
The Oz Base Environment

Denys Duchier
Leif Kornstaedt

Christian Schulte

Version 1.2.3
December 1, 2001

Abstract

Oz is a concurrent language providing for functional, object-oriented, and constraint pro-
gramming. The Oz Base Environment is part of the Oz language specification and contains
procedures that are made generally available to the programmer. A thorough knowledge
of the Oz Base Environment is highly recommended for effective programming in Oz.

The Oz Base Environment provides the basic operations on the values of the Oz universe
and a set of procedures whose use makes for more elegant and readable programs. It
provides high-level access to programming with threads, to real-time programming and to
data structures such as arrays and dictionaries.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 Type Structure and Description Format 3

2.1 Type Structure . 3

2.2 Variable Status . 5

2.3 Description Format . 5

3 Values 9

3.1 Values in General . 9

3.2 Variable Status . 9

3.3 Comparisons . 10

4 Numbers 13

4.1 Numbers in General . 13

4.2 Integers . 14

4.3 Floats . 15

5 Literals 17

5.1 Literals in General . 17

5.2 Atoms . 17

5.3 Names . 17

5.4 Truth Values . 18

5.5 The Value Unit . 18

6 Records, Tuples, and Lists 19

6.1 Records in General . 19

6.2 Tuples . 25

6.3 Lists . 26

7 Text 33

7.1 Characters . 33

7.2 Strings . 35

7.3 Byte Strings . 36

7.4 Virtual Strings . 37

8 Procedures and Cells 39

8.1 Procedures . 39

8.2 Cells . 39

9 Chunks 41

9.1 Chunks in General . 41

9.2 Arrays . 41

9.3 Dictionaries . 42

9.4 Weak Dictionaries . 44

9.5 Bit Arrays . 45

9.6 Ports . 47

9.7 Locks . 47

9.8 Classes . 47

9.9 Objects . 48

9.10 Functors . 49

10 Control 51

10.1 General . 51

10.2 Loops . 52

10.3 Time . 53

10.4 Exceptions . 55

10.5 Threads . 56

11 Infix Notations 59

12 Miscellaneous 61

12.1 Bit Strings . 61

12.2 Foreign Pointers . 62

1

Introduction

This document describes the base environment of the Oz programming language. The
environment is a mapping of identifiers to values. The values are organized in modules
(modeled as records) and are available via field selection from their respective module;
some values are available directly (without the need for selection) for convenience.

Your actual environment may be a superset of the one described by this document,
depending on the Oz implementation you are running. For instance, the Mozart sys-
tem defines more procedures when working in the interactive development system as
described in “The Oz Programming Interface” .

Acknowledgements

Credit has to go to the following people:

• Martin Henz, Martin Müller, and Christian Schulte for writing ‘The Oz Standard
Modules’, part of the Oz Documentation Series for DFKI Oz 2.0, from which
this documented originated;

• Daniel Simon, for translating the original LATEX sources into SGML;

• Leif Kornstaedt, for updating many parts of the document to Oz 3.0;

• Andreas Schoch, for the cover illustration.

Note that the persons responsible for the document as-is are Christian Schulte and Leif
Kornstaedt. Please address any remarks to them.

2 Chapter 1. Introduction

2

Type Structure and Description
Format

2.1 Type Structure

Types are sets of values of the Oz universe which share a common structure and com-
mon operations. Types are divided into primary types and secondary types.

Primary Types

Figure 2.1: Standard Primary Types in Oz.

Value

Number

Record

Procedure

Cell

Chunk

Space

Thread

ByteString

BitString

Int

Float

Tuple

Array

Dictionary

BitArray

Class

Object

Lock

Port

FDInt

Literal

Char

Atom

Name

Bool

Unit

The primary types of Oz are depicted in Figure 2.1. Primary types provide a classifica-
tion of values in the Oz Universe such that any two different subtypes of some primary

4 Chapter 2. Type Structure and Description Format

type are disjoint. To check for a value to belong to a primary type, only its top-level
constructor needs to be tested. Note that implementations of Oz are free to introduce
more primary types (so called extensions) as immediate subtypes of either ‘value’ or
‘chunk’.

Numbers Numbers are either integers or floats.

Literals Literals are either atoms or names.

Tuples Tuples are special records whose features are the integers from 1 to n for
some integer n, n >= 0.

Procedures Procedures are classified according to their arity. We speak about n-ary
procedures.

Chunks Chunks serve to represent abstract data structures. They are defined simi-
larly to records but provide only a restricted set of operations. This makes it possible
to hide some or all of their features. Typical chunks are objects and classes, locks
and ports, and arrays and dictionaries. There are chunks which do not belong to these
types.

Secondary Types

Secondary types are additional types for which Oz provides standard procedures or
modules.

Features Features are either integers or literals.

Pairs A pair is a record matching ’#’(_ _).

Lists A list is either the atom nil or a record matching ’|’(X Y) (or, equivalently,
X|Y) such that Y is again a list. Note that Oz allows cyclic lists which have an infinite
unrolling.

Property Lists A property list is a list of pairs whose first component is a feature,
i.e., a literal or an integer.

Virtual Strings Virtual strings are used to encode strings. Virtual strings contain
atoms, strings, byte strings, integers, and floats, and are closed under tuple construction
with the label ’#’. For more details see Chapter 7.

2.2. Variable Status 5

2.2 Variable Status

Each node X in the store has exactly one of the following statuses: free, determined,
future, or kinded.

Free Variable A variable X is free if the constraint store does not know anything
about X apart from variable equalities X = Y.

Determined Variable A variable X is determined if the constraint store entails
X = N for some number N, or if it entails X = f(a1: _ ... an: _) for some label f
and the arity [a1 ... an], or if it entails X = Y for some byte string, procedure, cell,
chunk, space or thread Y.

Future A variable X is future if the constraint store entails X = F for some future F.

Kinded Variable A variable X is kinded if it is neither free nor determined nor
future.

2.3 Description Format

Every standard procedure has an associated signature of the form

{Map +Xs +P ?Ys}

which specifies its arity, as well as types and modes of its arguments.

Types

The type of an argument is indicated by its name, using the abbreviations summarized
in the following table:

6 Chapter 2. Type Structure and Description Format

Abbreviation Type
A atom
B bool
C chunk
F float
I integer
K class
L literal
N name
O object
P procedure
R record
S string
T tuple
U unit
V virtual string
X Y Z value
FI number
LI feature
AFI atom, float, or int
PO unary procedure or object
Xs lists of elements of type X

We use indices such as R1 or R2 to disambiguate several occurrences of arguments
of the same type. We combine these abbreviations as in FI meaning ‘float or integer’
(i.e., number) or LI meaning ‘literal or integer’ (i.e., feature). We use the plural-‘s’
suffix to indicate lists of values of a certain type. For instance, Is stands for a list of
integers. This suffix can be repeated to indicate lists of lists etc. Additionally, these
arguments can be prefixed as in LowI, which indicates that the integer represents a
lower bound.

Modes

Modes +, ?, none The arguments of procedures can have one of four modes which
are indicated by a symbol (+, ?, none) attached to the arguments in the signature.

Modes indicate the synchronisation behaviour of a procedure. The application of a
procedure P waits until its inputs (+) are determined. If the input arguments are well-
typed, P will return outputs (?) of the specified types. Ill-typed input arguments will
raise a type error exception. Types may be incompletely checked, especially those of
of output arguments: This happens when a value needs not be completely processed to
perform an operation, e.g., in List.dropWhile.

Occasionally, signatures of the base language will use the input mode ∗. Unless one
uses any primitives from the constraint extensions, this is identical with +.

Naming Conventions

Aliases Some of the standard values are so frequent that a special name is provided
for them. For example, List.map is also available as Map. The signature of Map

2.3. Description Format 7

occurring in the description of module List (see Section 6.3) says that the procedure
List.map is available via the abbreviation Map.

Procedure Names Given the signature

{procname ...}

in the description of the module module, the procedure is available as:

• procname, provided procname is just a variable;

• module.procname’, where procname’ can be obtained from procname by down-
casing the first letter and deleting the string module.

For example, the test for lists is available as IsList and as List.is.

Infix Notation For very frequent procedures like arithmetic operations, there exists
a convenient infix notation (see Chapter 11). By convention, the procedure names as
they appear in the modules are the infix operators as atoms (i.e., wrapped in quotes).
For instance, Number.’+’ and Value.’<’ have an infix notation using the operators +
and <.

A Note on the Examples

Several examples used in this document assume a unary procedure Browse in the en-
vironment, which is supposed to display its argument value in a tool called browser.

8 Chapter 2. Type Structure and Description Format

3

Values

3.1 Values in General

The module Value contains procedures that can operate on many kinds of values.

=

{Value.’=’ X Y}

unifies the values of the variables X and Y.

==

{Value.’==’ X Y ?B}

tests whether X is equal to Y. The test may suspend.

\=

{Value.’\\=’ X Y ?B}

tests whether X is not equal to Y. The test may suspend.

toVirtualString

{Value.toVirtualString X +DepthI +WidthI ?VS}

returns a virtual string describing the value of X. Note that this does not block on X.
The values of DepthI and WidthI are used to limit output of records in depth and
width respectively.

3.2 Variable Status

The following procedures allow to inspect a variable’s status.

IsFree

{Value.isFree X ?B}

tests whether X is currently free.

IsDet

{Value.isDet X ?B}

tests whether X is determined.

IsFuture

10 Chapter 3. Values

{Value.isFuture X ?B}

tests whether X is a future.

IsKinded

{Value.isKinded X ?B}

tests whether X is currently kinded, i.e., neither determined nor free.

status

{Value.status X ?T}

returns status and type information on X. If X is a future, the atom future is returned.
If X is free, the atom free is returned. If X is kinded, the tuple kinded(Y) is returned,
where Y is bound to either the atoms int, fset or record, depending on the type
of X. If X is determined, the tuple det(Y) is returned, where Y is bound to the atom as
returned by {Value.type X}.

type

{Value.type +X ?A}

returns an atom describing the type of X. If X is of one of the standard primary types
depicted in Figure 2.1 (except ‘value’), then A is constrained to the most specific of
int, float, record, tuple, atom, name, procedure, cell, byteString, bitString,
chunk, array, dictionary, bitArray, ’class’, object, ’lock’, port, space, or
’thread’. If any other atom is returned, this means that X is of no standard primary
type, but an implementation-dependent extension.

3.3 Comparisons

This section collects procedures to compare integers with integers, floats with floats,
and atoms with atoms. Atoms are compared lexically. Comparison between values of
different types is not allowed and an attempt to do so will raise a run-time error.

=<

{Value.’=<’ +AFI1 +AFI2 ?B}

tests whether AFI1 is less than or equal to AFI2.

<

{Value.’<’ +AFI1 +AFI2 ?B}

tests whether AFI1 is less than AFI2.

>=

{Value.’>=’ +AFI1 +AFI2 ?B}

tests whether AFI1 is greater than or equal to AFI2.

>

{Value.’>’ +AFI1 +AFI2 ?B}

tests whether AFI1 is greater than AFI2.

Max

{Value.max +AFI1 +AFI2 ?AFI3}

3.3. Comparisons 11

returns the maximum of AFI1 and AFI2.

Min

{Value.min +AFI1 +AFI2 ?AFI3}

returns the minimum of AFI1 and AFI2.

12 Chapter 3. Values

4

Numbers

4.1 Numbers in General

The module Number contains procedures operating on numbers. Numbers in Oz are
either integers or floats. The following arithmetic procedures are defined both on inte-
gers and on floats; however, there is no implicit conversion. If one input argument is a
float and the other an integer, a type error is raised.

IsNumber

{Number.is +X ?B}

tests whether X is a number.

+

{Number.’+’ +FI1 +FI2 ?FI3}

returns the sum of FI1 and FI2.

-

{Number.’-’ +FI1 +FI2 ?FI3}

returns the difference of FI1 and FI2.

*

{Number.’*’ +FI1 +FI2 ?FI3}

returns the product of FI1 and FI2.

~

{Number.’~’ +FI1 ?FI2}

returns the negation of FI1.

Pow

{Number.pow +FI1 +FI2 ?FI3}

returns FI1 to the power of FI2.

Abs

{Number.abs +FI1 ?FI2}

returns the absolute value of FI1.

14 Chapter 4. Numbers

4.2 Integers

The module Int contains procedures operating on integers.

IsInt

{Int.is +X ?B}

tests whether X is an integer.

IsNat

{Int.isNat +I ?B}

tests whether I is a natural number, i.e., an integer greater than or equal to 0.

IsOdd

{Int.isOdd +I ?B}

tests whether I is an odd integer.

IsEven

{Int.isEven +I ?B}

tests whether I is an even integer.

div

{Int.’div’ +I1 +I2 ?I3}

returns I1 integer-divided by I2, rounding towards 0. Int.’div’ can be defined as
follows:

local

fun {Div I1 I2}

case I1 < I2 then 0 else 1 + {Div I1 - I2 I2} end

end

in

fun {Int.’div’ I1 I2}

{Div {Abs I1} {Abs I2}} *

case I1 * I2 >= 0 then 1 else ~1 end

end

end

mod

{Int.’mod’ +I1 +I2 ?I3}

returns I1 modulo I2. Int.’mod’ can be defined as follows:

fun {Int.’mod’ I1 I2}

I1 - I2 * (I1 div I2)

end

IntToFloat

{Int.toFloat +I ?F}

returns the float closest to the integer I.

IntToString

{Int.toString +I ?S}

returns the string describing the integer I in Oz concrete syntax.

4.3. Floats 15

4.3 Floats

The module Float contains procedures operating on floating point numbers.

IsFloat

{Float.is +X ?B}

tests whether X is a float.

/

{Float.’/’ +F1 +F2 ?F3}

returns F1 divided by F2.

Exp

{Float.exp +F1 ?F2}

returns F1 to the power of e.

Log

{Float.log +F1 ?F2}

returns the logarithm to the base e of F1.

Sqrt

{Float.sqrt +F1 ?F2}

returns the square root of F1.

Ceil

{Float.ceil +F1 ?F2}

returns the ceiling of F1 (rounding towards positive infinity).

Floor

{Float.floor +F1 ?F2}

returns the floor of F1 (rounding towards negative infinity).

Round

{Float.round +F1 ?F2}

returns the integral value closest to F1. If there are two candidates, F1 is rounded to
the closest even integral value, e.g., {Float.round 1.5} and {Float.round 2.5}

both return 2.0.

Sin

{Float.sin +F1 ?F2}

returns the sine of F1.

Cos

{Float.cos +F1 ?F2}

returns the cosine of F1.

Tan

{Float.tan +F1 ?F2}

returns the tangent of F1.

16 Chapter 4. Numbers

Asin

{Float.asin +F1 ?F2}

returns the arc sine of F1.

Acos

{Float.acos +F1 ?F2}

returns the arc cosine of F1.

Atan

{Float.atan +F1 ?F2}

returns the arc tangent of F1.

Atan2

{Float.atan2 +F1 +F2 ?F3}

returns the principal value of the arc tangent of F1 / F2, using the signs of both
arguments to determine the quadrant of the return value. An error exception may (but
needs not) be raised if both arguments are zero.

Float.sinh

{Float.sinh +F1 ?F2}

returns the hyperbolic sine of F1.

Float.cosh

{Float.cosh +F1 ?F2}

returns the hyperbolic cosine of F1.

Float.tanh

{Float.tanh +F1 ?F2}

returns the hyperbolic tangent of F1.

Float.asinh

{Float.asinh +F1 ?F2}

returns the inverse hyperbolic sine of F1.

Float.acosh

{Float.acosh +F1 ?F2}

returns the inverse hyperbolic cosine of F1.

Float.atanh

{Float.atanh +F1 ?F2}

returns the inverse hyperbolic tangent of F1.

FloatToInt

{Float.toInt +F ?I}

returns the integer closest to float F. If there are two candidates, F is rounded to the
closest even integer, e.g., {FloatToInt 1.5} and {FloatToInt 2.5} both return 2.

FloatToString

{Float.toString +F ?S}

returns the string describing the float F in Oz concrete syntax.

5

Literals

5.1 Literals in General

The module Literal contains procedures operating on literals, i.e., atoms and names.

IsLiteral

{Literal.is +X ?B}

tests whether X is a literal.

5.2 Atoms

The module Atom contains procedures operating on atoms.

IsAtom

{Atom.is +X ?B}

tests whether X is atom.

AtomToString

{Atom.toString +A ?S}

binds S to the string (list of characters) representing atom A according to ISO 8859-1.
See also String.toAtom.

For example,

{AtomToString ’abc’}

yields as output [97 98 99].

5.3 Names

The module Name contains procedures operating on names.

IsName

{Name.is +X ?B}

tests whether X is a name.

NewName

{Name.new ?N}

Creates a new name and binds N to it.

18 Chapter 5. Literals

5.4 Truth Values

The module Bool contains procedures operating on the truth values true and false,
which denote names.

IsBool

{Bool.is +X ?B}

tests whether X is true or false.

Not

{Bool.’not’ +B1 ?B2}

returns the negation of truth value B1.

And

{Bool.and +B1 +B2 ?B3}

returns the conjunction of truth values B1 and B2. Note that And is different from
conditional conjunction available via the keyword andthen in that it always evaluates
its second argument.

For instance, false andthen P reduces without reducing application of P, whereas
reduction of {And false P} always applies P.

Or

{Bool.’or’ +B1 +B2 ?B3}

returns the disjunction of truth values B1 and B2. Note that Or is different from con-
ditional disjunction available via the keyword orelse in that it always evaluates its
second argument.

For instance, true orelse P reduces without reducing application of P, whereas re-
duction of {Or true P} always applies P.

5.5 The Value Unit

The module Unit contains procedures operating on the value available as unit, which
denotes a name.

IsUnit

{Unit.is +X ?B}

tests whether X is unit.

6

Records, Tuples, and Lists

This chapter describes procedures to be used with records in general and special kinds
of records, namely tuples and lists.

6.1 Records in General

The module Record contains procedures operating on records.

Procedures that iterate over the subtrees of a record operate in ascending order as spec-
ified for Arity.

.

{Value.’.’ +RC +LI X}

returns the field X of RC at feature LI.

HasFeature

{Value.hasFeature +RC +LI ?B}

tests whether RC has feature LI.

CondSelect

{Value.condSelect +RC +LI X Y}

returns the field of RC at feature LI, if RC has feature LI. Otherwise, return X.

IsRecord

{Record.is +X ?B}

tests whether X is a record.

MakeRecord

{Record.make +L +LIs ?R}

returns a new record with label L, features LIs, and fresh variables at every field. All
elements of LIs must be pairwise distinct, else an error exception is raised.

For example, {MakeRecord L A R} waits until L is bound to a literal, say b, and A is
bound to a list of literals and integers, say [c d 1], and then binds R to b(_ c: _ d: _).

clone

{Record.clone +R1 ?R2}

20 Chapter 6. Records, Tuples, and Lists

returns a record R2 with the same label and features as R1 and fresh variables at every
field.

Label

{Record.label +R ?L}

returns the label of R in L.

Width

{Record.width +R ?I}

returns the width of R in I.

Arity

{Record.arity +R ?LIs}

returns the arity LIs of R. The arity of R is the list of its features, beginning with all
integer features in ascending order, followed by the literal features. The atomic literals
occur in ascending order interspersed with names.

For example, {Arity a(nil 7 c: 1 b: c)} yields [1 2 b c] as output.

Adjoin

{Record.adjoin +R1 +R2 ?R3}

returns the result of adjoining R2 to R1.

For example,

{Adjoin a(a b c: 1) b(4 b: 3 c: 2)}

yields the record b(4 b b: 3 c: 2) as output.

AdjoinAt

{Record.adjoinAt +R1 +LI X ?R2}

binds R2 to the result of adjoining the field X to R1 at feature LI.

For example,

{AdjoinAt a(a c: 1) 2 b}

yields a(a b c: 1) as output, whereas

{AdjoinAt a(a c: 1) c b}

yields a(a c: b) as output.

AdjoinList

{Record.adjoinList +R1 +Ts ?R2}

binds R2 to the result of adjoining to R1 all entries of Ts, a finite list of pairs whose
first components are literals or integers, representing features. Features further to the
right overwrite features further to the left.

For example,

{AdjoinList a(b:1 c:2) [d#3 c#4 d#5]}

yields a(b: 1 c: 4 d: 5) as output.

6.1. Records in General 21

subtract

{Record.subtract +R1 +LI ?R2}

If R1 has feature LI, returns record R1 with feature LI removed. Otherwise, re-
turns R1.

subtractList

{Record.subtractList +R1 +LIs ?R2}

Returns record R1 with all features in LIs removed.

For example,

{Record.subtractList f(jim: 1 jack: 2 jesse: 4) [jesse jim]}

returns the record f(jack: 2).

zip

{Record.zip +R1 +R2 +P ?R3}

Given two records R1 and R2 and a ternary procedure P, R3 is bound to a record with
the same label as R1 and those features which are common to R1 and R2. Features
appearing only in one of the records are silently dropped. Each fields X of R3 is
computed by applying {P R1.X R2.X R3.X}.

For example,

{Record.zip

f(jim: 1 jack: 2 jesse: 4)

g(jim: a jack: b joe: c)

fun {$ X Y} X#Y end}

yields as output the record f(jim: 1#a jack: 2#b).

toList

{Record.toList +R ?Xs}

binds Xs to list of all fields of R in the order as given by Arity (which see).

For example,

{Record.toList f(a a: 2 b: 3)}

yields [a 2 3] as output.

toListInd

{Record.toListInd +R ?Ts}

binds Ts to the property list that contains the feature-field pairs of R in the order as
given by Arity (which see).

For example,

{Record.toListInd f(a a: 2 b: 3)}

yields [1#a a#2 b#3] as output.

toDictionary

{Record.toDictionary +R ?Dictionary}

22 Chapter 6. Records, Tuples, and Lists

returns a dictionary Dictionary whose keys and their entries correspond to the fea-
tures and their fields of R.

All of the following procedures are provided in two versions. The so-called index
version passes to the procedures an additional index as first actual argument. The
index is an integer or a literal giving the feature of the field currently processed.

map

{Record.map +R1 +P ?R2}

returns a record with same label and arity as R1, whose fields are computed by applying
the binary procedure P to all fields of R1.

For example,

{Record.map a(12 b: 13 c: 1) IntToFloat}

yields the record a(12.0 b: 13.0 c: 1.0) as output.

mapInd

{Record.mapInd +R1 +P ?R2}

is similar to Record.map, but the ternary procedure P is applied with the index as first
actual argument.

For example,

{Record.mapInd a(1: d 3: a f: e) fun {$ I A} A(I) end}

yields the record a(1: d(1) 3: a(3) f: e(f)) as output.

foldL

{Record.foldL +R +P X ?Y}

foldR

{Record.foldR +R +P X ?Y}

Used for folding the fields of R by applying the ternary procedure P.

Suppose that R has the arity [F1 ... Fn]. Applying the left folding procedure
{Record.foldL R P Z Out} reduces to

{P ... {P {P Z R.F1} R.F2 ... R.Fn Out}

The first actual argument of P is the accumulator in which the result of the previous
application or the start value Z is passed. The second actual argument is a field of R.

Besides the left folding procedure there exists a right folding variant. The application
{Record.foldR R P Z Out} reduces to

{P R.F1 {P R.F2 ... {P R.Fn Z} ... Out}

The first actual argument of P is a field of R; the second actual argument is the accu-
mulator in which the result of the previous application or the start value Z is passed.

For example,

{Record.foldL a(3 a: 7 b: 4) fun {$ Xr X} X|Xr end nil}

6.1. Records in General 23

yields the output [4 7 3], whereas

{Record.foldR a(3 a: 7 b: 4) fun {$ X Xr} X|Xr end nil}

yields the output [3 7 4].

foldLInd

{Record.foldLInd +R +P X ?Y}

foldRInd

{Record.foldRInd +R +P X ?Y}

are similar to Record.foldL and Record.foldR, but the 4-ary procedure P is applied
with the current index as first actual argument.

forAll

{Record.forAll +R +PO}

applies the unary procedure or object PO to each field of R.

Suppose that the arity of R is [F1 ... Fn]. The application {Record.forAll R P}
reduces to the sequence of statements

{P R.F1} ... {P R.Fn}

For example,

{Record.forAll O1#O2#O3 proc {$ O} {O do()} end}

sends the message do() to the objects O1, O2, and O3.

forAllInd

{Record.forAllInd +R +P}

is similar to Record.forAll, but the binary procedure P is applied with the current
index as first actual argument.

For example, assuming O1, O2, and O3 are objects,

{Record.forAllInd a(do: O1 stop: O2 run: O3)

proc {$ M O} {O M} end}

sends the message do to the object O1, the message stop to O2, and the message run

to O3.

all

{Record.all +R +P ?B}

some

{Record.some +R +P ?B}

tests whether the unary boolean function P yields true when applied to all fields resp.
some field of R. Stops at the first field for which P yields false resp. true. The fields
are tested in the order given by Arity (which see).

allInd

{Record.allInd +R +P ?B}

24 Chapter 6. Records, Tuples, and Lists

someInd

{Record.someInd +R +P ?B}

is similar to Record.all resp. Record.some, but the binary boolean function P is
applied with the current index as first actual argument.

filter

{Record.filter +R1 +P ?R2}

partition

{Record.partition +R1 +P ?R2 ?R3}

Record.filter computes a record R2 which contains all the features and fields of the
record R1 for which the unary boolean procedure P applied to the field yields true.
Record.partition works similarly, but returns in R3 a record with all remaining
fields of R1.

For example, the application

{Record.partition a(1 4 7 a: 3 b: 6 c: 5) IsOdd ?R2 ?R3}

returns a(1: 1 3: 7 a: 3 c: 5) in R2 and a(2: 4 b: 6) in R3.

filterInd

{Record.filterInd +R1 +P ?R2}

partitionInd

{Record.partitionInd +R1 +P ?R2 ?R3}

are similar to Record.filter and Record.partition, but the binary boolean func-
tion P is applied with the current index as first actual argument.

takeWhile

{Record.takeWhile +R1 +P ?R2}

dropWhile

{Record.dropWhile +R1 +P ?R3}

takeDropWhile

{Record.takeDropWhile +R2 +P ?R2 ?R3}

While Record.filter selects all fields and features of a record which satisfy a certain
condition, the procedure Record.takeWhile selects only the starting sequence of fea-
tures and fields which fulfill this condition. The procedure Record.dropWhile is dual:
It computes a record with the remaining features and fields. Record.takeWhileDrop
computes both records.

For example,

{Record.takeWhile a(1 4 7 a: 3 b: 6 c: 5) IsOdd}

yields as output a(1), whereas

{Record.dropWhile a(1 4 7 a: 3 b: 6 c: 5) IsOdd}

yields a(2: 4 3: 7 a: 3 b: 6 c: 5) as output. Both records can be computed
simultaneously by

6.2. Tuples 25

{Record.takeDropWhile a(1 4 7 a: 3 b: 6 c: 5) IsOdd ?R2 ?R3}

takeWhileInd

{Record.takeWhileInd +R1 +P ?R2}

dropWhileInd

{Record.dropWhileInd +R1 +P ?R3}

takeDropWhileInd

{Record.takeDropWhileInd +R1 +P ?R2 ?R3}

are similar to Record.takeWhile, Record.dropWhile and Record.takeDropWhile

but the binary boolean function P is applied with the current index as first actual argu-
ment.

waitOr

{Record.waitOr +R ?LI}

blocks until at least one field of +R is determined. Returns the feature LI of a deter-
mined field. Raises an exception if R is not a proper record, that is, if R is a literal.

For example,

{Record.waitOr a(_ b: 1)}

returns b while

{Record.waitOr a(2 b: _)}

returns 1, and

{Record.waitOr a(_ b: _)}

blocks.

6.2 Tuples

The module Tuple contains procedures operating on tuples.

IsTuple

{Tuple.is +X ?B}

tests whether X is a tuple.

MakeTuple

{Tuple.make +L +I ?T}

binds T to new tuple with label L and fresh variables at features 1 through I. I must
be non-negative, else an error exception is raised.

For example, {MakeTuple L N T} waits until L is bound to a literal, say b, and N is
bound to a number, say 3, whereupon T is bound to b(_ _ _).

toArray

{Tuple.toArray +T ?A}

26 Chapter 6. Records, Tuples, and Lists

returns an array with bounds between 1 and {Width T}, where the elements of the
array are the subtrees of T.

append

{Tuple.append +T1 +T2 ?T3}

returns a tuple with same label as T2. Given that T1 has width i and T2 has width j,
T3 will have width i + j, and the first i fields of T3 will be the same as the fields of T1
in their original order, and the fields i + 1 through i + j will be the same as the fields
of T2 in their original order.

6.3 Lists

The module List contains procedures operating on lists.

IsList

{List.is +X ?B}

tests whether X is a list. Diverges if X is an infinite list.

MakeList

{List.make +I ?Xs}

returns a list of length I. All elements are fresh variables.

Append

{List.append +Xs Y ?Zs}

binds Zs to the result of appending Y to Xs. Y needs not be a list. However, Zs is only
a proper list, if also Y is a proper list.

For example,

{Append [1 2] [3 4]}

returns the list [1 2 3 4], whereas

{Append 1|2|nil 3|4}

returns 1|2|(3|4) which is not a proper list, since 3|4 is not a proper list.

Member

{List.member X +Ys ?B}

tests whether X is equal (in the sense of ==) to some element of Ys.

Length

{List.length +Xs ?I}

returns the length of Xs.

Nth

{List.nth +Xs +I ?Y}

returns the Ith element of Xs (counting from 1).

subtract

6.3. Lists 27

{List.subtract +Xs Y ?Zs}

binds Zs to Xs without the leftmost occurrence of Y if there is one.

sub

{List.sub +Xs +Ys ?B}

tests whether Xs is a sublist of Ys, i.e., whether it contains all elements of Xs in the
same order as Xs but not necessarily in succession.

For example, [a b] is a sublist of both [1 a b 2] and [1 a 2 b 3], but not of
[b a].

Reverse

{List.reverse +Xs ?Ys}

returns the elements of Xs in reverse order.

Sort

{List.sort +Xs +P ?Ys}

binds Ys to the result of sorting Xs using the ordering P. Sort is implemented using
the mergesort algorithm.

For example,

{Sort [c d b d a] Value.’<’}

returns the list [a b c d d].

Merge

{List.merge +Xs +Ys +P ?Zs}

binds Zs to the result of merging Xs and Ys using the ordering P. The lists Xs and Ys
must be sorted.

Flatten

{List.flatten +Xs ?Ys}

binds Ys to the result of flattening Xs, i.e., of concatenating all sublists of Xs recur-
sively.

withTail

{List.withTail +I Y ?Xs}

returns a list with at least I elements whose rest is Y (which needs not be a list). The
first I elements are fresh variables.

For example, {List.withTail 2 [a b]} returns [_ _ a b].

number

{List.number +FromI +ToI +StepI ?Xs}

returns a list with elements from FromI to ToI with step StepI.

For example, {List.number 1 5 2} returns [1 3 5], {List.number 5 1 2} yields
the list nil, and {List.number 5 0 -2} yields the list [5 3 1].

take

{List.take +Xs +I ?Ys}

returns the list that contains the first I elements of Xs, or Xs if it is shorter.

28 Chapter 6. Records, Tuples, and Lists

drop

{List.drop +Xs +I ?Ys}

returns the list Xs with the first I elements removed, or to nil if it is shorter.

takeDrop

{List.takeDrop +Xs +I ?Ys ?Zs}

binds Ys to {List.take Xs I} and Zs to {List.drop Xs I}.

last

{List.last +Xs ?Y}

returns the last element of Xs. Raises an error exception if Xs is nil.

toTuple

{List.toTuple +L +Xs ?T}

binds T to a tuple with label L that contains the elements of Xs as subtrees in the given
order.

For example,

{List.toTuple ’#’ [a b c]}

returns a#b#c.

toRecord

{List.toRecord +L +Ts ?R}

binds R to a record with label L whose subtrees are given by the property list Ts: For
every element Li#Xi of Xs, R has a field Xi at feature Li. The features in the property
list must be pairwise distinct, else an error exception is raised.

For example,

{List.toRecord f [a#1 b#2 c#3]}

returns f(a: 1 b: 2 c: 3).

zip

{List.zip +Xs +Ys +P ?Zs}

returns the list of all elements Zi computed by applying {P Xi Yi}, where Xi is the ith
element of Xs and Yi the ith element of Ys. The two input lists must be of equal length,
else an error exception is raised.

For example,

{List.zip [1 6 3] [4 5 6] Max}

returns the list [4 6 6].

isPrefix

{List.isPrefix +Xs +Ys ?B}

tests whether Xs is a prefix of Ys. Given that Xs has length i, it is a prefix of Ys if
Ys has at least length i and the first i elements of Ys are equal to the corresponding
elements of Xs.

6.3. Lists 29

All of the following procedures exist in two versions. The so-called index version
passes to the procedures an additional index as first actual argument. The index is an
integer giving the position of the list element currently processed (counting from 1).

Map

{List.map +Xs +P ?Ys}

returns the list obtained by applying P to each element of Xs.

For example,

{Map [12 13 1] IntToFloat}

returns [12.0 13.0 1.0].

mapInd

{List.mapInd +Xs +P ?Ys}

is similar to Map, but the ternary procedure P is applied with the index as first actual
argument.

For example,

{List.mapInd [d a e] fun {$ I A} I#A end}

yields the list [1#d 2#a 3#e] as output.

FoldL

{List.foldL +Xs +P X ?Y}

FoldR

{List.foldR +Xs +P X ?Y}

Used for folding the elements of Xs by applying a ternary procedure P.

Application of the left folding procedure {FoldL [X1 ... Xn] P Z Out} reduces
to

{P ... {P {P Z X1} X2} ... Xn Out}

The first actual argument of P is the accumulator in which the result of the previous
application or the start value Z is passed. The second actual argument is an element
of Xs.

Besides the left folding procedure there exists a right folding variant. The application
{FoldR [X1 ... Xn] P Z Out} reduces to

{P X1 {P X2 ... {P Xn Z} ...} Out}

The first actual argument of P is an element of Xs. The second actual argument of P
is the accumulator in which the result of the previous application or the start value Z is
passed.

For example,

{FoldL [b c d] fun {$ X Y} f(X Y) end a}

returns f(f(f(a b) c) d), whereas

30 Chapter 6. Records, Tuples, and Lists

{FoldR [b c d] fun {$ X Y} f(X Y) end a}

returns f(b f(c f(d a))).

foldLInd

{List.foldLInd +Xs +P X ?Y}

foldRInd

{List.foldRInd +Xs +P X ?Y}

are similar to FoldL and FoldR, but the 4-ary procedure P is applied with the current
index as first actual argument.

FoldLTail

{List.foldLTail +Xs +P X ?Y}

FoldRTail

{List.foldRTail +Xs +P X ?Y}

Used for folding all non-nil tails of Xs by applying a ternary procedure P, i.e., appli-
cation of the left folding procedure

{FoldLTail [X1 ... Xn] P Z Out}

reduces to

{P ... {P {P Z [X1 ... Xn]} [X2 ... Xn]} ... Xn] Out}

The right folding procedure is analogous.

foldLTailInd

{List.foldLTailInd +Xs +P X ?Y}

foldRTailInd

{List.foldRTailInd +Xs +P X ?Y}

are similar to FoldLTail and FoldRTail, but the 4-ary procedure P is applied with
the current index as first actual argument.

ForAll

{List.forAll +Xs +PO}

applies the unary procedure or object PO to each element of Xs, i.e., the application

{ForAll [X1 ... Xn] P}

reduces to the sequence of statements

{P X1} ... {P Xn}

For example,

{ForAll [O1 O2 O3] proc {$ O} {O do()} end}

sends the message do() to the objects O1, O2, and O3.

forAllInd

6.3. Lists 31

{List.forAllInd +Xs +P}

is similar to ForAll, but the binary procedure P is applied with the current index as
first actual argument.

For example, assuming O1, O2, and O3 are objects, the following statement sends the
message do(1) to the object O1, the message do(2) to O2, and the message do(3)

to O3:

{List.forAllInd [O1 O2 O3]

proc {$ I O} {O do(I)} end}

ForAllTail

{List.forAllTail +Xs +PO}

applies the unary procedure or object PO to each non-nil tail of Xs, i.e., the application

{ForAllTail [X1 ... Xn] P}

reduces to the sequence of statements

{P [X1 ... Xn]} {P [X2 ... Xn]} ... {P [Xn]}

forAllTailInd

{List.forAllTailInd +Xs +P}

is similar to ForAllTail, but the binary procedure P is applied with the current index
as first actual argument.

All

{List.all +Xs +P ?B}

Some

{List.some +Xs +P ?B}

tests whether the unary boolean function P yields true when applied to all elements
resp. some element of Xs. Stops at the first element for which P yields false resp.
true.

allInd

{List.allInd +Xs +P ?B}

someInd

{List.someInd +Xs +P ?B}

are similar to All and Some, but the binary boolean function P is applied with the
current index as first actual argument.

Filter

{List.filter +Xs +P ?Ys}

partition

{List.partition +Xs +P ?Ys ?Zs}

Filter returns a list of the elements of Xs for which the application of the unary
boolean function P yields true, where the ordering is preserved. List.partition

32 Chapter 6. Records, Tuples, and Lists

works similarly, but additionally returns in Zs a list of all remaining elements of Xs,
where the ordering is preserved as well.

For example, the application

{List.partition [1 4 2 3 6 5] IsOdd Ys Zs}

returns [1 3 5] in Ys and [4 2 6] in Zs.

filterInd

{List.filterInd +Xs +P ?Ys}

partitionInd

{List.partitionInd +Xs +P ?Ys ?Zs}

are similar to Filter and List.partition, but the binary boolean function P is ap-
plied with the current index as first actual argument.

takeWhile

{List.takeWhile +Xs +P ?Ys}

dropWhile

{List.dropWhile +Xs +P ?Ys}

takeDropWhile

{List.takeDropWhile +Xs +P ?Ys ?Zs}

While Filter selects all elements of a list which satisfy a certain condition, the pro-
cedure List.takeWhile selects only the starting sequence of elements which fulfill
this condition. The procedure List.dropWhile is dual: It returns the remainder of
the list. For convenience, List.takeDropWhile combines the functionality from both
List.takeWhile and List.dropWhile.

For example, the application

{List.takeWhile [1 4 2 3 6 5] IsOdd Ys}

returns [1] in Ys, whereas

{List.dropWhile [1 4 2 3 6 5] IsOdd Zs}

returns [4 2 3 6 5] in Ys.

{List.takeDropWhile [1 4 2 3 6 5] IsOdd Ys Zs}

combines both.

takeWhileInd

{List.takeWhileInd +Xs +P ?Ys}

dropWhileInd

{List.dropWhileInd +Xs +P ?Ys}

takeDropWhileInd

{List.takeDropWhileInd +Xs +P ?Ys ?Zs}

are similar to List.takeWhile, List.dropWhile and List.takeDropWhile but the
binary boolean function P is applied with the current index as first actual argument.

7

Text

This chapter describes modules for handling data encoding textual information. Char-
acters are encoded as integers. Strings are lists of characters. Virtual Strings are atoms,
strings, byte strings, integers, and floats closed under virtual concatenation encoded by
tuples with label ’#’.

For example,

"Contains "#also#" numbers: "#(1#’ ’#2.045)

is a virtual string representing the string

"Contains also numbers: 1 2.045"

7.1 Characters

The module Char contains procedures operating on characters. Characters are integers
between 0 and 255, used for building strings. For the encoding of characters by inte-
gers, we use the ISO 8859-1 standard [1]. The functionality provided by this module
is similar to the ctype.h module of ANSI C, see for instance [2].

The procedures described herein can be used to compute with strings by using the
generic procedures of the list module (see Section 6.3). For example,

{Filter "r E!m O\nv7E" Char.isAlpha}

keeps only the letters of the given string and returns the string "rEmOvE".

IsChar

{Char.is +X ?B}

tests whether X is a character, i.e., an integer between 0 and 255 inclusively.

isLower

{Char.isLower +Char ?B}

tests whether Char encodes a lower-case letter.

isUpper

{Char.isUpper +Char ?B}

34 Chapter 7. Text

tests whether Char encodes an upper-case letter.

isDigit

{Char.isDigit +Char ?B}

tests whether Char encodes a digit.

isSpace

{Char.isSpace +Char ?B}

tests whether Char encodes a white space character, i.e., either a space, a form feed
(&\f), a newline (&\n), a carriage return (&\r), a tab (&\t), a vertical tab (&\v) or a
non-breaking space (&\240).

isPunct

{Char.isPunct +Char ?B}

tests whether Char encodes a punctuation character, i.e., a visible character, which is
not a space, a digit, or a letter.

isCntrl

{Char.isCntrl +Char ?B}

tests whether Char encodes a control character.

isAlpha

{Char.isAlpha +Char ?B}

tests whether Char encodes a letter.

isAlNum

{Char.isAlNum +Char ?B}

tests whether Char encodes a letter or a digit.

isGraph

{Char.isGraph +Char ?B}

tests whether Char encodes a visible character.

isPrint

{Char.isPrint +Char ?B}

tests whether Char is a visible character or either the space or non-breaking space
character.

isXDigit

{Char.isXDigit +Char ?B}

tests whether Char is a hexadecimal digit.

type

{Char.type +Char ?A}

maps Char to its simple type A, i.e., one of the atoms lower, upper, digit, space,
punct, or other.

toLower

{Char.toLower +Char1 ?Char2}

7.2. Strings 35

returns the corresponding lower-case letter if Char1 is an upper-case letter, otherwise
Char1 itself.

toUpper

{Char.toUpper +Char1 ?Char2}

returns the corresponding upper-case letter if Char1 is a lower-case letter, otherwise
Char1 itself.

toAtom

{Char.toAtom +Char ?A}

maps Char to the corresponding atom A. If Char is zero, A will be the empty atom ”.

7.2 Strings

The module String contains procedures operating on strings. Strings are lists whose
elements are characters (see Section 7.1).

IsString

{String.is +X ?B}

tests whether X is string.

StringToAtom

{String.toAtom +S ?A}

converts a string S to an atom A. Smust not contain NUL characters. This is the inverse
of Atom.toString (which see).

isAtom

{String.isAtom +S ?B}

tests whether the string S can be converted to an atom.

StringToInt

{String.toInt +S ?I}

converts a string S to an integer I, according to Oz concrete syntax. See also IntToString.

isInt

{String.isInt +S ?B}

tests whether the string S can be converted to an integer.

StringToFloat

{String.toFloat +S ?F}

converts a string S to a float F, according to Oz concrete syntax. See also FloatToString.

isFloat

{String.isFloat +S ?B}

tests whether the string S can be converted to a float.

token

{String.token +S1 X ?S2 ?S3}

36 Chapter 7. Text

splits the string S1 into two substrings S2 and S3. S2will contain all characters before
the first occurence of X, S3 all remaining characters with X excluded. If X does not
occur in S1, then S2 will be equal to S1 and S3 will be the empty string.

For example,

{String.token "a:b:c" &: S1 S2}

binds S1 to "a" and S2 to "b:c".

tokens

{String.tokens +S X ?Ss}

splits the string S into substrings Ss delimited by occurrences of X in S. Note that the
final empty string will be omitted if the last element of S is an X.

For example,

{String.tokens "a:bb:cc:d:" &:}

returns ["a" "bb" "cc" "d"].

7.3 Byte Strings

Module ByteString provides an interface to a more economical representation for
textual data: a simple array of bytes. In terms of memory, the economy is at least a
factor of 8, which may improve local processing, IO, pickle sizes, and remote commu-
nications (distributed processing). However strings, i.e., lists, are often more conve-
nient for all forms of recursive processing (e.g., Map or Filter). Typically, you will be
processing textual data in list form, but saving or communicating it in byte string form.

IsByteString

{ByteString.is +X ?B}

tests whether X is a byte string.

make

{ByteString.make +V ?ByteString}

returns a new byte string created from the virtual string V.

get

{ByteString.get +ByteString +I ?C}

retrieves the Ith character of byte string ByteString. The first index is 0.

append

{ByteString.append +ByteString1 +ByteString2 ?ByteString3}

returns the new byte string ByteString3which is the concatenation of ByteString1
and ByteString2.

slice

{ByteString.slice +ByteString1 +FromI +ToI ?ByteString2}

returns a new byte string for the bytes in ByteString1 starting at index FromI and
extending up to, but not including, index ToI.

7.4. Virtual Strings 37

width

length

{ByteString.width +ByteString ?I}
{ByteString.length +ByteString ?I}

returns the width I of ByteString.

toString

{ByteString.toString +ByteString ?S}

converts ByteString to a string S.

toStringWithTail

{ByteString.toStringWithTail +ByteString X ?S}

converts ByteString to a string S ending with X. This is useful for subsequently
instantiating X, e.g., with another call to ByteString.toStringWithTail.

strchr

{ByteString.strchr +ByteString +OffsetI +Char ?PosBI}

returns the position PosI of the first occurrence of Char in ByteString starting at
offset OffsetI. If none is found false is returned instead.

7.4 Virtual Strings

The module VirtualString contains procedures operating on virtual strings. Vir-
tual strings are designed as a convenient way to combine strings, byte strings, atoms,
integers and floats to compound strings without explicit concatenation and conversion.

IsVirtualString

{VirtualString.is +X ?B}

tests whether X is a virtual string. Virtual strings are defined recursively as the set of all
integers, floats, atoms, strings, byte strings, and tuples with label ’#’ whose subtrees
are virtual strings.

toString

{VirtualString.toString +V ?S}

converts a virtual string V to a string S.

The transformation is straightforward: Atoms (except nil and ’#’), integers, floats
and byte strings are transformed into strings using Atom.toString, Int.toString,
Float.toString, and ByteString.toString respectively, where in numbers - is
used instead of ~. A tuple with label ’#’ is transformed by concatenation of the trans-
formed subtrees. Note that both nil and ’#’ denote the empty string.

The following relation holds for all virtual strings V1 and V2:

{VirtualString.toString V1#V2}

= {Append

{VirtualString.toString V1}

{VirtualString.toString V2}}

Thus, VirtualString.toString maps # homomorphically to Append.

38 Chapter 7. Text

toAtom

{VirtualString.toAtom +V ?A}

converts a virtual string V to an atom A.

This procedure can be defined as:

fun {VirtualString.toAtom V}

{String.toAtom {VirtualString.toString V}}

end

toByteString

{VirtualString.toByteString +V ?ByteString}

converts a virtual string V to a byte string ByteString.

This procedure is a synonym of ByteString.make (which see).

length

{VirtualString.length +V ?I}

returns the length of a virtual string in characters. Can be defined as:

{Length {VirtualString.toString V} I}

changeSign

{VirtualString.changeSign +V1 X ?V2}

returns a virtual string derived from V1 where all occurrences of the unary minus sign
for integers and floats are replaced by X.

8

Procedures and Cells

8.1 Procedures

The module Procedure specifies operations on procedures.

IsProcedure

{Procedure.is +X ?B}

tests whether X is a procedure.

ProcedureArity

{Procedure.arity +P ?I}

returns the procedure arity of P, i.e., the number of arguments which P takes.

apply

{Procedure.apply +P +Xs}

applies the procedure P to the arguments given by the elements of the list Xs, provided
that

{Procedure.arity P} == {Length Xs}

8.2 Cells

The module Cell contains procedures operating on cells.

IsCell

{Cell.is +X ?B}

tests whether X is a cell.

NewCell

{Cell.new X ?Cell}

returns a new cell with initial content X.

Exchange

{Cell.exchange +Cell X Y}

returns the current content of Cell in X, and sets the content of Cell to Y.

40 Chapter 8. Procedures and Cells

Access

{Cell.access +Cell X}

returns the current content of Cell in X.

Assign

{Cell.assign +Cell X}

sets the content of Cell to X.

9

Chunks

9.1 Chunks in General

The module Chunk contains procedures operating on chunks.

.

{Value.’.’ +RC +LI X}

returns the field X of RC at feature LI.

HasFeature

{Value.hasFeature +RC +LI ?B}

tests whether RC has feature LI.

CondSelect

{Value.condSelect +RC +LI X Y}

returns the field Y of RC at LI, if RC has feature LI. Otherwise, returns X.

IsChunk

{Chunk.is +X ?B}

tests whether X is a chunk.

NewChunk

{Chunk.new +R ?C}

returns a new chunk with the same features and fields as R.

9.2 Arrays

The module Array contains procedures operating on arrays. Whenever an array access
is indexed with an illegal key, an error exception is raised.

IsArray

{Array.is +X ?B}

tests whether X is an array.

NewArray

{Array.new +LowI +HighI InitX ?Array}

42 Chapter 9. Chunks

returns a new array with key range from LowI to HighI including both. All items are
initialized to InitX.

Put

{Array.put +Array +I X}

sets the item of Array under key I to X.

Get

{Array.get +Array +I X}

returns the item of Array under key I.

low

{Array.low +Array ?LowI}

returns the lower bound of the key range of Array.

high

{Array.high +Array ?HighI}

returns the upper bound of the key range of Array.

clone

{Array.clone +A1 ?A2}

returns a new array with the same bounds and contents as A1.

toRecord

{Array.toRecord +L +A ?R}

returns a record with label L that contains as features the integers between {Array.low A}
and {Array.high A} and with the corresponding fields.

9.3 Dictionaries

The module Dictionary contains procedures operating on dictionaries. If a dictionary
contains an item under some key LI, we say LI is a valid key. Whenever a dictionary
access is indexed with an ill-typed key, a type error is raised. For a missing but well-
typed key, a system exception is raised.

IsDictionary

{Dictionary.is +X ?B}

tests whether X is a dictionary.

NewDictionary

{Dictionary.new ?Dictionary}

returns a new empty dictionary.

put

{Dictionary.put +Dictionary +LI X}

sets the item in Dictionary under key LI to X.

get

9.3. Dictionaries 43

{Dictionary.get +Dictionary +LI X}

returns the item X of Dictionary under key LI.

condGet

{Dictionary.condGet +Dictionary +LI X Y}

returns the item Y of Dictionary under key LI, if LI is a valid key of Dictionary.
Otherwise, returns X.

keys

{Dictionary.keys +Dictionary ?LIs}

returns a list of all currently valid keys of Dictionary.

entries

{Dictionary.entries +Dictionary ?Ts}

returns the list of current entries of Dictionary. An entry is a pair LI#X, where LI
is a valid key of Dictionary and X the corresponding item.

items

{Dictionary.items +Dictionary ?Xs}

returns the list of all items currently in Dictionary.

isEmpty

{Dictionary.isEmpty +Dictionary ?B}

tests whether Dictionary currently contains an entry.

remove

{Dictionary.remove +Dictionary +LI}

removes the item under key LI from Dictionary if LI is a valid key. Otherwise,
does nothing.

removeAll

{Dictionary.removeAll +Dictionary}

removes all entries currently in Dictionary.

member

{Dictionary.member +Dictionary +LI ?B}

tests whether LI is a valid key of Dictionary.

clone

{Dictionary.clone +Dictionary1 ?Dictionary2}

returns a new dictionary Dictionary2 containing the currently valid keys and cor-
responding items of Dictionary1.

toRecord

{Dictionary.toRecord +L +Dictionary ?R}

returns a record R with label L whose features and their fields correspond to the keys
and their entries of Dictionary.

weak

another way to access module WeakDictionary (see Section 9.4).

44 Chapter 9. Chunks

9.4 Weak Dictionaries

The module WeakDictionary contains procedures operating on weak dictionaries. A
weak dictionary is much like an ordinary dictionary and supports the same API. The
main difference is that an entry is kept only as long as its item (i.e. the value recorded
under the key) has not become garbage. If the item is only reachable through one or
more weak dictionaries, the corresponding entries will automatically be dropped from
all weak dictionaries at the next garbage collection.

Finalization Stream Each weak dictionary is associated with a finalization stream.
When an item X (indexed under Key) becomes garbage, the entry is automatically
removed from the weak dictionary at the next garbage collection and the pair Key#X
is sent on to the finalization stream (as if the weak dictionary were associated with a
port and the pair was sent to it using Port.send). This means that the item, which
was garbage, becomes again non-garbage when it is sent to the finalization stream. If
subsequently, this last remaining reference disappears, then the item really becomes
garbage since it won’t be referenced even through a weak dictionary.

The finalization stream is created at the same time as the weak dictionary; both are
output arguments of NewWeakDictionary. If you are not interested in the finalization
stream, you can explicitly close it using WeakDictionary.close.

Module WeakDictionary can also be accessed as Dictionary.weak.

IsWeakDictionary

{WeakDictionary.is +X ?B}

tests whether X is a weak dictionary.

NewWeakDictionary

{WeakDictionary.new ?L ?Weak}

has the same arguments as Port.new (page 47). Returns a new empty weak dictionary
associated with a new finalization stream L.

close

{WeakDictionary.close +Weak}

drops the finalization stream (if any). After this, any entry that becomes garbage is
simply dropped instead of being sent to the finalization stream.

put

{WeakDictionary.put +Weak +LI X}

sets the item in Weak under key LI to X.

get

{WeakDictionary.get +Weak +LI X}

returns the item X of Weak under key LI.

condGet

{WeakDictionary.condGet +Weak +LI X Y}

returns the item Y of Weak under key LI, if LI is a valid key of Weak. Otherwise,
returns X.

9.5. Bit Arrays 45

keys

{WeakDictionary.keys +Weak ?LIs}

returns a list of all currently valid keys of Weak.

entries

{WeakDictionary.entries +Weak ?Ts}

returns the list of current entries of Weak. An entry is a pair LI#X, where LI is a valid
key of Weak and X the corresponding item.

items

{WeakDictionary.items +Weak ?Xs}

returns the list of all items currently in Weak.

isEmpty

{WeakDictionary.isEmpty +Weak ?B}

tests whether Weak currently contains an entry.

remove

{WeakDictionary.remove +Weak +LI}

removes the item under key LI from Weak if LI is a valid key. Otherwise, does
nothing.

removeAll

{WeakDictionary.removeAll +Weak}

removes all entries currently in Weak.

member

{WeakDictionary.member +Weak +LI ?B}

tests whether LI is a valid key of Weak.

toRecord

{WeakDictionary.toRecord +L +Weak ?R}

returns a record R with label L whose features and their fields correspond to the keys
and their entries of Weak.

9.5 Bit Arrays

The module BitArray contains procedures operating on arrays of bits (i.e., units of
information each being either set or reset).

IsBitArray

{BitArray.is +X ?B}

tests whether X is a bit array.

new

{BitArray.new +LowI +HighI ?BitArray}

creates an new BitArray with lower bound LowI and upper bound HighI, and all
bits initially cleared. This interface is identical to that of general Oz arrays.

46 Chapter 9. Chunks

set

{BitArray.set +BitArray +I}

sets bit I of BitArray.

clear

{BitArray.clear +BitArray +I}

clears bit I of BitArray.

test

{BitArray.test +BitArray +I ?B}

tests whether bit I of BitArray is set.

low

{BitArray.low +BitArray ?LowI}

returns the lower bound LowI of BitArray.

high

{BitArray.high +BitArray ?HighI}

returns the upper bound HighI of BitArray.

clone

{BitArray.clone +BitArray1 ?BitArray2}

returns a new bit array that is a copy of its first argument.

disj

{BitArray.disj +BitArray1 +BitArray2}

side-effects its first argument with the bitwise ‘or’ of the two arguments.

conj

{BitArray.conj +BitArray1 +BitArray2}

side-effects its first argument with the bitwise ‘and’ of the two arguments.

nimpl

{BitArray.nimpl +BitArray1 +BitArray2}

side-effects its first argument with the bitwise ‘and’ of the the first argument and the
negation of the second argument (i.e., negated implication).

disjoint

{BitArray.disjoint +BitArray1 +BitArray2 ?B}

tests whether the bit arrays have no set bits in common.

card

{BitArray.card +BitArray ?I}

returns the number of set bits.

toList

{BitArray.toList +BitArray ?L}

returns the list of indices for all set bits in BitArray.

complementToList

9.6. Ports 47

{BitArray.complementToList +BitArray ?L}

returns the list of indices for all cleared bits in BitArray.

9.6 Ports

The module Port contains procedures operating on ports.

IsPort

{Port.is +X ?B}

tests whether X is a port.

NewPort

{Port.new Xs ?Port}

returns a new port pointing to the stream Xs.

Send

{Port.send +Port X}

sends X to the port Port: The stream pointed to by Port is unified with X|_ (in a
newly created thread), and the pointer advances to the stream’s new tail.

SendRecv

{Port.sendRecv +Port X Y}

sends the pair X#Y to the port Port: The stream pointed to by Port is unified with
X#Y|_ (in a newly created thread), and the pointer advances to the stream’s new tail.

The argument X is commonly used as message to be sent, while Y serves as reply to
that message.

9.7 Locks

The module Lock contains procedures for locks.

IsLock

{Lock.is +X ?B}

tests whether X is a lock.

NewLock

{Lock.new ?LockC}

creates and returns a new lock.

9.8 Classes

The module Class contains procedures operating on classes.

IsClass

{Class.is +X ?B}

48 Chapter 9. Chunks

tests whether X is a class.

new

{Class.new +ParentKs +AttrR +FeatR +PropAs ?K}

creates a new class by inheriting from ParentKs with new attributes AttrR and new
features FeatR. The fields with integer features in AttrR define the free attributes.
The fields with literal features define attributes with initial values, where the feature is
the attribute name and the field its initial value. The semantics for FeatR is accord-
ingly. The properties of the class to be created are defined by PropAs (a list of atoms,
valid elements are sited, final, and locking).

For example, the statement

C={Class.new [D E] a(a:1 b) f(f:2 g) [final]}

is equivalent to

class C from D E

prop final

attr a:1 b

feat f:2 g

end

getAttr

{Class.getAttr +K +LI ?X}

Returns the initival value X for attribute LI as defined by the class K.

For example, the statement

{Class.getAttr class attr a:4 end a}

returns 4.

9.9 Objects

The module Object contains procedures operating on objects.

The system procedures that define the behaviour of Oz objects and classes are also
given in this section.

IsObject

{Object.is +X ?B}

tests whether X is an object.

New

{Object.new +K +InitMessageR ?O}

Creates a new object from class K with initial message InitMessageR.

9.10. Functors 49

The BaseObject Class

The class BaseObject defines the following method.

noop

noop()

does nothing. It is defined as meth noop() skip end.

9.10 Functors

The module Functor contains procedures operating on functors.

is

{Functor.is +X ?B}

tests whether X is a functor.

new

{Functor.new 〈import spec〉 〈export spec〉 +P ?Functor}

returns a new functor with imports as described by the 〈import spec〉, exports as de-
scribed by the 〈export spec〉, and body as performed by P.

The 〈import spec〉 is a record mapping the name of each imported module to a record
giving information about it:

〈import spec〉 ::= ’import’(〈module name〉: 〈import info〉 ...

〈module name〉: 〈import info〉)

〈module name〉 ::= 〈atom〉

The optional ’from’ field gives the value of this import’s at clause, if given:

〈import info〉 ::= info(type: 〈type〉 [’from’: 〈atom〉])

The type field is the expected type of the module. This can be any of the atoms
returned by Value.type, plus some more implementation-specific ones, or a record
with label record:

〈type〉 ::= int | atom | . . . % see above
| record(〈feature〉: 〈type〉 ... 〈feature〉: 〈type〉)
| nil % no information known

The 〈export spec〉 is a record mapping each feature of the module resulting from
applications of this functor to the type of the corresponding value:

〈export spec〉 ::= ’export’(〈feature〉: 〈type〉 ... 〈feature〉: 〈type〉)

The body is a binary procedure {P 〈import〉 〈export〉} where:

〈import〉 ::= ’IMPORT’(〈module name〉: 〈value〉 ... 〈module name〉: 〈value〉)

〈export〉 ::= 〈value〉

50 Chapter 9. Chunks

10

Control

This chapter contains control procedures which allow to block, suspend or termi-
nate threads, and provide functionality dealing with loops, real-time programming and
threads.

10.1 General

The module Value contains two general control procedures.

Wait

{Value.wait +X}

blocks until X is determined.

WaitOr

{Value.waitOr X Y}

blocks until at least one of X or Y is determined.

!!

{Value.’!!’ X Y}

returns a future Y for X, i.e., a read-only placeholder for X.

byNeed

{Value.byNeed +P X}

creates a future X. When X is requested (i.e., some thread blocks on X), the unary
procedure P is applied to a fresh variable Y in a new thread. When the application of P
is fully reduced, the variable associated with X is bound to Y.

byNeedFail

{Value.byNeedFail +E X}

creates a failed future X encapsulating exception E. Whenever X is requested (see
above), in particular, whenever a thread synchronizes on X, exception term E is raised.
This is convenient in concurrent designs: if a concurrent generator encounters a prob-
lem while computing a value, it may catch the corresponding exception, package it
as a failed future and return the latter instead. Thus each consumer will be able to
synchronously handle the exception when it attempts to use the ‘failed’ future. For
example, the module manager returns failed futures for modules that cannot be found
or linked.

52 Chapter 10. Control

10.2 Loops

The module Loop contains procedures that represent recursive versions of common
iteration schemes with integers.

For

{Loop.for +I1 +I2 +I3 +P}

applies the unary procedure P to integers from I1 to I2 proceeding in steps of size I3.
For example,

{For 1 11 3 Browse}

displays the numbers 1, 4, 7, and 10 in the browser window, whereas

{For 11 1 ~3 Browse}

displays the numbers 11, 8, 5, and 2.

ForThread

{Loop.forThread +I1 +I2 +I3 +P X ?Y}

applies the ternary procedure P to integers from I1 to I2 proceeding in steps of size I3
while threading an additional accumulator argument through the iteration. The proce-
dure P takes the accumulator argument (initially set to X) and the loop index and returns
an updated accumulator.

For example,

{ForThread 1 5 1 fun {$ Is I} I*I|Is end nil}

yields the list [25 16 9 4 1] as output, whereas

{ForThread 5 1 ~1 fun {$ Is I} I*I|Is end nil}

yields [1 4 9 16 25] as output.

Note that ForThread is similar to FoldL (see Section 6.3).

multiFor

{Loop.multiFor +Xs +P}

generalizes For (see above) to the case of multiple nested loops.

Xs is a list containing tuples of the form I1#I2#I3 specifying a loop by its start
value I1, upper limit I2 and step size I3.

For example,

{Loop.multiFor [1#5#1 10#20#2] Browse}

displays the lists [1 10], [1 12], . . . , [5 20] in the browser.

multiForThread

{Loop.multiForThread +Xs +P X ?Y}

generalizes ForThread (see above) to the case of multiple nested loops.

Xs is a list containing tuples of the form I1#I2#I3 specifying a loop by its start
value I1, upper limit I2 and step size I3.

For example,

10.3. Time 53

{Loop.multiForThread [1#2#1 5#4#~1]

fun {$ Is [I J]}

I#J|Is

end nil}

yields the list [2#4 2#5 1#4 1#5] as output.

10.3 Time

The module Time contains procedures for real-time applications.

Alarm

{Time.alarm +I ?U}

returns unit after I milliseconds. This is done asynchronously in that it is evaluated
on its own thread.

Delay

{Time.delay +I}

reduces to skip after I milliseconds. Whenever I =< 0, {Delay I} reduces imme-
diately.

time

{Time.time ?T}

binds T to the number of seconds elapsed since January, 1st of the current year.

The Repeater Class

repeat

Time.repeat

is a class which allows to

• repeat an action infinitely often, or a fixed number of times and perform some
final action thereafter,

• with a fixed delay between iterations (or, alternatively, a delay specified by a
unary procedure),

• stop and resume the iteration.

There are default values for any of the iteration parameters. These are set on creation
of an object inheriting from Time.repeat and can be changed by inheritance. The
functionality is controlled by the following methods.

setRepAll

setRepAll(action: +ActionPR <= dummyRep

final: +FinalPR <= finalRep

delay: +DelayI <= 1000

delayFun: +DelayFunP <= fun {$} 1000 end

number: +NumI <= ~1)

54 Chapter 10. Control

initializes the loop with the action ActionPR to iterate (default: message dummyRep),
the action FinalPR to finalize a finite iteration (default: message finalRep), the
delay DelayI between iterations (default: one second), the function DelayFunP
yielding the delay between iterations (default: constant 1000), and the maximal num-
ber NumI of iterations (default: infinitely many).

The methods dummyRep and finalRep do nothing. Only one of the delay and delayFun
parameters can be given. The default actions ActionPR and FinalPR can be changed
by inheritance.

The loop is started on the calling thread.

For example, try the following:

local

O = {New Time.repeat

setRepAll(action: proc {$} {OS.system ’fortune’ _} end

number: 10)}

in

{O go()}

end

getRep

getRep(action: ?ActionPR <= _

final: ?FinalPR <= _

delay: ?DelayI <= _

delayFun: ?DelayFunP <= _

number: ?LimitI <= _

actual: ?NumI <= _)

returns the current loop parameters: LimitI returns the current limit of the iteration,
and NumI the number of iterations left to be done. If the delay was specified via
DelayFunP (which need not be constant), then DelayI returns the last delay used.
If DelayI is requested before the start of the iteration, then ~1 is returned. The other
values correspond to the fields of the method setRepAll.

For example try:

local

class Counter from Time.repeat

attr a: 0

meth inc() a <- @a + 1 end

meth get(?A) A = @a end

meth finalRep() a <- 0 end

end

C = {New Counter setRepAll(action: inc number: 1000)}

in

thread {C go()} end

{C getRep(final: {Browse}

action: {Browse}

actual: {Browse})}

{C get({Browse})}

end

This will show the atoms ’finalRep’ and ’inc’ in the Browser, as well as a number
between 1 and 1000. After termination of the loop, the value of @a will be reset to 0.

10.4. Exceptions 55

setRepDelay

setRepDelay(+DelayI <= 1000}

setRepNum

setRepNum(+NumI <= ~1)}

setRepAction

setRepAction(+ActionPR <= dummyRep)

setRepFinal

setRepFinal(+FinalPR <= finalRep)}

setRepDelayFun

setRepDelayFun(+DelayFunP <= fun {$} 1000 end)

allow to set the numeric parameters of the iteration.

DelayI and NumI must be integers. The iteration limit NumI is stored and subse-
quent loop instances (triggered by go) also obey it, unless the limit is reset to ~1.

ActionPR and FinalPR may be nullary procedures or records. If they are proce-
dures they are called as is. If they are records, they are interpreted as messages to be
sent to self.

DelayFunP must be a unary procedure which returns an integer value on application.

go

go()

starts the loop if it is not currently running.

stop

stop()

halts the loop and resets the iteration index. The loop may be restarted with go.

10.4 Exceptions

The module Exception provides procedures to construct exceptions and raise them.

Special Exceptions Any value may be raised as exception, although commonly
only records are used. Some of these serve special purposes: error exceptions are
records with label error. These are raised when a programming error occurs; it is not
recommended to catch these. System exceptions are records with label system. These
are raised when an unforeseeable runtime condition occurs; a file operations library
might raise system exceptions when a file cannot be opened. It is recommended to
always handle such exceptions. Failure exceptions are records with label failure;
these are raised when a tell operation fails.

Dispatch Fields Both error and system exceptions have a dispatch field. This is the
subtree at feature 1 of the exception record. This is usually a record further describing
the exact condition that occurred.

56 Chapter 10. Control

Debug Information If an exception is a record and has a feature debug, then the
implementation may replace the corresponding subtree by implementation-dependent
debugging information. This is to be printed out in the case of uncaught exceptions.

All procedures in the Base Environment only ever raise special-purpose exceptions as
described above.

error

{Exception.error X ?Y}

returns an error exception record with dispatch field X.

system

{Exception.system X ?Y}

returns a system exception record with dispatch field X.

failure

{Exception.failure X ?Y}

returns a failure exception. The value X may give a hint on why failure occurred;
implementations may store this inside the constructed exception’s debug field.

Raise

{Exception.’raise’ X}

raises X as an exception.

raiseError

{Exception.raiseError X}

wraps X into an error exception and raises this. This procedure can be defined as
follows:

proc {Exception.raiseError X}

{Exception.’raise’ {Exception.error X}}

end

10.5 Threads

The module Thread provides operations on first class threads.

Threads may be in one of three states, namely runnable, blocked, or terminated. Or-
thogonally, a thread may be suspended.

Runnable and non-suspended threads are scheduled according to their priorities, which
may be low, medium, or high. The default priority is medium. The priority of a thread
may influence its time share for execution, where threads with medium priority obtain
at least as long a time share as threads with low priority and at most as long as threads
with high priority. Implementations may also choose not to schedule a thread at all if
a thread with higher priority is runnable.

A newly created thread inherits its priority from its parent if the latter has either medium
or low priority. Otherwise, the new thread gets default (i.e., medium) priority.

IsThread

10.5. Threads 57

{Thread.is +X ?B}

test whether X is a thread.

this

{Thread.this ?Thread}

returns the current thread.

state

{Thread.state +Thread ?A}

returns one of the atoms runnable, blocked, terminated according to the current
state of Thread.

resume

{Thread.resume +Thread}

resumes Thread. Resumption undoes suspension.

suspend

{Thread.suspend +Thread}

suspends Thread such that it cannot be further reduced.

isSuspended

{Thread.isSuspended +Thread ?B}

tests whether Thread is currently suspended.

injectException

{Thread.injectException +Thread +X}

raises X as exception on Thread. If Thread is terminated, an error exception is
raised in the current thread.

terminate

{Thread.terminate +Thread}

raises an exception kernel(terminate ...) on Thread.

getPriority

{Thread.getPriority +Thread ?A}

returns one of them atoms low, medium, or high according to the current priority of
Thread.

setPriority

{Thread.setPriority +Thread +A}

sets priority of thread Thread to the priority described by atom A. A must be one of
low, medium, or high.

getThisPriority

{Thread.getThisPriority ?A}

returns one of them atoms low, medium, or high according to the priority of the current
thread.

setThisPriority

58 Chapter 10. Control

{Thread.setThisPriority +A}

sets priority of the current thread to the priority described by atom A. A must be one of
low, medium, or high.

preempt

{Thread.preempt +Thread}

preempts the current thread, i.e., immediately schedules another runnable thread (if
there is one). Thread stays runnable.

11

Infix Notations

Oz supports infix and prefix notation for very common procedures (see Section Oper-
ator Associativity and Precedence, (The Oz Notation)).

In the following table, we give the prefix and infix notations and the corresponding ex-
pansions. The operators are grouped together according to their precedence. Members
of the same group have the same precedence, groups further up have lower prece-
dence than groups further down. ‘Having higher precedence’ means ‘binding tighter’;
e.g., the term X.Y + Z is equal to (X.Y) + Z. Ambiguities within each group are re-
solved by the associativity given before each group (e.g., X - Y + Z is equivalent to
(X - Y) + Z).

60 Chapter 11. Infix Notations

Infix Normal
right-associative
X = Y {Value.’=’ X Y}
right-associative
+LI <- X {Object.’<-’ LI X}
Y = +LI <- X {Object.exchange LI X Y}
non-associative
?B = X == Y {Value.’==’ X Y B}
?B = X \= Y {Value.’\\=’ X Y B}
?B = +AFI1 < +AFI2 {Value.’<’ AFI1 AFI2 B}
?B = +AFI1 =< +AFI2 {Value.’=<’ AFI1 AFI2 B}
?B = +AFI1 > +AFI2 {Value.’>’ AFI1 AFI2 B}
?B = +AFI1 >= +AFI2 {Value.’>=’ AFI1 AFI2 B}
left-associative
?FI3 = +FI1 + +FI2 {Number.’+’ FI1 FI2 FI3}
?FI3 = +FI1 - +FI2 {Number.’-’ FI1 FI2 FI3}
left-associative
?FI3 = +FI1 * +FI2 {Number.’*’ FI1 FI2 FI3}
?F3 = +F1 / +F2 {Float.’/’ F1 F2 F3}
?I3 = +I1 div +I2 {Int.’div’ I1 I2 I3}
?I3 = +I1 mod +I2 {Int.’mod’ I1 I2 I3}
left-associative
+K, +R {Object.’,’ K R}
prefix
?FI1 = ~+FI2 {Number.’~’ FI2 FI1}
left-associative
X = +RC.+LI {Value.’.’ RC LI X}
infix
X = @+LI {Object.’@’ LI X}
X = !!Y {Value.’!!’ X Y}

12

Miscellaneous

12.1 Bit Strings

Module BitString provides an interface to a fast and economical representation for
immutable bit sequences.

IsBitString

{BitString.is +X ?B}

tests whether X is a bit string.

make

{BitString.make +I +L ?BitString}

creates a bit string of width I with precisely those bits set that are specified in L, a list
of indices.

conj

{BitString.conj +BitString1 +BitString2 ?BitString3}

returns the bitwise ‘and’ of its first and second arguments, which must be of indentical
widths.

disj

{BitString.disj +BitString1 +BitString2 ?BitString3}

returns the bitwise ‘or’ of its first and second arguments, which must be of indentical
widths.

nega

{BitString.nega +BitString1 ?BitString2}

returns the bitwise negation of its first argument.

get

{BitString.get +BitString +I ?B}

tests whether bit I of BitString is set.

put

{BitString.put +BitString1 +I +B ?BitString2}

returns a new bit string which is identical to BitString1 except that bit I is set iff
B is true.

62 Chapter 12. Miscellaneous

width

{BitString.width +BitString ?I}

returns the width of the BitString.

toList

{BitString.toList +BitString ?L}

returns the list of indices of all set bits in BitString.

12.2 Foreign Pointers

Module ForeignPointer provides an interface to encapsulated raw pointers to for-
eign data. This is useful for implementors of foreign libraries: any C pointer can be
encapsulated as a ForeignPointer and passed around as an Oz value. However, you
should consider subclassing the Oz_Extension class instead, to encapsulate your C++
data structures into new Oz (abstract) datatypes.

IsForeignPointer

{ForeignPointer.is +X ?B}

tests whether X is a foreign pointer

toInt

{ForeignPointer.toInt +X ?I}

converts a foreign pointer to an integer. Two foreign pointers convert to the same
integer iff they point to the same location.

Bibliography

[1] Information processing – 8-bit single-byte coded graphic character sets – part 1:
Latin, alphabet no. 1. Technical Report ISO 8859-1:1987, Technical committee:
JTC 1/SC 2, International Organization for Standardization, 1987.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Pren-
tice Hall International, second edition, 1988.

Index

!!, 51
*, 13
+, 13
-, 13
., 19, 41
/, 15
=, 9
==, 9

Abs, 13
Access, 40
Acos, 16
Adjoin, 20
AdjoinAt, 20
AdjoinList, 20
Alarm, 53
All, 31
And, 18
andthen, 18
Append, 26
Arity, 20
Array

Array, clone, 42
Array, get, 42
Array, high, 42
Array, is, 41
Array, low, 42
Array, new, 41
Array, put, 42
Array, toRecord, 42

Array, 41
Asin, 16
Assign, 40
Atan, 16
Atan2, 16
Atom

Atom, is, 17
Atom, toString, 17

Atom, 17
AtomToString, 17

BaseObject, 49
BitArray

BitArray, card, 46

BitArray, clear, 46
BitArray, clone, 46
BitArray, complementToList, 46
BitArray, conj, 46
BitArray, disj, 46
BitArray, disjoint, 46
BitArray, high, 46
BitArray, is, 45
BitArray, low, 46
BitArray, new, 45
BitArray, nimpl, 46
BitArray, set, 46
BitArray, test, 46
BitArray, toList, 46

BitArray, 45
BitString

BitString, conj, 61
BitString, disj, 61
BitString, get, 61
BitString, is, 61
BitString, make, 61
BitString, nega, 61
BitString, put, 61
BitString, toList, 62
BitString, width, 62

BitString, 61
Bool

Bool, ’or’, 18
Bool, and, 18
Bool, is, 18
Bool, not, 18

Bool, 18
Browse, 7
ByteString

ByteString, append, 36
ByteString, get, 36
ByteString, is, 36
ByteString, length, 37
ByteString, make, 36
ByteString, slice, 36
ByteString, strchr, 37
ByteString, toString, 37

64

INDEX 65

ByteString, toStringWithTail,
37

ByteString, width, 37
ByteString, 36

Ceil, 15
Cell

Cell, access, 40
Cell, exchange, 39
Cell, is, 39
Cell, new, 39

Cell, 39
Char

Char, is, 33
Char, isAlNum, 34
Char, isAlpha, 34
Char, isCntrl, 34
Char, isDigit, 34
Char, isGraph, 34
Char, isLower, 33
Char, isPrint, 34
Char, isPunct, 34
Char, isSpace, 34
Char, isUpper, 33
Char, isXDigit, 34
Char, toLower, 34
Char, toUpper, 35
Char, type, 34

Char, 33
characters, 33
Chunk

Chunk, is, 41
Chunk, new, 41

Chunk, 41
Class

Class, getAttr, 48
Class, is, 47
Class, new, 48

Class, 47
clone, 19
CondSelect, 19, 41
Cos, 15

Delay, 53
Dictionary

Dictionary, clone, 43
Dictionary, condGet, 43
Dictionary, entries, 43
Dictionary, get, 42
Dictionary, is, 42

Dictionary, isEmpty, 43
Dictionary, items, 43
Dictionary, keys, 43
Dictionary, member, 43
Dictionary, new, 42
Dictionary, put, 42
Dictionary, remove, 43
Dictionary, removeAll, 43
Dictionary, toRecord, 43
Dictionary, weak, 43

Dictionary, 42
div, 14

error exception, 55
Exception

Exception, ’raise’, 56
Exception, error, 56
Exception, failure, 56
Exception, raiseError, 56
Exception, system, 56

exception, 55
Exchange, 39
Exp, 15
extensions, 10

false, 18
feature, 4
Filter, 31
Flatten, 27
Float

Float, ’/’, 15
Float, acos, 16
Float, acosh, 16
Float, asin, 16
Float, asinh, 16
Float, atan, 16
Float, atan2, 16
Float, atanh, 16
Float, ceil, 15
Float, cos, 15
Float, cosh, 16
Float, exp, 15
Float, floor, 15
Float, is, 15
Float, log, 15
Float, round, 15
Float, sin, 15
Float, sinh, 16
Float, sqrt, 15
Float, tan, 15

66 INDEX

Float, tanh, 16
Float, toInt, 16
Float, toString, 16

Float, 15
Float.acosh, 16
Float.asinh, 16
Float.atanh, 16
Float.cosh, 16
Float.sinh, 16
Float.tanh, 16
FloatToInt, 16
FloatToString, 16
Floor, 15
folding, 22
FoldL, 29
FoldLTail, 30
FoldR, 29
FoldRTail, 30
For, 52
ForAll, 30
ForAllTail, 31
ForeignPointer

ForeignPointer, is, 62
ForeignPointer, toInt, 62

ForeignPointer, 62
ForThread, 52
Functor

Functor, is, 49
Functor, new, 49

Functor, 49

Get, 42

HasFeature, 19, 41

Int
Int, ’div’, 14
Int, ’mod’, 14
Int, is, 14
Int, isEven, 14
Int, isNat, 14
Int, isOdd, 14
Int, toFloat, 14
Int, toString, 14

Int, 14
IntToFloat, 14
IntToString, 14
IsArray, 41
IsAtom, 17
IsBitArray, 45

IsBitString, 61
IsBool, 18
IsByteString, 36
IsCell, 39
IsChar, 33
IsChunk, 41
IsClass, 47
IsDet, 9
IsDictionary, 42
IsEven, 14
IsFloat, 15
IsForeignPointer, 62
IsFree, 9
IsFuture, 9
IsInt, 14
IsKinded, 10
IsList, 26
IsLiteral, 17
IsLock, 47
IsName, 17
IsNat, 14
IsNumber, 13
IsObject, 48
IsOdd, 14
IsPort, 47
IsProcedure, 39
IsRecord, 19
IsString, 35
IsThread, 56
IsTuple, 25
IsUnit, 18
IsVirtualString, 37
IsWeakDictionary, 44

Label, 20
Length, 26
List

List, all, 31
List, allInd, 31
List, append, 26
List, drop, 28
List, dropWhile, 32
List, dropWhileInd, 32
List, filter, 31
List, filterInd, 32
List, flatten, 27
List, foldL, 29
List, foldLInd, 30
List, foldLTail, 30

INDEX 67

List, foldLTailInd, 30
List, foldR, 29
List, foldRInd, 30
List, foldRTail, 30
List, foldRTailInd, 30
List, forAll, 30
List, forAllInd, 30
List, forAllTail, 31
List, forAllTailInd, 31
List, is, 26
List, isPrefix, 28
List, last, 28
List, length, 26
List, make, 26
List, map, 29
List, mapInd, 29
List, member, 26
List, merge, 27
List, nth, 26
List, number, 27
List, partition, 31
List, partitionInd, 32
List, reverse, 27
List, some, 31
List, someInd, 31
List, sort, 27
List, sub, 27
List, subtract, 26
List, take, 27
List, takeDrop, 28
List, takeDropWhile, 32
List, takeDropWhileInd, 32
List, takeWhile, 32
List, takeWhileInd, 32
List, toRecord, 28
List, toTuple, 28
List, withTail, 27
List, zip, 28

List, 26
Literal

Literal, is, 17
Literal, 17
Lock

Lock, is, 47
Lock, new, 47

Lock, 47
Log, 15
Loop

Loop, for, 52

Loop, forThread, 52
Loop, multiFor, 52
Loop, multiForThread, 52

Loop, 52

MakeList, 26
MakeRecord, 19
MakeTuple, 25
Map, 29
Max, 10
Member, 26
Merge, 27
Min, 11
mod, 14

Name
Name, is, 17
Name, new, 17

Name, 17
New, 48
NewArray, 41
NewCell, 39
NewChunk, 41
NewDictionary, 42
NewLock, 47
NewName, 17
NewPort, 47
NewWeakDictionary, 44
Not, 18
Nth, 26
Number

Number, ’*’, 13
Number, ’+’, 13
Number, ’-’, 13
Number, abs, 13
Number, is, 13
Number, pow, 13

Number, 13

Object
base
Object, base, noop, 49

Object, base, 49
Object, is, 48
Object, new, 48

Object, 48
Or, 18
orelse, 18

Port

68 INDEX

Port, is, 47
Port, new, 47
Port, send, 47
Port, sendRecv, 47

Port, 47
Pow, 13
primary types, 3
Procedure

Procedure, apply, 39
Procedure, arity, 39
Procedure, is, 39

Procedure, 39
ProcedureArity, 39
Put, 42

Raise, 56
Record

Record, adjoin, 20
Record, adjoinAt, 20
Record, adjoinList, 20
Record, all, 23
Record, allInd, 23
Record, arity, 20
Record, clone, 19
Record, dropWhile, 24
Record, dropWhileInd, 25
Record, filter, 24
Record, filterInd, 24
Record, foldL, 22
Record, foldLInd, 23
Record, foldR, 22
Record, foldRInd, 23
Record, forAll, 23
Record, forAllInd, 23
Record, is, 19
Record, label, 20
Record, make, 19
Record, map, 22
Record, mapInd, 22
Record, partition, 24
Record, partitionInd, 24
Record, some, 23
Record, someInd, 24
Record, subtract, 21
Record, subtractList, 21
Record, takeDropWhile, 24
Record, takeDropWhileInd, 25
Record, takeWhile, 24
Record, takeWhileInd, 25

Record, toDictionary, 21
Record, toList, 21
Record, toListInd, 21
Record, waitOr, 25
Record, width, 20
Record, zip, 21

Record, 19
requested, 51
Reverse, 27
Round, 15

Send, 47
SendRecv, 47
Sin, 15
Some, 31
Sort, 27
Sqrt, 15
String

String, is, 35
String, isAtom, 35
String, isFloat, 35
String, isInt, 35
String, toAtom, 35
String, toFloat, 35
String, toInt, 35
String, token, 35
String, tokens, 36

String, 35
String.toAtom, 17
strings

strings, virtual, 37
strings, 33
StringToAtom, 35
StringToFloat, 35
StringToInt, 35
system exception, 55

Tan, 15
Thread

Thread, getPriority, 57
Thread, getThisPriority, 57
Thread, injectException, 57
Thread, is, 56
Thread, isSuspended, 57
Thread, preempt, 58
Thread, resume, 57
Thread, setPriority, 57
Thread, setThisPriority, 57
Thread, state, 57
Thread, suspend, 57

INDEX 69

Thread, terminate, 57
Thread, this, 57

Time
Time, alarm, 53
Time, delay, 53
repeat
Time, repeat, getRep, 54
Time, repeat, go, 55
Time, repeat, setRepAction,

55
Time, repeat, setRepAll, 53
Time, repeat, setRepDelay, 55
Time, repeat, setRepDelayFun,

55
Time, repeat, setRepFinal, 55
Time, repeat, setRepNum, 55
Time, repeat, stop, 55

Time, repeat, 53
Time, time, 53

Time, 53
true, 18
Tuple

Tuple, append, 26
Tuple, is, 25
Tuple, make, 25
Tuple, toArray, 25

Tuple, 25
types

types, primary, 3

Unit
Unit, is, 18

Unit, 18
unit, 18

Value
Value, ’!!’, 51
Value, ’.’, 19, 41
Value, ’=’, 9
Value, ’==’, 9
Value, byNeed, 51
Value, byNeedFail, 51
Value, CondSelect, 19
Value, condSelect, 41
Value, hasFeature, 19, 41
Value, isDet, 9
Value, isFree, 9
Value, isFuture, 9
Value, isKinded, 10
Value, max, 10

Value, min, 11
Value, status, 10
Value, toVirtualString, 9
Value, type, 10
Value, wait, 51
Value, waitOr, 51

Value, 9, 51
virtual string, 4
virtual strings, 33
VirtualString

VirtualString, changeSign, 38
VirtualString, is, 37
VirtualString, length, 38
VirtualString, toAtom, 38
VirtualString, toByteString, 38
VirtualString, toString, 37

VirtualString, 37

Wait, 51
WaitOr, 51
WeakDictionary

WeakDictionary, close, 44
WeakDictionary, condGet, 44
WeakDictionary, entries, 45
WeakDictionary, get, 44
WeakDictionary, is, 44
WeakDictionary, isEmpty, 45
WeakDictionary, items, 45
WeakDictionary, keys, 45
WeakDictionary, member, 45
WeakDictionary, new, 44
WeakDictionary, put, 44
WeakDictionary, remove, 45
WeakDictionary, removeAll, 45
WeakDictionary, toRecord, 45

WeakDictionary, 44
Width, 20

