.tar.gz2

• ftp://ftp.mozart-oz.org/pub/mozart/extras/gdbm-1.7.3-fix.tar.gz3

They both unpack into the same directory (namely gdbm-1.7.3). You should unpack
the standard distribution first, then our fix since it overwrites certain files.

1ftp://ftp.gnu.org/gnu/gdbm/
2ftp://ftp.mozart-oz.org/pub/mozart/extras/gdbm-1.7.3.tar.gz
3ftp://ftp.mozart-oz.org/pub/mozart/extras/gdbm-1.7.3-fix.tar.gz

8 Chapter 2. GDBM Database Interface

tar zxf gdbm-1.7.3.tar.gz

tar zxf gdbm-1.7.3-fix.tar.gz

cd gdbm-1.7.3

./configure

make

make install

We also make available the following targets: install.so, install.h, install.man,
install.info.

If you install in a non-standard directory, you may have to set LD_LIBRARY_PATH
appropriately so that libgdbm.so may be found.

3

Backwards Compatibility

The modules described in this chapter provide functionality to increase interoperability
with or upgrade from previous releases of Mozart.

3.1 The TextPickle module

The TextPickle module allows one to read text pickles written by Mozart 1.0.1. It
may be imported as follows:

import TextPickle at ’x-oz://contrib/compat/TextPickle.ozf’

TextPickle.load

{TextPickle.load +V X ?YTs}

takes the name of a file V containing a text pickle and parses it. Returns the value
represented by the pickle in X. X may have holes (unbound variables) in place of the
data structures that could not be converted (at the moment, these include procedures
and extensions except byte strings). YTs maps these holes to low-level descriptions
of the corresponding data structures as described by the pickle; for procedures, this
includes the instructions making up the body.

10 Chapter 3. Backwards Compatibility

4

An Example of a Server Directory

This contribution is meant primarily to work as an example of how one can use the
module Discovery and build a yellow pages service. The directory service consists
out of three parts: a directory server, an interface to announce services, and a way to
find announced services.

All services have descriptions. When a lookup is performed, a pattern is given to
specify what to look for. The result of the lookup are services that have descriptions
matching the pattern. Both descriptions and patterns are Oz records.

So what does it mean that a description match a pattern? All features in a pattern must
be present in the description. If a field in the pattern has a value, then it must be either
equal or match to a corresponding field in the description. For example, f(a:1 b:g(x:5
y:7) c:28 d:foo) does match f(c:28 b:g d:_), but not the other way around.

One could say that a pattern puts constraints on a matching description. Our form of
pattern puts constraints on the label and features of the description.

4.1 The ExampleDirectory Module

The module has three classes under features (server, serviceProvider and client),
which corresponds to the three parts mentioned earlier.

The class ExampleDirectory.server has following methods:

init

init(port:PortNr <= useDefault

expectedClientId:ClientId <= unit

id:ServerId <= directory(kind:recordMatching))

This method starts a directory server. The initial contact between a client (or service
provider) and the server is made through the ip port PortNr. The default ip port num-
ber is Discovery.defaultPortNumber. After the first contact has been performed,
all subsequent interactions are done using Oz ports.

ServerId is a record explaining which type of directory server it is.

ClientId is a record used to specify which clients should be served. If a client id
sent from a client (or service provider) matches ClientId, the client will be served.
If the feature expectedClientId is not specified the server will serve every client
requesting service.

12 Chapter 4. An Example of a Server Directory

close

close()

Closes the operation of the server.

The class ExampleDirectory.serviceProvider has following methods:

init

init(serverPort:PortNr <= useDefault

id:ClientId <= unit

expectedServerId:ServerId <= directory(kind:recordMatching)

timeOut:TimeOut <= 1000)

This method broadcasts to the ip port PortNr and waits for answers from servers that
listen to it. The servers that answer and which id matches ServerId will be used by
the other methods of this class.

When interacting with the servers, ClientId will be used as identification. The
method will not consider answers received after TimeOut milliseconds has gone by.

add

add(description:Desc
ticket:Ticket
key:?Key <= _)

This method announces a service with a description Desc. Ticket is a ticket to an
Oz-entity that is used as an interface to the service. An Oz name that can be used to
remove the service from the directories is returned.

remove

remove(key:Key)

Tells the servers to remove a service with the key Key.

The class ExampleDirectory.client has following methods:

init

init(serverPort:PortNr <= useDefault

id:ClientId <= unit

expectedServerId:ServerId <= directory(kind:recordMatching)

timeOut:TimeOut <= 1000)

Similar to ExampleDirectory.serviceProvider.

lookup

lookup(pattern:Pattern services:?Services)

Asks servers for services that match the Pattern. A list of pairs is returned. Those
pairs consist of a service description and its ticket.

