The Oz Notation

Martin Henz
Leif Kornstaedt

Version 1.2.3

December 1, 2001 m 0 1 a rt

Abstract

Oz is a concurrent language providing for functional, object-oriented, and constraint pro-
gramming. This document defines how Oz program text is transformed into an Oz Core
program. Oz Core is a sublanguage of Oz designed to minimize syntactic complexity. Oz
Core serves as the base for the definition of the semantics of Oz.

Technically, Oz Core allows to use several programming paradigms, including functional,
constraint and object-oriented programming. Being a purely relational language, however,
Oz Core does not provide easy notational access to programming methods from these
paradigms, making it hard to fully exploit the capacities of the language.

It is such ergonomic considerations that lead to the development of the Oz Notation, where
syntactic extensions provide convenient constructs for functional and object-oriented pro-
gramming. The semantics of these extensions is defined in this document by their stepwise
translation to Oz Core.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

Introduction|

Lexical Syntax

2.1 Character Class Definitiong
.2 Spacesand Commenty.

P.3 Keywordg
2.4 '\ Dle] . . . e e e

P.7 Integery e e

Context-Free Syntax

B.1 The Base Languagel
B.2 Constraint Extensions and Combinator§
B.3 ClassExtensiony,
B.4 Functor Extensions

B.5 Operator Associativity and Precedencel

Core Programsg

U1 TheBaselanguagego,
B.2 Class Extensiony

Translation of Oz Programs to Oz Core Programg

b.1 TheBaselanguagel
p.2 Constraint Extensions and Combinator§
b.3 Class Extensions
6.4 Functor Extensions

=

~N o o o o g1 o oo~ w W

Introduction

This report defines how Oz program text, which is a sequence of characters, is trans-
formed into an Oz Core program. This transformation is performed in three steps.

1. Lexical Syntax First, a given program text is transformed into a sequence of
words. Each word represents a sequence of tokens. We call this process tokeniz-

ing.

2. Context-free Syntax The resulting sequence of tokens is transformed into a
parse tree. We call this process parsing, and the resulting parse tree program.

3. Core Programs The program is translated to a Core program, eliminating a
number of abbreviations and nesting.

At each step, errors may occur. A text represents an Oz program if it can be tokenized
and parsed into a program which can be translated without error into a Core program.

Meta Notation In a document like this one, it is helpful to make use of notational
conventions in order to provide for concise and precise descriptions.

1.1 Fonts
We make use of fonts to distinguish the different kinds of symbols occurring in this
document:
Meaning Examples
terminal or nonterminal symbol (variable), (statement)
keyword | ocal , skip

1.2 Regular Expressions and Context-Free Grammars

Regular expressions and context free grammars describe sets of words. We use the
following notation to describe one such set in terms of others (in increasing order of
precedence):

Chapter 1. Introduction

Notation Meaning

€ singleton containing the empty word

(w) grouping of regular expressions

[w] union of € with the set of words w

{w} set of words containing all concatenations of zero or more elements of w

{w}+ set of words containing all concatenations of one or more elements of w

W1 Wo set of words containing all concatenations of an element of w1 with an element of w,
Wy | Wo union of wy and w,

Wi - Wo difference of wy and w,

Lexical Syntax

A program text is a sequence of characters represented by integers following 1ISO 8859-
1 [EI], also called “Latin 1°. In this section, we describe how such a sequence is split into
a sequence of words. Each word represents zero or more tokens such that the result is a
sequence of tokens. We call this process tokenization. In this section, we give regular
expressions for the different kinds of words and describe the resulting tokens.

Resolving Ambiguities The splitting of a sequence of characters using these reg-
ular expressions is not unique. We use the usual left to right longest match tokenization
obtaining either error or a unique sequence of tokens from a given sequence of char-
acters. Longest match means that if two or more prefixes of the remaining character
string are matched by (possibly different) regular expressions, we select the match that
accepts the longest prefix. Note that the regular expressions are designed such that left
to right longest match tokenization is unique.

Lexical Errors When no regular expression matches a prefix of the remaining char-
acter string, we speak of a lexical error. Such an input sequence does not represent a
valid Oz program.

2.1 Character Class Definitions

This section defines character classes used in the regular expressions given in the re-
mainder of the chapter. Note that these regular expressions do not—on their own-define
any splitting of the input into words.

We use NUL to denote the 1SO character with code 0 and (any character) to denote
the set of all ISO characters.

(upper-case letter) = A|... |Z|A|...|0|2]|... |p
(lower-case letter) = al... |z|B]|... |6]eg]|... |V
(digit) == o0]... |9

(non-zero digit) = 1|... |9

4 Chapter 2. Lexical Syntax

(alphanumerical) := (upper-case letter) | (lower-case letter) | (digit) | _
(atom char) := (any character)-(~ |\ |NUL)

(string char) = (any character) - (** |\ | NUL)

(variable char) ::= (any character) - (< |\ | NUL)

(escape character) == al|b|f|n|r|t|v|\|7|"]“]|&

(octal digit) == o0]... |7

(hex digit) == of... |9]|A|... |F|a|... |F

(binary digit) == 0|1

Pseudo-Characters In the classes of words (variable), (atom), (string), and
(character) we use pseudo-characters, which represent single characters in different
notations.

(pseudo char) =\ (octal digit) (octal digit) (octal digit)
|\ (x|x) (hexdigit) (hex digit)
|\

(escape character)

Pseudo-characters allow to enter any 1SO 8859-1 character using octal or hexadeci-
mal notation. Octal notation is restricted to numbers less than 256. The NUL char-
acter (ISO code 0) is forbidden. The pseudo-characters \a (= \007), \b (= \010),
\f (=\014), \n (=\012), \r (=\015), \t (=\011), \v (= \013) denote special pur-
pose characters, and \\ (=\134), \” (=\047), \"" (=\042), * (=\140), \& (= \046)
denote their second component character.

2.2 Spaces and Comments

Spaces are tab (code 9), newline (code 10), vertical tab (code 11), form feed (code 12),
carriage return (code 13), and blank (code 32).

A comment is:

e asequence of characters from % until the end of the line or file,

e a sequence of characters within and including the comment brackets /* and */,
in which 7+ and */ are properly nested, and

o the character 2.

Spaces and comments produce no tokens. This means that they are ignored, except that
they separate words form each other.

2.3. Keywords

2.3 Keywords

(keyword) = andthen|at |attr |case|catch]|choice
| class|cond|declare|define|dis

| div|else|elsecase|elseif|end

| export |fail |false|feat |finally|from
| fun|functor |if |inport |in]local

| 1ock|meth|nmod|not |of |or |orelse

| prepare|proc|prop|raise|require
|

|

|

|

|

|

self |skip|then|thread|true|try
unit [CDICITIL]Y

Fl#f=][=1 I~]s

VI =1+1- 1]/ @ <

Y’II ’<:|::‘\:|<|Z<‘>

>= = |\= < =< s = | |

Each keyword represents itself as token.

2.4 Variables

(variable) = (upper-case letter) { (alphanumerical) }
| < { (variable char) | (pseudo char) } -

A word of the form (variable) represents a variable token of the form |variable, n+],
where n+ is the sequence of characters that make up the word, including the possibly
surrounding “ characters.

For example, the word Xs represents the token |variable, 88 115 and the word
represents the token |variable, 96 10 96 |. Variable tokens are denoted by the terminal
symbol (variable) in the following context-free grammars.

2.5 Atoms

2.6 Label

(atom) = (lower-case letter) { (alphanumerical) } - (keyword)
| ~{ (atom char) | (pseudo char) } ~

A word of the form (atom) represents an atom token of the form |atom, n* |, where n*
is the sequence of characters that make up the word, excluding the possibly surrounding
> characters.

For example, the word atom represents the token |atom, 97 116 111 109 and the
word represents the token |atom, 10]. Atom tokens are denoted by the terminal
symbol (atom) in the following context-free grammars.

S

(label) = ((variable) | (atom) | true | false |unit) (

6 Chapter 2. Lexical Syntax

A word of the form (label) represents a sequence of two tokens. The first is a label
token of the form |variablelabel, n+|, |[atomlabel, n*| (similar to the correspond-
ing tokens for words of the form (variable) and (atom)), truelabel, falselabel,
or unitlabel. The second token is the keyword (. For example, the word Xs(rep-
resents the tokens |variablelabel, 88 115] and (, and the word t r ue (represents
the tokens truelabel and (. The label tokens are denoted by the terminal sym-
bols (variable label), (atom label), (unit label), (true label), and (false label) in
the following context-free grammars.

2.7 Integers
(inty == [~]1(0] (non-zero digit) { (digit) }) % decimal representation
| [~]10{ (octal digit) }+ % octal representation
| [~10(x]|X){ (hexdigit) }+ % hexadecimal representation
| [~]10(b|B){ (binary digit) }+ % binary representation

A word of the form (int) represents an integer token of the form |int, n|, where n
represents the integer for which (int) is the representation.

For example, the word ~159 represents the token | int, -159, the word 077 the token
lint, 63], the word OxFF the token |int, 255], and the word ~0b11111 the token
|int, -31]. Integer tokens are denoted by the terminal symbol (int) in the following
context-free grammars.

2.8 Floats

(float) = [~]{(digit) }+ . {(digit) } [(e|E)[~]{ (digit) }+]

A word of the form (float) represents a float token of the form | float, f |, where f
represents the floating point number for which the word is the decimal representation.
The letters e and E both indicate the exponent to 10.

For example, the word ~1. 5e2 represents the token | float, -150.0|. Float tokens are
denoted by the terminal symbol (float) in the following context-free grammars.

The syntax of floats is implementation-dependent in that syntactically correct floats
may be approximated by the compiler if they cannot be represented by the implemen-
tation.

2.9 Strings
(string) = ' { (string char) | (pseudo char) }

The word " represents the token |atom, 110 105 108, which denotes the empty list
nil. A word of the form "¢y ... c¢y'*, where m> 1, represents a sequence of m+ 2
tokens of the form [ny ... ny 1, where the nj represent integer tokens according to the
1SO 8859-1 code of ¢;.

For example, the word represents the sequence of tokens [| int, 97| |int, 98]].

2.10. Characters 7

2.10 Characters

(character) := & ((any character) - (\ | NUL) | (pseudo char))

A word of the form (character) represents the integer token according to the code of
the character denoted by the word without the & prefix.

For example, the word &= represents the token [int, 97].

Chapter 2. Lexical Syntax

Context-Free Syntax

In this section, we give a context-free grammar for a superset of Oz programs. Any
sequence of tokens that is not member of the language described by this grammar,
starting from the (statement) nonterminal, is considered erroneous.

Implementations may accept a larger language, e.g., something more than only a state-
ment at top-level, or treat lexical syntax that has no assigned meaning in the report as

compiler directives.

3.1 The Base Language

Statements

(statement)

(statement) (statement)

| ocal (in statement) end

‘C (in statement))’

proc { (atom) } ‘{’ (expression) { (pattern) } ‘}’
(in phrase)

end

fun { (atom) } ‘{’ (expression) { (pattern) } ‘}’
(in expression)

end

‘{’ (expression) { (expression) } ‘}’

i f (expression) t hen (in statement)

[(else statement)]

end

case (expression) of (case statement clause)
{[] (case statement clause) }

[(else statement)]

end

| ock (expression) t hen (in statement) end

t hread (in statement) end

try (in statement)

[cat ch (case statement clause) { ‘[]’ (case statement clause) }]
[finally (in statement)]

end

rai se (in expression) end

(expression) ‘=" (expression)

skip

10

Chapter 3. Context-Free Syntax

Expressions

(expression)

(label) =
|

(feature)

(subtree)

| ocal (in expression) end

‘C (in expression))’

proc { (atom) } ‘{’ ‘$’ { (pattern) } ‘}’

(in phrase)

end

fun { (atom) } *{’ *$’ { (pattern) } ‘}’

(in expression)

end

‘{’ (expression) { (expression) } ‘}’

i f (expression) t hen (in expression)

(else expression)

end

case (expression) of (case expression clause)
{[] (case expression clause) }

[(else expression)]

end

| ock (expression) t hen (in expression) end
t hread (in expression) end

try (in expression)

[cat ch (case expression clause) { ‘[]’ (case expression clause) }]
[finally (in statement)]

end

rai se (in expression) end

(expression) ‘=" (expression)

(expression) or el se (expression)
(expression) andt hen (expression)
(monop) (expression)

(expression) (binop) (expression)
(possibly escaped variable)

(atom) | (int) | (float)

unit |true|false

(label) “C { (subtree) } [*..." 1%’
‘[’ { (expression) }+ ‘]’
(expression) ‘| * (expression)
(expression) { ‘4’ (expression) }+
g

(variable label) | (atom label)
(unit label) | (true label) | (false label)

(variable) | (atom) | (int)
unit |true|false

[(feature) “:*] (expression)

3.1. The Base Language 11

Operators Note that expressions with operators need additional disambiguating
rules introduced in Section B.5

(monop) =

[] [N

(binop)

l\:"‘<”£<:7|‘>7“>:’
/| div | nod

+

| 3
| £y ?

Declarations A (declaration part) is a sequence of variables and statements. Sin-
gleton variables serve only for explicit declaration and are otherwise ignored. Variables
within statements are implicitly declared if they occur at a pattern position. A prefixed
escape (!) prevents implicit declaration.
(declaration part) = (variable)
| (statement)
| (declaration part) (declaration part)

(in statement) = [(declaration part) i n] (statement)
(in expression) = [(declaration part) i n [(statement)]] (expression)
(possibly escaped variable) = [‘’] (variable)

As procedure body either a statement or an expression may be possible, depending on
whether the procedure’s formal parameter patterns contain a nesting marker ($) or not.

(in phrase) = (in statement)
| (in expression)

Patterns Pattern matching is performed as a top-down left-to-right sequence of
tests. Record patterns test a value’s constructor; constant patterns and escaped vari-
able patterns test for equality with the given value; nonlinearities (variables occurring
multiply in one pattern) test for equality of the corresponding subtrees. Equation pat-
terns and non-escaped variables introduce variable bindings.

(pattern) = (label) ‘C { (subpattern) } [*..." 1)’
‘I’ { (pattern) }+ ‘1’

(pattern) ‘| * (pattern)

(pattern) { ‘#’ (pattern) }+

(atom) | (int) | (float)

unit [true |false

(possibly escaped variable)

(pattern) ‘=" (pattern)

‘C (pattern))’

12 Chapter 3. Context-Free Syntax

(subpattern) = [(feature) ‘:’] (pattern)

Following the pattern an additional side condition can be given. It is only evaluated
if the pattern matched, in the environment extended by the bindings introduced by the
pattern. The variables introduced in the optional (declaration part) are also visible in
the clause’s body.

(case statement clause) := (pattern) [andt hen [(declaration part) i n] (expression)]
t hen (in statement)

(case expression clause) := (pattern) [andt hen [(declaration part) i n] (expression)
t hen (in expression)

Else Clauses If the el se part to an i f statement is omitted, it is taken to be
el se skip. Theel se parttoanif expression is mandatory.

If the el se part to a case statement or expression is omitted and no pattern matches,
an error exception is raised.

(else statement) = el seif (expression) then (in statement)
[(else statement)]
| el secase (expression) of (case statement clause)
{1’ (case statement clause) }
[(else statement)]
| el se (in statement)

(else expression) = el seif (expression)then (in expression)
(else expression)
| elsecase (expression) of (case expression clause)
{‘[1’ (case expression clause) }
[(else expression)]
| el se (in expression)

3.2 Constraint Extensions and Combinators

Statements

(statement) + (fd compare)

(fd in)

fail

not (in statement) end

cond (cond statement clause)

{‘[1’ (cond statement clause) }

[el se (in statement)]

end
| or (dis statement clause) { ‘[]’ (dis statement clause) }+ end
| dis (dis statement clause) { ‘[]’ (dis statement clause) }+ end

| choi ce (in statement) { ‘[]’ (in statement) } end

3.3. Class Extensions 13

(cond statement clause) = [(declaration part)in] (statement) t hen (in statement)

(dis statement clause) ::= [(declaration part)in] (statement) [t hen (in statement)]

Expressions
(expression) + (fd compare)

(fd in)

fail

cond (cond expression clause)

{“[1’ (cond expression clause) }

[el se (in expression)]

end

| or (cond expression clause) { ‘[]’ (cond expression clause) }+ end

| dis (cond expression clause) { ‘[]’ (cond expression clause) }+ enc

| choice (in expression) { ‘[]1’ (in expression) } end

(cond expression clause) := [(declaration part) i n] (statement) t hen (in expression)
(fd compare) = (expression) (‘=" |\ ="]‘<’|*=<7 |7 |*>=") (expression)
(fdin) == (expression) (‘::’|*::") (expression)

3.3 Class Extensions

Class Definitions

(statement) += cl ass (expression)
{ (class descriptor) }
{ (method) }

end

(expression) += class[‘$’]
{ (class descriptor) }
{ (method) }

end

from{ (expression) }+
prop { (expression) }+
attr { (attr or feat) }+
feat { (attr or feat) }+

(class descriptor)

Non-escaped variables are implicitly introduced with class scope, bound to new names.
This allows to model private components.

(attr or feat) = [’] (variable) | (atom) | (int)
| unit |true|false

14

Chapter 3. Context-Free Syntax

3.4

Methods The first-class message used to invoke a method can be referenced by
appending = (variable) to the method head. This message does not contain defaulted
arguments (see below) if they have not been explicitly given.

(method) := neth (method head) [‘=" (variable)]
(in phrase)
end

If dots are given, any additional features are allowed in the first-class message; else,
extraneous features cause an error exception to be raised.

(method head) [‘1] (variable) | (atom)

| unit |true|false
|

(method head label) ‘C { (method formal) } [*. ..

(method head label) ::= [’] (variable label) | (atom label)
| (unit label) | (true label) | (false label)

A default <= after a formal argument allows for the corresponding actual argument
to be omitted from a first-class method. In this case, the default expression will be
evaluated (inside the method) and the formal argument variable bound to the result.

(method formal) := [(feature) ‘:”] ((variable)| ‘| ‘$")

[
[‘<=’ (expression)]
Operations To the following operators, sel f is an implicit operand. Their use is
syntactically restricted to the body of method definitions.

(statement) += | ock (in statement) end
| (expression) ‘<-’ (expression)
| (expression) ‘, ’ (expression)

The assignment operator, when used in expression position, performs an atomic ex-
change, the result of the operation being the previous value of the attribute assigned
to.

(expression) + | ock (in expression) end

‘@ (expression)

(expression) ‘<-’ (expression)
(expression) ‘, ’ (expression)

sel f

Functor Extensions

A functor definition creates a chunk with (at least) features and
describing its interface and a feature apply containing a procedure mapping an import
record to an export module.

(statement) += functor (expression) { (functor descriptor) } end

(expression) += functor [‘$’]{ (functor descriptor) } end

3.4. Functor Extensions 15

Import Specification The import specification names values (usually modules) to
be made available to the body. They represent formal arguments to the body abstrac-
tion. The aditional at clause allows to specify where the actual argument is to come
from. This must be an atom (interpreted as a relative URL) so that a functor creating
the referenced module may be located at compile time.

(functor descriptor) = inport { (import clause) }+

(import clause) := (variable) [at (atom)]
| (variable label) (import features) [at (atom)]

If the expected structure of an imported value is partially specified, occurrences of the
module name are restricted to a single syntactic context: the first operand in applica-
tions of the dot operator, where the second operand is one of the features mentioned in
the import specification.

(import features) = ‘C { (module feature) (import alias) }+ “)’
(module feature) = (atom) | (int)

An import alias introduces a variable bound to one of the imported module’s subtrees.

(import alias) = [*:’ (variable)]

Functor Body The body of the functor is a statement (usually a sequence of def-
initions that compute the exported values). This statement is a pattern position. Note
the difference between this abbreviated declaration and the (in statement) rule: The
(statement) following the i n keyword is optional, not the (declaration part) preced-
ing it.

(functor descriptor) += define (declaration part) [i n (statement)]

Export Specification The export specification specifies the structure the modules
created by applications of this functor will have.

(functor descriptor) +=export {[(module feature) ‘-’] (variable) }+

The value of the variables mentioned in the export declaration are made available under
the given features. If a feature is omitted, then it is computed from the corresponding
variable’s print name by changing its initial capital letter into a lower-case letter (unless
it’s a backquote variable, in which case the print name is taken as-is).

All variables introduced in the import and the body are visible in the export declaration.

16

Chapter 3. Context-Free Syntax

Computed Functors A functor that contains one of the following additional func-
tor descriptors is called a computed functor. The requi re and pr epar e clauses cor-
respond to the i nport and def i ne clauses respectively, only they are executed upon
functor definition instead of functor application. The variables introduced by these
clauses are visible in the def i ne and export clauses.

(functor descriptor) += require { (import clause) }+
| prepare (declaration part) [i n (statement)]

3.5 Operator Associativity and Precedence

The grammar given above is ambiguous. Some ambiguities do not affect the seman-
tics (such as associativity of (statement)s and (declaration part)s). Those that do
are resolved according to the following table stating the associativity of operators in
increasing order of precedence:

Operators Associativity
= right
<- right
orel se right
andt hen right
==\=<=<>>==; \=! < =<! > >= none
Ba 006 none

| right
mixfix
+ - left

* | di v mod left

, right
~ left

., R left
@ ! left

‘Having higher precedence’ means ‘binding tighter’; e.g., the expression c#X. g = Y
is parsed as (c#(X.@)) = V.

Attempts to exploit associativity of non-associative operators (without using parenthe-
ses to make the intention clear), asin X < Y < Z, are considered erroneous.

Core Programs

In this section, we give a context-free grammar for Core Oz programs.

4.1 The Base Language

Statements

(statement) (statement) (statement)

| 1ocal {(variable) }+in (statement) end
|

proc { (atom) } ‘{’ (variable) { (variable) } ‘}’

(statement)
end
| “{’ (variable) { (variable) } ‘}’
| I ock (variable) t hen (statement) end
| thread (statement) end
| try (statement)
cat ch (variable) t hen (statement)

end
| (variable) ‘=" (expression)
| skip
Expressions
(expression) (variable)

:| (atom) | (int) | (float)
|

(label) “C { (feature) ‘:” (expression) } [*. ..

(label) ::= (variable label) | (atom label)

(feature) = (variable) | (atom) | (int)

"1y

18 Chapter 4. Core Programs

4.2 Class Extensions

(statement) += cl ass (variable)
[from{ (variable) }+]
[prop { (variable) }+]
[attr { ‘1" (variable) [‘:” (variable)] }+]
[feat { ‘17 (variable) [‘:* (variable)] }+]
{ (method) }

end
| 1ock <statement> end
| (variable) ‘<-’ (variable)
| (variable) ‘= <var|able) ’ (variable)
| (variable) ‘= <var|able>
| (variable) ‘, ” (variable)
| (variable) ‘=’ sel f
Methods
(method) = neth‘’ (variable) ‘C ‘...")’ ‘=" (variable)
(statement)

end

Translation of Oz Programs to Oz
Core Programs

Oz programs are translated to Oz core programs by repeatedly applying the rules given
in this chapter to subtrees of the parse tree, replacing the subtree with the result of the
rule. A rule consists of the following:

A set of nonterminals. The rule is only applicable to subtrees generated by a rule of one of these
nonterminals.

A left-hand side. The rule is only applicable if the subtree’s structure matches the left-hand side pat-
tern. Additionally, variables are introduced. Some parts may be left out (replaced by
an ellipsis) if they reappear unmodified in the output.

A right-hand side. When the rule is applied to a subtree, the latter is replaced by the subtree specified
by the right-hand side. This may contain variables written as X, Y, or Z not appearing
in the left-hand side: These variables are supposed to be fresh such that no capturing
can occur.

Optionally, a side condition. The rule is only applicable if the side-condition is satisfied.

Meta Variables Inside rewrite rules, we use meta variables for terminals and phrases
generated by nonterminals as shown in the following table:

Meta Variables Corresponding Terminals and Nonterminals

X, X1, ..., Xn variable)

D declaration part)

S statement)

E E1, ..., Ek En expression)

SE statement) or (expression)

EP, EPL, ..., EPn (expression) or (pattern)

CCL....,Cn case statement clause) or (case expression clause)

L,L1,...,Ln cond statement clause) or (cond expression clause) or (dis statement clau:
I label)

f1,...,fn feature)

(

(

(

é
P,P1,...,Pk,Pn (pattern)

(

(

(

2
sl,...,sn (subtree) or (subpattern)

20

Chapter 5. Translation of Oz Programs to Oz Core Programs

Core Variables The result of the transformation may have references to so-called
Core variables. We indicate this by writing them in backquotes; they are not bound
lexically, but are looked up in static environment. Examples are

and . If the print name of a Core variable contains a dot, then it is
supposed to be looked up (without the backquotes) in the Base Environment (see “The
Oz Base Environment”).

Errors When no rule is applicable and the program is not an Oz Core program, we
speak of a syntax error. Such a program is not a valid Oz program.

5.1 The Base Language

Declarations

(in statement) ::=
DinS — local Din Send

(in expression) ::=
Din[S]JE — localDin[S]Eend

The following rule makes implicit declarations explicit, i.e., declarations only name
variables between | ocal and i n. We need an auxiliary definition: The function PV
returns the set of pattern variables of a statement (or expression). Furthermore, we call
a position p in a given statement S a pattern position iff the following holds: If the
subterm at position p of Sis replaced by a fresh variable X, then X € PV(SX/p]).

D PV(D)

D1 D2 PV(D1) U PV(D2)
X {x}

©) PV(9
MDin9 PV(S) - PV(D)
local Din Send PV(S - PV(D)
proc ... {E ...} ... end PV(E)

fun ... {E ...} ... end PV(E)

class E ... end PV(E)
functor E ... end PV(E)

E= ... PV(E)
otherwise 0

5.1. The Base Language

21

E

X

)

(D in[S] B

local Din [S] E end
El = E2

[E1l ... En]

El E2

El#.._#En

PV(E)

{3

PV(E)

(PV(S UPV(E)) - PV(D)
(PV(S UPV(E)) - PV(D)
PV(E1) U PV(E2)
PV(ED) U... UPV(En)
PV(E1) U PV(E2)
PV(ED) U... UPV(En)

I([fl:]1EL ... [fn:]1En[...) PV(EL)U... UPV(En)

otherwise

0

(statement) ::=

localDinSend — localxl... xnin D’ Send

if D is not a sequence of distinct variables and where {x1,
..., xn} = PV(D) and D’ is D with singleton variables and
escapes in pattern position removed.

(statement) ::=
x=localDin[S]Eend — local Xin
X=X
localDin[S] X=Eend
end
Grouping
(statement) ::=
e — S
(expression) =
() — E
Procedure Definitions
(statement) ::=
proc... {EP1... Pn} — local Xin
SE X=E
end proc... {XP1... Pn}
SE
end
end

if E is no variable.

22 Chapter 5. Translation of Oz Programs to Oz Core Programs
(statement) ::=
(expression) =
fun... lazy... {E1P1... Pn} — fun... {E1X1... Xn}
E2 {
end fun {$}
case X1#...#Xn of P1#...#Pnthen E2
end
end}
end
where all occurrences of lazy are removed from the proce-
dure flags.
(statement) ::=
(expression) ::=
fun... {E1P1... Pn} — proc... {E1P1... Pn$}
E2 E2
end end
if no $ occursin P1... Pnand no lazy occurs in the proce-
dure flags.
(statement) ::=
(expression) =
proc... {E1P1... Pk... Pn} — proc... {E1P1... PK ... Pn}
E2 X=E2
end end
if $ occurs in Pk and no other $ occurs in P1 ... Pnand
no lazy occurs in the procedure flags. PK' is the result of
replacing the $ in Pk by X.
(statement) ::=
(expression) ;=
proc... {fEP1... Pn} — proc... {EX1... Xn}
S case X1#...#Xnof P1#...#Pnthen S
end end
end
if P1... Pnare not distinct variables and no $ occurs in P1
... Pnand no 1azy occurs in the procedure flags.
(statement) ::=
x=proc... {$...} SEend — proc... {x...} SEend
Applications

Actual arguments are evaluated from left to right and after the designator expression.

5.1. The Base Language

(statement) ::=
{E1... EKk... En} — local Xin
X=Ek
{E1... X... En}
end

if Ek is no variable and all Ei with i < k are variables.

(statement) ::=
x={EEl1... En} — {EELl... Enx}
if no $ occursin E1... Enin pattern position.

(statement) ::=

x={EEl...Ek... En} — {EEl...EK ... En}
if $ occurs in Ek in pattern position and no other $ occurs in
E1l... Enin pattern position. EK' is the result of replacing
the $ in pattern position in EK by x.

Boolean and Pattern-Matching Conditionals

(else statement) ::=
(else expression) 1=
elseif... — elseif... end

(else statement) ::=
(else expression) ::=

elsecase... — elsecase... end
(statement) ::=
ifEthenS — ifEthenS
end else skip
end
(expression) ::=
if ELthenE1l — if E1then E2
end else
raise error(kernel(noElse ...) ...) end
end

where the omitted parts of the exception are implementation-

dependent.
(statement) ::=

(expression) 1=

if Ethen SE1 — case E of true then SE1

else SE2 [] false then SE2
end else
raise error(kernel(boolCaseType ...)...) end
end

where the omitted parts of the exception are implementation-
dependent.

24 Chapter 5. Translation of Oz Programs to Oz Core Programs

(statement) ::=
(expression) ::=
case Eof... end — local Xin

X=E
case Xof ... end
end

if E is no variable.

(statement) ::=
(expression) 1=
case EofC1l[]...[]Cn — caseEOfC1l[]... []Cn

end else
raise error(kernel(noElse ...) ...) end
end
where the omitted parts of the exception are implementation-
dependent.

Note: Missing: expansion of case statement/expression to cond

Locks
(statement) ::=
(expression) =
lock Ethen SEend — local Xin
X=E
lock X then SE end
end
if E is no variable.
(statement) ::=
x=lock El1then E2end — lock E1then x=E2end
Threads
(statement) ::=
x=thread Eend — thread x=Eend

Exception Handling

(statement) ::=
(expression) ::=
try SE1 — try SE1
catchC1[] ... []Cn catch X then
[finally S] case Xof C1[]... [1Cn
end else
raise Xend
end
[finally S]
end

ifCL[] ... [] Cndoesnothavethe form x t hen SE2.

5.1. The Base Language

25

In the following rule, the intermediate variable X ensures that x is only bound iff eval-
uation of E does not raise an exception.

(statement) ::=
x=try E — try Xin
[catch y then E] X=E
[finally S] X=X
end [catchythen x=E]
[finally S]
end
(statement) ::=
try ... local Xin
finally S X=try
end try ... end
unit
catch Y then ex(Y)
end
S
case X of ex(Z) then
raise Z end
else skip
end
end
(statement) ::=
try SEend — SE

Exception Raising

(statement) ::=

raiseEend — {

E}

(statement) ::=

Xx=raise Eend — raise Eend

Equations

(statement) ::=

El=E2 —

local Xin
X=E1
X=E2
end

if E1 is no variable.

26 Chapter 5. Translation of Oz Programs to Oz Core Programs

Operators
(expression) =
oE — {xE}
whereo e {!!, ~} and x = CV(0).
(expression) 1=
EloE2 — {xE1E2}
whereoe {., 7 *,/,div,nmod, +, -, ==,\=, <, =<, >, >=}
and x = CV(0).
CV/(o) denotes the Core variable to which operation o is bound. The following table
summarizes in which module from “The Oz Base Environment” each operator is avail-
able, e.g., + is available as Number. , Which means that CV(0) =
Operators Located in Module
Il . ==\=<=<>>= Value
=% dpa Number
di v nod Int
/ Float
2 Record
(expression) =
ElandthenE2 — if E1then E2
else false
end
(expression) =
Elorelse E2 — if E1then true
else E2
end
Records

(expression) =
(pattern) ::=
[EP1... EPn] — EP1|...|EPn|nil

(expression) ::=
(pattern) ::=
EP1EP2 — ' (EPLEP2)

(expression) ::=
(pattern) ::=
EP1#... #EPn — #(EP1... EPn)

Note: Missing: dots, omitted features

5.2. Constraint Extensions and Combinators

27

Wildcard

(expression) 1=
— local Xin Xend

(pattern) =
— X

Named Constants

(expression) =
(label) ::=
feature) ::=
unit —

(pattern) =
unit — !

(expression) =
(label) ::=
{
t

feature) ::=
rue —

(pattern) =
true — !

(expression) ::=
(label) ::=
(feature) ::=
false —

(pattern) ::=
false — !

5.2 Constraint Extensions and Combinators

Operators

Note: Missing: fd compare

(statement) ::=

El E2 — { E2 E1}
(statement) ::=

El:m:E2 — { E2 E1}

28 Chapter 5. Translation of Oz Programs to Oz Core Programs

(expression) ::=
El::E2 — { E2 E1}

(expression) 1=
El:E2 — { E2 E1}

Failure

(statement) ::=

(expression) ::=

fail — raise failure(...) end
where the omitted parts of the exception are implementation-
dependent.

Combinators

(statement) ::=
notSend — { proc {$} Send}

(statement) ::=
(expression) =
condL1[]...[I[Lkn — <condL1l[]...[]Ln

end else
raise error(kernel(noElse ...) ...) end
end
where the omitted parts of the exception are implementation-
dependent.

(cond statement clause) ::=

(dis statement clause) ::=

DinSl[thenX] — x1...xninD’ S1[then]
if D is not a sequence of distinct variables and where {x1,
..., Xn} = PV(D) and D’ is D with singleton variables and
escapes removed.

(cond expression clause) ::=

DinSthenE — x1...xninD’ Sthen E
if D is not a sequence of distinct variables and where {x1,
..., xn} = PV(D) and D’ is D with singleton variables and
escapes removed.

Note: Missing: translation of cond/or /di s/choi ce expression into statement The
following rewrite rules make use of an auxiliary function Proc, defined as follows:

L Proc(L)
Slin & proc {$} Sl in X end
Slin X then S3 fun {$} SLin & proc {$} S3 end end

5.3. Class Extensions

29

(statement) ::=

condL1[]...[[Ln — {
else S proc {$} Send}
end

(Proc(L1) ... Proc(Ln))

(statement) ::=

orL1[]...[ILn — {
end

(Proc(L1) ... Proc(Ln))

(statement) ::=

disL1[]... [ILn — {
end

(Proc(L1) ... Proc(Ln))

(statement) ::=

choice SL[]... [[Sh — case{

[1...
[1 nthen n

end

n} of 1 then SL

5.3 Class Extensions

Classes

(statement) ::=

x=class[$]...end — classx... end

Method Names

Locks

(method head) ::=

(method head label) ::=

unit — !

(method head) ::=

(method head label) ::=

true — |

(method head) ::=

(method head label) ::=

false — I

(statement) ::=

x=lock Eend — lockx=Eend

30

Chapter 5. Translation of Oz Programs to Oz Core Programs

Operators

(statement) ::=
X=@E — local Xin
X=E
Xx=@X
end

if E is no variable.

(statement) ::=
El<-E2 — local Xin
X=E1l
X<-E2
end

if E1 is no variable.

(statement) ::=
x<-E — local Xin
X=E
X <-X
end

if E is no variable.

(statement) ::=
Xx=El<-E2 — local Xin
X=E1l
x=X<-E2
end

if E1 is no variable.

(statement) ::=
x=y<-E — local Xin
X=E
X=y<-X
end

if E is no variable.

(statement) ::=

x=El,E2 — E1 E2

if exactly one $ occurs in E2 in pattern position. E2 is the
result of replacing this $ in E2 by x.

(statement) ::=
El, E2 — local Xin
X=E1l
X, E2
end

if E1 is no variable.

5.4. Functor Extensions

31

(statement) ::=

x,E — local Xin
X=E
X, X
end

if E is no variable.

5.4 Functor Extensions

32

Chapter 5. Translation of Oz Programs to Oz Core Programs

Bibliography

[1] Information processing — 8-bit single-byte coded graphic character sets — part 1.
Latin, alphabet no. 1. Technical Report 1ISO 8859-1:1987, Technical committee:
JTC 1/SC 2, International Organization for Standardization, 1987.

