
Application Programming

Denys Duchier
Leif Kornstaedt

Christian Schulte

Version 1.2.3
December 1, 2001

Abstract

This document is an introduction to application programming with Oz and Mozart.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

I Getting Started 1

1 Getting Started 3

1.1 Our First Application: Webget.oza 3

1.2 What to do? . 3

1.3 Functor Definition: Webget.oza 4

1.4 Compilation . 6

1.5 Execution . 7

2 Application Development 9

2.1 Functors for Modular Applications 9

2.2 Example: Last Minute Flights . 9

2.3 The Data Base . 10

2.4 The Graphical Input Form . 11

2.5 The Root Functor . 11

2.6 Compilation . 12

2.7 Execution . 12

3 Module Managers 13

3.1 Overview . 13

3.2 Lazy Linking . 14

3.3 Import Specifications . 14

3.4 Url Resolution . 14

3.5 User-defined Module Managers 16

3.6 Functors in the Oz Programming Environment 17

4 Pickles for Persistent Data Structures 19

4.1 Stateless, Stateful, and Sited Nodes 19

4.2 Loading and Saving Values . 19

4.3 Example: The Data Base Revisited 20

4.4 Pickle Compression . 21

5 More On Functors 23

5.1 Computed Functors . 23

5.2 Imports . 24

6 Application Deployment 25

6.1 Linking Functors . 25

6.2 Compressed Pickled Functors . 26

6.3 Executing Functors . 26

II Programming With Concurrency 27

7 Concurrency For Free 29

8 Programming Patterns 33

8.1 Stream Processing Agents . 33

8.1.1 Stream Merging . 33

8.2 Communication Patterns . 34

8.2.1 Email Model . 34

8.2.2 Newsgroup Model . 34

8.3 Synchronization . 37

8.3.1 The Short-Circuit Technique 38

III Client/Server Applications 39

9 Introduction 41

9.1 A Generic Server server.oz . 41

10 Registry Application 43

10.1 Server db-server.oz . 43

10.2 Client db-client.oz . 44

11 Compile Server Application 45

11.1 Server ozc-server.oz . 45

11.2 Client ozc-client.oz . 46

IV Programming the Web 47

12 Applets 49

12.1 Enabling Oz Applets . 49

13 Servlets 51

V Distributed Applications 53

14 Chat Application 55

14.1 Chat Server . 55

14.2 Chat Client . 56

14.3 Graphical User Interface . 57

VI Native C/C++ Extensions 59

15 Global Counter Library 61

15.1 Implementation . 61

15.2 Compilation . 62

15.3 Deployment . 63

16 Native Counter Objects 65

16.1 Counter Class . 65

16.2 Counter Creation . 66

16.3 Type Testing . 66

16.4 Expecting Counter Arguments in Builtins 67

16.5 Operations on Counters . 67

16.6 Printing Support . 68

16.7 Garbage Collection . 68

16.8 Finalization . 69

16.9 Native Functor . 69

16.10Oz Wrapper Module . 69

17 Situated Cell-Like Objects 71

17.1 Celloid Class . 71

17.2 Celloid Creation . 72

17.3 Type Testing . 72

17.4 Expecting Celloid Arguments in Builtins 72

17.5 Operations on Celloids . 73

17.6 Printing Support . 73

17.7 Garbage Collection . 73

17.8 Cloning . 74

17.9 Native Functor . 74

17.10Oz Wrapper Module . 75

VII Appendices 77

A Data and Code Fragments 79

A.1 Application Development . 79

Part I

Getting Started

1

1

Getting Started

The purpose of programming languages is of course the construction of applications.
In this chapter we will use Oz for our first small application.

1.1 Our First Application: Webget.oza

Our first application is a program that copies a file from a url to a local file. The
program is called Webget.oza.

Figure 1.1: Get yourself a Mozart license.

ozengine Webget.oza --in http://www.mozart-oz.org/LICENSE --out LICENSE

Our goal is to have an application that can be started like any other application from
the operating system shell. For example, executing the command shown in Figure 1.1
gets us a local copy of the Mozart license file.

In addition to taking arguments from the command line, Webget.oza should report
problems by returning an error status to the operating system shell. The error status is
an integer, where the value 0 means okay. Any other values signals an error.

1.2 What to do?

In the following we consider the three main steps in constructing our application. We
give a brief outline of what to do, the following sections are going to detail the steps.

Definition The first step, of course, is to program our application. For this purpose, we will
create a file Webget.oz that contains the Oz program implementing webget. More
specifically, the file Webget.oz contains a functor definition.

Compilation Next, we compile the functor definition contained in Webget.oz. The compiler takes
the functor definition and executes it. By this it creates a functor. Then the functor is
written to a file Webget.oza. This persistent representation of a functor value is
called a pickled functor.

4 Chapter 1. Getting Started

Execution The pickled functor Webget.oza is executed by the Oz virtual machine ozengine.
The engine takes a pickled functor (Webget.oza in our case), unpickles the functor,
runs the functor, and supplies it with application arguments. After execution termi-
nates, it reports the application’s execution status back to the operating system shell.

1.3 Functor Definition: Webget.oza

The toplevel structure of the file Webget.oz is as follows.

4a 〈Webget.oz 4a〉≡
functor

〈Module import 4b〉
〈Functor body 5a〉

end

Importing modules Our application requires the system module Application to
both process the command line arguments as well as for terminating the application.
In addition, the module Open provides the class Open.file required for reading and
writing files.

The functor needs to import these two modules. The functor definition thus contains
the following import specification:

4b 〈Module import 4b〉≡
import

Application

Open

The import specification serves two purposes: the variable identifiers Application

and Open are introduced with a lexical scope that extends over the entire body of the
functor. Secondly, the identifiers also serve as module names. When the functor cor-
responding to this definition is executed, the variables are given as values the system
modules with the same names.

More precisely, the import specification above is a convenient abbreviation for the
more verbose specification below:

4c 〈Module import (no convenience) 4c〉≡
import

Application at ’x-oz://system/Application’

Open at ’x-oz://system/Open’

In Section 3.3 we will discuss system modules in more detail. In particular, Figure 3.1
lists available system modules.

1.3. Functor Definition: Webget.oza 5

Functor body The body of a functor is a statement that is executed when the appli-
cation is run.

5a 〈Functor body 5a〉≡
define

〈Argument processing 5b〉
Status = try

〈Opening input and output files 5c〉
in

〈Copying input file to output file 6a〉
0

catch _ then 1

end

〈Terminating the application 6b〉

The structure for our application is straightforward: after processing the command line
arguments, file objects for source and destination are created and the content is copied
from the source file to the destination file.

If a runtime error occurs either during opening the files or while copying the file con-
tent, the raised exception is caught and the Status is bound to 1. Otherwise, Status
gets bound to zero.

Note that the body of a functor is like the part of a local ... in ... end state-
ment before the in: definitions and statements are allowed, where the left hand side of
definitions can introduce variables.

Processing arguments The application needs two input parameters: the URL to
get the file from, and the file name under which the downloaded content should be
stored.

The following application of Application.getCmdArgs

5b 〈Argument processing 5b〉≡
Args = {Application.getArgs record(’in’(single type:string)

’out’(single type:string))}

computes Args to be a record (as signalled by the label record of the single argument
to Application.getArgs1. The features of the record are ’in’ and ’out’ where both
fields are of type string and both are allowed to be given only once on the command
line (that is specified by single).

For a complete reference of how application arguments are processed see Chapter Ap-
plication Support: Application, (System Modules) .

Opening input & output The two files are opened as follows:

5c 〈Opening input and output files 5c〉≡

1Section The Application Module, (System Modules)

6 Chapter 1. Getting Started

I={New Open.file init(url: Args.’in’)}

O={New Open.file init(name: Args.’out’

flags:[write create truncate])}

Note how the strings Args.’in’ and Args.’out’ computed by argument processing
are used for the source URL and the destination filename.

Copying input to output Copying the file from source to destination is straight-
forward: As long as we can read a non-empty string S from the source file, we write it
to the destination file and repeat the procedure.

6a 〈Copying input file to output file 6a〉≡
local

proc {Copy}

S={I read(list:$)}

in

if S\="" then

{O write(vs:S)} {Copy}

end

end

in

{Copy}

end

Terminating the application Termination of the application is effected by in-
vocation of Application.exit which takes the application status as single integer
argument. In our case an exit value of 1 indicates an error, otherwise 0 is returned to
the operating system shell.

6b 〈Terminating the application 6b〉≡
{Application.exit Status}

1.4 Compilation

As is the case for many programming languages, the functor definition must be com-
piled before it can be executed. This is achieved by invoking the Oz compiler ozc as
follows:

ozc -c Webget.oz -o Webget.oza

Note the intentional similarity between the options illustrated above and those accepted
by a C compiler. The compiler ozc offers a variety of other options that control com-
pilation, an overview of which can be found in Chapter The Oz Compiler: ozc, (Oz
Shell Utilities) .

1.5. Execution 7

1.5 Execution

The functor pickled into Webget.oza can be executed by applying the program
ozengine to the functor and the application arguments. For example, to copy the
Mozart license file at url http://www.mozart-oz.org/LICENSE to the local
file LICENSE, simply enter the command line shown in Figure 1.1 at your shell promt.

Execution of an application proceeds as follows:

1. ozengine, the Oz virtual machine, is started by the operating system.

2. ozengine starts to execute a module manager.

3. The module manager loads the pickled functor Webget.oza. This initial ap-
plication functor is called the root functor.

4. The module manager links the functor by applying the functor body to argu-
ment modules. The argument modules in our example are the system modules
Application and Open.

5. Then it executes the functor body.

The different steps in application are detailed in the following sections.

8 Chapter 1. Getting Started

2

Application Development

Chapter 1 used a rather simple application as example. This chapter shows how to use
functors for the modular development of larger applications.

2.1 Functors for Modular Applications

Principles of good software engineering suggest that larger applications should be de-
signed and assembled from a collection of smaller modules. In Oz, this decomposition
can be realized in terms of several functor definitions.

The primary purpose of a functor is to compute a module: It takes modules as input
and computes a new module as output. As we have seen already, the import section of
a functor specifies its inputs as a list of module names. In addition, functors may also
have an export section which is basically a list of feature/value pairs that describes
the module computed by the functor.

As demonstrated in Section 1.5 an application is run by executing the root functor.
In our particular example, the root functor was rather simple in that it only imported
system modules. However, larger applications will typically import modules computed
by other application functors.

2.2 Example: Last Minute Flights

In the following we will build a trivial flight booking system featuring three compo-
nents:

1. A data base server: It maintains a data base that contains available flights, where
each flight has a unique id by which it can be identified. At first, the data base is
not even persistent, but as we incrementally refine and improve our application,
the data base evolves into a persistent and distributed data base server.

2. A graphical flight booking form, where a travel-minded user can choose a flight,
enter her name, her E-mail address and so on. Later we will show how to build
a web-based interface serving the same purpose.

3. The main component of our application that manages user requests to the data
base and sets up the application.

All components are programmed as functors.

10 Chapter 2. Application Development

2.3 The Data Base

Let us start with the data base, which is the most straightforward part of our application.
The data will be held in a dictionary that uses integers as keys, and arbitrary data
structures as entries. The functor definition resides in file DB.oz and its toplevel
structure is as follows:

10a 〈DB.oz 10a〉≡
functor

〈Export specification for DB.oz 10b〉
〈Body for DB.oz 79a〉

end

The functor has no import specification, and its export specification is as follows:

10b 〈Export specification for DB.oz 10b〉≡
export

add: Add

get: Get

getAll: GetAll

remove: Remove

The specification determines that the functor’s module provides the features add, get,
getAll, and remove, where the value of each feature is given by the variable after
the following colon. The values of these variables are then computed by the functor’s
body.

For convenience, the export specification above may also be written more succinctly
as follows:

10c 〈Export specification for DB.oz (with syntactic sugar) 10c〉≡
export

Add

Get

GetAll

Remove

The shortcut to just use a variable identifier starting with a capital letter, defines both
the variable identifier as well as the feature. The feature is the variable identifier with
its first character changed to lowercase.

The functor body is of less importance to us here, however, you can find it in Sec-
tion A.1. One advantage of modular program development is that during the design of
an application one may concentrate first on finding the right interfaces, and only then
provide corresponding implementations.

Even though the functor does not import any module, it uses predefined procedures
(for example, Dictionary.new to create a new dictionary). The compiler provides
a set of variable identifiers, that refer to the basic operations on all primitive Oz data
types. This set of identifiers is known as the base environment and is documented in
detail in “The Oz Base Environment”.

When a functor definition is compiled, all free variable identifiers must be bound by
the base environment.

2.4. The Graphical Input Form 11

2.4 The Graphical Input Form

The functor that implements the graphical form to book flights has the following struc-
ture, and its definition resides in file Form.oz:

11a 〈Form.oz 11a〉≡
functor

import

Tk

export

Book

define

proc {Book Fs ?Get}

%% Takes a list of flights and returns the booked flight

%% and information on the booking user

〈Implementation of Book 80a〉
end

end

2.5 The Root Functor

The root functor for our last minute flights application uses the previously defined
functors that maintain the data base and that provide the user form. The root functor’s
definition resides in file LMF.oz:

11b 〈LMF.oz 11b〉≡
functor

import

DB Form % User defined

System Application % System

define

%% Enter some flights

{ForAll 〈Sample flights 81a〉 DB.add}

%% Book until all flights sold out

proc {Book}

case {DB.getAll}

of nil then

{System.showInfo ’All flights sold.’}

[] Fs then

O={Form.book Fs}

in

{System.showInfo (’Booked: ’#O.key#

’ for: ’#O.first#

’ ’#O.last#

’ (’#O.email#’)’)}

{DB.remove O.key}

{Book}

end

12 Chapter 2. Application Development

end

{Book}

{Application.exit 0}

end

2.6 Compilation

Functors also are compilation units. Each functor definition is compiled separately.
For our example, the following sequence of commands

ozc -c DB.oz -o DB.ozf

ozc -c Form.oz -o Form.ozf

ozc -c LMF.oz -o LMF.oza

compiles our example functor definitions. If you now change the functor definition in,
say, DB.oz but the interface of the created functor remains the same, none of the other
functor definitions need recompilation.

Note that we have chosen as file extensions for pickled functors that are not supposed to
be run as applications the string ozf. For the root functor of our application we chose
oza. This is completely transparent as it comes to the semantics of our program, it
is just a convention that makes it easier to tell apart which pickled functors are root
functors of applications.

2.7 Execution

As before, we just execute the root functor of our application by applying the ozengine
command to LMF.oza:

ozengine LMF.oza

The next chapter (Chapter 5) explains how applications that consist of several functors
are executed.

3

Module Managers

So far we only dicussed how functor definitions can be developed in a modular fashion.
This chapter explains how modular applications are executed.

The chapter is kept informal, a more detailed explanation of module managers and how
module managers link applications can be found in [1].

3.1 Overview

A module manager maintains a module table. The module table maps urls (or to be
more precise, full module urls) to modules or futures to modules.

A module manager links a module at url U as follows:

1. If U is already in the module table, the module manager returns the entry in the
module table.

2. If U is not yet in the module table, the module manager creates a new future M
and stores M under key U in the module table. As soon as the value of future M
gets requested, the module manager installs a module from the url U.

Linking is done lazily: only when the value of the module is requested (usually im-
plicitly, when the application attempts to access an exported feature), the module gets
installed. A module with full module url U is installed as follows, where the installa-
tion procedure returns a module M:

1. The pickled functor stored at U is loaded.

2. The module manager computes the full module urls for its imports. This step is
detailed in Section 3.3 and Section 3.4.

3. It recursively links all functors with the full module urls computed before. This
yields the argument modules.

4. It applies the functor body to the argument modules, which returns the module
M.

14 Chapter 3. Module Managers

3.2 Lazy Linking

In the above section we have discussed that modules are subject to lazy linking: Only
when a module is requested, the functor to compute that module gets loaded.

Lazy linking has dramatic effect on the startup time of an application: applications can
start small in a fraction of a second and load additional functionality on demand. And
all this happens completely transparently.

System modules are also subject to dynamic linking. Even though module managers
give the impression that the system modules are always there, they are also loaded on
demand. An application that takes good advantage of that fact is for example the Oz
Programming Interface which starts quickly even though it imports all system modules.

3.3 Import Specifications

The entire import part of a functor is called the import specification. Each import spec-
ification consists of several import clauses. Each import clause consists of a mandatory
module name and an optional module url that must be preceded by the at keyword.

For example, in the import specification

import

DB

MyForm at ’Form.ozf’

the first import clause is DB which just consists of the module name DB and does not
provide a module url. The second import clause is MyForm at ’Form.ozf’ which
consists of the module name MyForm and the module url ’Form.ozf’.

The first step in linking a functor is that the module manager computes for each import
clause the full module url. This is done according to the following rules:

1. If the import clause features a module url U, the full module name is U.

2. If the import clause consists of a module name M only, where M is the name
of a system module, the full url is x-oz://system/M, that is the module name
prefixed by x-oz://system/.

3. If the import clause consists of a module name M only and M is not the name of
system module, the full url is M.ozf, that is the module name suffixed by .ozf.

All currently defined system modules are listed in Figure 3.1.

3.4 Url Resolution

Given the full url names for each import clause, the module manager determines the
urls from which functors are to be loaded by url resolution. Url resolution takes two
urls (one is called the base url and the other is called the local url) as input and computes
a new resolved url. The process of url resolution you already know from organizing

3.4. Url Resolution 15

Figure 3.1: System modules.

Name Description Documentation
Application Programming
Application Command processing and ap-

plication termination
Chapter Application Support:
Application, (System Modules)

Module Module managers Chapter Module Managers: Module,
(System Modules)

Constraint Programming
Search Search engines Chapter Search Engines: Search, (Sys-

tem Modules)
FD Finite domain propagators and

distributors
Chapter Finite Domain Constraints: FD,
(System Modules)

Schedule Scheduling propagators and
distributors

Chapter Scheduling Support: Schedule,
(System Modules)

FS Finite set propagators and dis-
tributors

Chapter Finite Set Constraints: FS, (Sys-
tem Modules)

RecordC Feature constraints (record
constraints with open arities)

Chapter Feature Constraints: RecordC,
(System Modules)

Combinator Deep-guard combinators Chapter Deep-guard Concurrent Con-
straint Combinators: Combinator, (Sys-
tem Modules)

Space First-class computation spaces Chapter First-class Computation Spaces:
Space, (System Modules)

Distributed Programming
Connection Connecting to running Oz pro-

cesses
Chapter Connecting Computations:
Connection, (System Modules)

Remote Remote module managers Chapter Spawning Computations Re-
motely: Remote, (System Modules)

URL URL parsing and resolution
routines

Chapter Referring To Distributed Enti-
ties: URL, (System Modules)

Resolve URL resolving Chapter Resolving URLs: Resolve,
(System Modules)

Fault Handling faults in distributed
programs

Chapter Detecting and Handling Distri-
bution Problems: Fault, (System Mod-
ules)

Open Programming
Open Support for files, sockets, and

pipes
Chapter Files, Sockets, and Pipes: Open,
(System Modules)

OS POSIX compliant operating
system support

Chapter Operating System Support: OS,
(System Modules)

System Programming
Pickle Saving and loading of persis-

tant values
Chapter Persistent Values: Pickle, (Sys-
tem Modules)

Property Querying and configuring en-
gine properties

Chapter Emulator Properties: Property,
(System Modules)

Error Error handling routines Chapter Error Formatting: Error, (Sys-
tem Modules)

Finalize Automatic garbage collection
for native entities

Chapter Memory Management:
Finalize, (System Modules)

System Miscellaneous system related
procedures (printing)

Chapter Miscelleanous System Support:
System, (System Modules)

Window Programming
Tk Classes and procedures for

window programming
Chapter The Module Tk, (System Mod-
ules)

TkTools Predefined abstractions to han-
dle menus, dialogs, and so on

Chapter Graphical Tools: TkTools, (Sys-
tem Modules)

Graphical Tools
Browser Incremental display of Oz val-

ues
“The Oz Browser”

Panel Monitor and configure the run-
ning engine

“Oz Panel”

Explorer Visual constraint program-
ming tool

“Oz Explorer – Visual Constraint Pro-
gramming Support”

Ozcar Interactive debugger “The Mozart Debugger”
Profiler Profiling of Oz programs “The Mozart Profiler”
Miscellaneous
ObjectSupport Generic classes for object ori-

ented applications
Chapter Support Classes for Objects:
ObjectSupport, (System Modules)

16 Chapter 3. Module Managers

your html-pages: a url for a relative href-link is resolved with respect to the base url of
the containing document.

In this respect, a module manager will behave similarly to a web-browser. When it
installs a module that was loaded from url U, the latter’s full import urls are resolved
with respect to U. Figure 3.2 shows a small example, where the root functor has the
absolute filename /home/schulte/A.ozf.

Figure 3.2: Example for resolving urls.

Name Resolved url Import specification
A /home/schulte/A.ozf

import

B at ’down/B.ozf’

C at ’http://www.foo.org/C.ozf’

B /home/schulte/down/B.ozf empty
C http://www.foo.org/C.ozf

import D at ’D.ozf’

D http://www.foo.org/D.ozf empty

3.5 User-defined Module Managers

When the engine starts it has the root module manager that executes the root functor
and subsequently links imported functors. However, in many cases it is desirable that
applications can create private module managers that just link particular functors.

As an example, suppose we want to use more than a single data base as implemented
by the functor DB.ozf as shown in Section 2.3

In the Oz Programming Interface, we can link DB.ozf twice with two new and dif-
ferent module managers as follows:

[DBA]={Module.link [’DB.ozf’]}

[DBB]={Module.link [’DB.ozf’]}

Both DBA and DBB refer to two independent data bases.

You can observe lazy linking easily. Browsing DBA as follows

{Browse DBA}

shows DBA<Future>, which means that DBA still refers to a future. Requesting
the module by, for example, adding an entry to the data base is also reflected in the
Browser: the display of DBA<Future> is replaced by a representation of the mod-
ule’s value.

3.6. Functors in the Oz Programming Environment 17

That both module managers work independently can be verified by browsing DBB.

Module.link takes a list of urls, creates a new module manager and maps each url
U to the module created by linking the functor at U. Reference documentation can be
found in Chapter Module Managers: Module, (System Modules) .

3.6 Functors in the Oz Programming Environment

Functors are first class entities in the language that can of course also be created in the
Oz Programming Interface. This eases development of functors considerably.

Suppose the following demo functor definition

declare

functor F

export Pam

define

fun {DoPam Xs P Ys}

case Xs of nil then Ys

[] X|Xr then {DoPam Xr P {P X}|Ys}

end

end

fun {Pam Xs P}

{DoPam Xs P nil}

end

end

After feeding the definition, the defined functor can be applied as follows:

[M]={Module.apply [F]}

The module M can be used in the OPI as usual, that is

{Browse {M.pam [1 2 3] fun {$ I} I+1 end}}

displays the list [4 3 2].

Module.apply takes a list of functors as argument, creates a new module manager,
applies each functor element and returns the resulting list of modules. It is also possible
to specify the base url used in linking the argument modules of the applied functor. For
more information see Chapter Module Managers: Module, (System Modules) .

Of course, also other situations allow to take advantage of first-class functors and that
they can be applied by module managers. In particular they are useful for remote
module managers that create new Oz processes on networked computers. You can learn
more on this issue in “Distributed Programming in Mozart - A Tutorial Introduction”.

18 Chapter 3. Module Managers

4

Pickles for Persistent Data Structures

Applications often require to store their state on file and load the saved data later. Oz
supports this by pickling of data structures: Data structures are made persistent by
writing them to files.

4.1 Stateless, Stateful, and Sited Nodes

Values, or more precisely nodes,1 in Oz are either stateless or stateful:

Stateful Basic data structures that are stateful include cells, variables, and ports. Since objects,
arrays and dictionaries are conceptually composed of cells, they are stateful as well.

Stateless Stateless data structures are literals, numbers, records, classes, chunks, and procedures.

In addition, nodes in the store can be sited: the node is specific to a particular site; it is
a site-bound resource. For example, classes for files (Open.file) and widget classes
for graphics (for example, Tk.toplevel) are sited.

Only stateless and un-sited nodes can be made persistent by pickling.

4.2 Loading and Saving Values

After executing the following statement

X=a(proc {$ Y} Y=X end 1 2 f:X)

X refers to a record node. The node can be saved or pickled to the file test.ozp by
executing

{Pickle.save X ’test.ozp’}

Pickling traverses the entire graph reachable from the root node (which is referred to by
X in our example), creates a portable description of the graph and writes the description
to a file.

The pickled data structure can be loaded by
1A node may also be an unbound variable, i.e. a value that is not yet determined

20 Chapter 4. Pickles for Persistent Data Structures

Z={Pickle.load ’test.ozp’}

Now Z refers to a graph which is an isomorphic clone of the graph that has been saved.
For our example this means: what can be reached from X and Z is equal. For example

X.1==Z.1

evaluates to true. In fact, X and Z cannot be distinguished.

Loading of pickles works across the internet: it is possible to give a url rather than just a
filename. For example, if you have a public html directory ~/public_html and you
move the pickle file test.ozp there, everybody can load the pickle across the inter-
net. Suppose that the url of your public html directory is http://www.ps.uni-sb.de/~schulte/,
then the pickle can be loaded by

Z={Pickle.load ’http://www.ps.uni-sb.de/~schulte/test.ozp’}

4.3 Example: The Data Base Revisited

To extend the data base we developed in Section 2.3 with persistence, we just add two
procedures to load and save a data base and extend the export specification accordingly.
The toplevel structure of the functor definition is as follows:

20a 〈PDB.oz 20a〉≡
functor

import Pickle

〈Export specification for PDB.oz 20b〉
〈Body for PDB.oz 20c〉

end

The functor imports the system module Pickle. The export specification is just ex-
tended by the fields load and save.

20b 〈Export specification for PDB.oz 20b〉≡
〈Export specification for DB.oz 10b〉

load: Load

save: Save

The body for PDB.oz is as follows:

20c 〈Body for PDB.oz 20c〉≡
〈Body for DB.oz 79a〉

proc {Save File}

{Pickle.save {Ctr get($)}#

{Dictionary.toRecord db Data}

File}

end

proc {Load File}

I#D={Pickle.load File}

4.4. Pickle Compression 21

in

{Dictionary.removeAll Data}

{Ctr init(I)}

{Record.forAllInd D

proc {$ K#E}

{Dictionary.put Data K E}

end}

end

Save takes as input the filename of the pickle, whereas Load takes the url from which
the pickle can be loaded.

When using the persistent data base, it has to be kept in mind that it does not offer
concurrency control: Simultaneous add and remove, as well as load and save operations
performed by several threads might leave the data base in a inconsistent state. In ???
we will develop the data base in a data base server that also allows for concurrency
control.

Note that since we only extended the functionality the functor provides, all programs
that used the non-persistent data base could, in principle, still use the persistent data
base with out being recompiled. We say could because the implementaion of the per-
sistent database is named PDB.ozf rather than DB.ozf. However, you can give it a
try and simply rename PDB.ozf to DB.ozf: all applications based on the the non-
persistent implementation will continue to work as before but now using the persistent
implementation (though without actually taking advantage of the persistency).

4.4 Pickle Compression

Pickles can also be compressed so that they occupy less space on disk. For example, a
compressed pickle for X can be written to file testz.ozp by

{Pickle.saveCompressed X ’testz.ozp’ LevelI}

LevelI is an integer between 0 and 9 specifying the compression level: the higher
the value the better the compression, but the longer pickling takes. A value of 0 gives
no compression.

Compression time and ratio depend on the data being pickled. The compression ratio
might vary between 20 and 80 percent, while compression at level 9 is usually less than
2 times slower than using no compression.

22 Chapter 4. Pickles for Persistent Data Structures

5

More On Functors

5.1 Computed Functors

We distinguish between compiled functors and computed functors. A compiled functor
is obtained by compilation of a functor definition. Computed functors are obtained
by executing compiled functors whose definitions contain nested functor definitions.
Compiled functors can only have lexical bindings to the data structures of the base
environment. Computed functors can have lexical bindings to all data structures that
the creating compiled functors supply to their definitions.

Pickled computed functors can carry computed data structures with them. This matters
since

1. a computed data structure can now be loaded together with a functor rather than
being computed a new for each virtual machine using it.

2. the functors needed to compute the carried with data structure are not needed by
the virtual machine using it.

Computed functors are syntactically supported by a prepare and require section.
For example, the root functor definition in the file LMF.oz can be rewritten using a
prepare section as follows:

functor

import

DB Form % User defined

System Application % System

prepare

Flights = 〈Sample flights 81a〉
define

%% Enter some flights

{ForAll Flights DB.add}

...

end

Here the difference between the compiled functor and the computed functor is that the
compiled functor contains the code to create the list of sample flights. The computed
functor just contains the list itself.

24 Chapter 5. More On Functors

All variable identifiers that are introduced in the prepare section are visible in the
define section. The variables introduced by the import section are of course only
visible in the define section.

The require section of a computed functors relates to the prepare section as does the
import section to the define section: modules imported in the require section are
available in the prepare section.

5.2 Imports

import and require specifications support features and fields. For example, in the
main functor for our last minute flight booking system, we could have written the
import clause for DB as follows:

DB(add getAll remove)

Besides of the documentational advantage of explicitly listing the features, the com-
piler tries to enforce that only listed features are used for dot access. For example,
given the above import clause, the following access

DB.addd

raises an error during compilation.

In addition, also variables can be given as fields in the import specification as follows:

DB(add:Add getAll:GetAll remove)

The variables introduced for the fields interact with dynamic linking as follows: The
module is requested as soon as the value for one of the variables is requested.

6

Application Deployment

6.1 Linking Functors

Application development can be considerably eased by splitting the application in a
large number of orthogonal and reusable functors. However, deployment of an appli-
cation gets harder in the presence of a large number of functors:

1. Installing the application requires correct installation of a large number of func-
tors.

2. Execution might be slow due to frequent file- or even network accesses.

The commandline tool ozl eases deployment by creating a new functor that includes
imported functors in a prelinked fashion: it is possible to collapse a collection of func-
tors into a single equivalent one. The model that should be kept in mind, is that the
newly created functor employs an internal, private module manager that executes the
toplevel application functor together with all included functors.

The linker can be invoked on the input functor In in order to create an output functor
Out as follows:

ozl In -o Out

For example, from the pickled toplevel functor LMF.ozf a new functor can be created
as follows:

ozl LMF.ozf -o LMF.oza

where the pickled functor LMF.ozf is created by compilation as follows:

ozc -c LMF.oz -o LMF.ozf

Now the newly created pickled functor LMF.oza can be installed everywhere, the
functors stored in DB.ozf and Form.ozf are included in LMF.oza.

The linker can be used in verbose mode with the option -verbose (or -v as abbrevi-
ation). In verbose mode the linker prints information on which functors are included
and which functors are imported by the newly created functor. For example,

26 Chapter 6. Application Deployment

ozl -v LMF.ozf -o LMF.oza

prints something like

Include:

/home/schulte/DB.ozf, /home/schulte/Form.ozf,

/home/schulte/LMF.ozf.

Import:

x-oz://system/Application.ozf, x-oz://system/System.ozf,

x-oz://system/Tk.ozf.

The linker also supports options that control which functors are included, for more
information see Chapter The Oz Linker: ozl, (Oz Shell Utilities) .

6.2 Compressed Pickled Functors

Pickles created by the compiler and linker can also take advantage of compression. For
that matter, both tools support the -compress (or -z as shortcut) option that must be
followed by a single digit that defines the compression level to be used.

For example, the pickled functor LMF.oza can be created compressed by

ozl --compress 9 LMF.ozf -o LMF.oza

This reduces the used disk space by 50%.

6.3 Executing Functors

This section shows a convenient form to execute functors.

The option -exec (or -x as shortcut) can be supplied to both compiler and linker.
Functors that are created with that option can be directly executed. For example, the
file lmf.exe created with

ozl -x LMF.ozf -o lmf.exe

can be directly executed:

lmf.exe

The pickled functor lmf.exe just features a particular header that allows direct exe-
cution. It can still be used together with the ozengine program:

ozengine lmf.exe

Naturally, the extension .exe can be omitted under Unix.

Part II

Programming With
Concurrency

27

7

Concurrency For Free

This part of the tutorial addresses the following theme: what happens to programming
when support for concurrency is extremely cheap, economical, and efficient. Suddenly,
an entirely different style of programming and design is made possible. We are going
to explore and exploit this new freedom.

Oz has very efficient, very economical, very lightweight threads, with fair preemptive
scheduling. We don’t mean that Oz threads are just somewhat better than brand X;
we mean that brand X can’t even see our dust with a telescope, er. . . well, just about
anyway! In order to assuage the skeptics, we first exhibit a program that demonstrates
massive concurrency and exercises the worst case. Doubters are encouraged to throw
that program at their favorite programming language. . . and watch it die, eventually.
Meanwhile, you could mount a clay tablet device, and engage in the more rewarding
exercise of installing Windows from sumerian backup.

The program is invoked with:

death --threads N --times M

and creates N threads. Each thread does nothing but yield immediately. Normally we
would let the preemptive scheduler take care of interrupting a thread to switch to a
new one, but here, in order to exercise the worst case, as soon as a thread is allowed to
run, it explicitly yields. Thus the program does little else but switch between threads.
Each thread yields M times and then terminates. When all threads have terminated, the
program also terminates.

I just tried the following:

death --threads 10000 --times 10

In other words, 10000 threads are created and must each yield 10 times. This results
in 100000 thread switches. It takes 3s on this little steam-driven laptop. I have run the
same program on a real computer at the lab but using:

death --threads 100000 --times 10

It takes 7.5s. There are 100000 threads at all time runnable, and they must perform
1000000 thread switches. Try creating 100000 threads in Java. . . really, go ahead, I
insist! I promise not to laugh!

Just so you don’t have to take my word for it, I coded the same program in Java and
tried:

30 Chapter 7. Concurrency For Free

java Death 1000 10

This takes 2:40mn!

What was the point of this exercise? It was not prove that Oz is better than Java; in this
respect the test above was deliberately unfair: Java was never intended to support de-
signs with massive concurrency. . . and that is the point. Oz was from the start designed
as a platform for concurrent computation. That concurrency is so cheap and efficient
makes entirely new designs possible that would not be realistic or even conceivable in
other languages. Whenever you need to perform an operation asynchronously you sim-
ply spawn a new thread. You can design your application as a collection of concurrent
objects or agents, etc. . .

Death by Concurrency in Oz

Here is the code of the Oz application used in the benchmark above:

functor

import Application

define

proc {Yield} {Thread.preempt {Thread.this}} end

proc {Run N}

{Yield}

if N>1 then {Run N-1} end

end

Args = {Application.getCmdArgs

record(threads(single type:int optional:false)

times(single type:int optional:false))}

proc {Main N AllDone}

if N==0 then AllDone=unit else RestDone in

thread {Run Args.times} AllDone=RestDone end

{Main N-1 RestDone}

end

end

{Wait {Main Args.threads}}

{Application.exit 0}

end

Death by Concurrency in Java

Here is a very similar program, in Java:

import java.lang.*;

class MiniThread extends Thread {

int n;

MiniThread(int m) { n=m; }

public void run() {

do { yield(); n--; } while (n>0);

31

}

}

public class Death {

public static void main(String[] argv) {

int threads = Integer.parseInt(argv[0]);

int times = Integer.parseInt(argv[1]);

for(int i=threads;i>0;i--) {

MiniThread t = new MiniThread(i);

t.start();

}

}

}

32 Chapter 7. Concurrency For Free

8

Programming Patterns

In this chapter, we present a number of patterns that take advantage of concurrency.
When programming in Oz, you don’t have to agonize over the question whether you
really need to invest into a new thread. You just do it! This bears repeating because
most people with experience of threads in other languages just don’t believe it. Threads
aren’t just for long running computations: you can spawn threads to perform single
operations asynchronously.

In the previous chapter, we demonstrated that it is realistic to create a huge number of
threads. However, we exercised the worst case: all threads wanted a piece of the action
all the time. In reality, the situation is usually much better: most threads are blocked,
waiting for some event, and only a very small number of them compete for processor
time.

8.1 Stream Processing Agents

A very common pattern is for a thread to implement an agent that processes all mes-
sages that appear on a stream. For example, here, procedure Process is applied to
each element of stream Messages, one after the other:

thread {ForAll Messages Process} end

Typically, the tail of the stream is uninstantiated, at which point the ForAll procedure,
and thus the thread, suspends until a new message comes in that instantiates the stream
further.

8.1.1 Stream Merging

As an application of this technique, we consider now the fair merge of two streams
L1 and L2 into one single new stream L3. For this, we create the new port Mailbox
connected to stream L3, and two agents to forward the messages of L1 and L2 to the
Mailbox:

proc {Merge L1 L2 L3}

Mailbox = {Port.new L3}

proc {Forward Msg} {Port.send Mailbox Msg} end

in

34 Chapter 8. Programming Patterns

thread {ForAll L1 Forward} end

thread {ForAll L2 Forward} end

end

Fairness of merging is guaranteed by the fairness of thread scheduling. Actually, the
code above can easily be generalized. Here is an abstraction that returns two results: a
merged stream L and a procedure AlsoMerge to cause yet another stream to be merged
into L:

proc {MakeMerger AlsoMerge L}

Mailbox = {Port.new L}

proc {Forward Msg} {Port.send Mailbox Msg} end

in

proc {AlsoMerge LL}

thread {ForAll LL Forward} end

end

end

8.2 Communication Patterns

A great advantage of concurrency for free is that it gives you a new way to manage
design complexity: you can partition your design into a number of small simple agents.
You then use streams to connect them together: agents exchange and process messages.

There are two major designs for stream-based communication among agents: one is
the email model, the other the newsgroup model. Of course, in realistic applications,
you should mix these models as appropriate.

8.2.1 Email Model

In the email model, each agent is equipped with his own mailbox. In the simplest case,
the agent is known to others only through its mailbox. For example, here is a function
that takes a message processing function as argument, creates an agent, and returns its
mailbox:

proc {MakeAgent Process Mailbox}

thread {ForAll {Port.new $ Mailbox} Process} end

end

8.2.2 Newsgroup Model

In the newsgroup model, all agents process and post to the same stream of messages.

8.2.2.1 Forward Inference Engine: Implementation

We illustrate the newsgroup model with an application to forward inference rules. A
forward inference rule has the form ∀ x̄ C ⇒ D where C and D are conjunctions of
literals and all variables of the conclusion appear in the premise. The newsgroup will

8.2. Communication Patterns 35

be where inferred literals are published. A rule is said to be partially recognized when
some, but not all, of the premise literals have been discovered on the newsgroup. A
partially recognized rule is implemented by an agent that reads the newsgroup in search
of candidates for the next premise literal. When a rule has been fully recognized, its
conclusion is then asserted, which normally results in the publication of new literals.

We express the engine in the form of a functor that exports the list of Literals being
published as well as a procedure to Assert literals and rules.

35a 〈Forward Inference Module 35a〉≡
functor

import Search

export Literals Assert

define

Literals Box={Port.new Literals}

〈Assert conclusion 35b〉
〈Replace symbolic by actual variables 36b〉
〈Agent for partially recognized rule 36c〉

end

What can be asserted are literals and rules, and conjunctions thereof. A conjunction
is represented as a list. Since we don’t want to publish twice the same literal (or else
we might have termination problems), we maintain here a database of all published
literals, indexed according to their outermost predicate. A real implementation might
prefer to replace this by an adaptive discrimination tree. Whenever we are about to
publish a literal, we first check that it isn’t already in the database: in that case, we
enter it and then only publish it.

35b 〈Assert conclusion 35b〉≡
Database = {Dictionary.new}

proc {Assert Conclusion}

if {IsList Conclusion} then {ForAll Conclusion Assert}

elsecase Conclusion of rule(VarList Premises Conclusion) then

〈Assert rule 36a〉
else

Pred = {Label Conclusion}

Lits = {Dictionary.condGet Database Pred nil}

in

if {Member Conclusion Lits} then skip else

{Dictionary.put Database Pred Conclusion|Lits}

{Port.send Box Conclusion}

end

end

end

Asserting a rule consists of creating an agent to recognize it. The agent is equipped
with (1) an index (2) a predicate. The index indicates which premise literal to recognize
next; it starts from N, the last one, and decreases down to 1. The predicate constrains
a representation rule(premises:P conclusion:C) of the partially recognized rule.
In order to create this representation, we invoke Abstract to replace the quantified
symbolic variables of the rule by new free Oz variables.

36 Chapter 8. Programming Patterns

36a 〈Assert rule 36a〉≡
local

N = {Length Premises}

proc {RulePredicate RuleExpression}

case {Abstract VarList Premises#Conclusion} of P#C then

RuleExpression=rule(premises:P conclusion:C)

end

end

in {Agent N RulePredicate} end

Below, we create a mapping from symbolic variables to new free Oz variables, then
recursively process the expression to effect the replacements. Note that we cary the list
Avoid of symbolic variables that are quantified in a nested rule expression.

36b 〈Replace symbolic by actual variables 36b〉≡
fun {Abstract VarList E}

Vars = {Record.make o VarList}

fun {Loop E Avoid}

if {IsAtom E} then

if {Member E Avoid} then E

elseif {HasFeature Vars E} then Vars.E

else E end

elseif {IsRecord E} then

case E of rule(VarL Prem Conc) then

rule(VarL {Loop Prem {Append VarL Avoid}}

{Loop Conc {Append VarL Avoid}})

else {Record.map E fun {$ F} {Loop F Avoid} end} end

else E end

end

in {Loop E nil} end

The agent is equipped with the index I of the next premise literal to be recognized and
with RulePredicate to constrain the representation of the partially recognized rule.
For each literal that is being published, the agent finds all possible solutions that result
from unifying it with the Ith premise literal, and produces the corresponding refined
predicates. For each new predicate produced, a new agent is created to recognize the
next premise literal; unless of course all premise literals have been recognized, in which
case we retrieve the corresponding instantiated conclusion and assert it.

36c 〈Agent for partially recognized rule 36c〉≡
proc {Agent I RulePredicate}

{ForAll Literals

proc {$ Literal}

{ForAll

{Search.allP

proc {$ RuleExpression}

{RulePredicate RuleExpression}

{Nth RuleExpression.premises I}=Literal

end 1 _}

proc {$ NewRulePredicate}

8.3. Synchronization 37

if I==1 then {Assert {NewRulePredicate}.conclusion}

else thread {Agent I-1 NewRulePredicate} end end

end}

end}

end

8.2.2.2 Forward Inference Engine: Usage

The functor can be compiled as follows:

ozc -c forward.oz

and you might experiment with it in the OPI as follows (where DIR is the directory
where the compiled functor is located).

declare [Forward] = {Module.link [’DIR/forward.ozf’]}
{Browse Forward.literals}

{Forward.assert rule([x y z] [a(x y) a(y z)] a(x z))}

{Forward.assert a(one two)}

{Forward.assert a(two three)}

We asserted one rule expressing the transitivity of binary predicate a, and then two
facts. In the browser, you will now observe:

a(one two)|a(two three)|a(one three)|_<Future>

8.3 Synchronization

In Oz, synchronization is done on data and typically takes the form of waiting for a
variable to become instantiated. Furthermore, this happens automatically: every oper-
ation that requires determined data will suspend until this data becomes determined.
For example, this is why you can write:

{ForAll Messages Process}

where Messages is a stream whose tail only incrementally becomes instantiated with
new messages. The ForAll operation suspends when it reaches the uninstantiated tail
of the stream, and resumes automatically when further messages become available.

If you need to synchronize explicitly on a variable X, you may write:

{Wait X}

which suspends this thread until X becomes determined.

The truth is actually much more general: a conditional suspends until its condition
can be decided, one way or the other. What makes this possible is the fact that the
information in the constraint store increases monotonically. A conditional suspends
until its condition is entailed by the store (implied), or disentailed (its negation is
implied). Thus, the Wait operation mentioned above can (almost) be coded as follows:

38 Chapter 8. Programming Patterns

proc {Wait X}

if X==a then skip else skip end

end

This suspends until it can be decided whether or not X is equal to a. I said ‘almost’
because in between being free and determined, a variable may be kinded (i.e. its type
is known), and the code above does not account for this possibility.

The ForAll procedure is actually implemented as follows:

proc {ForAll L P}

case L of H|T then {P X} {ForAll T P}

elseof nil then skip end

end

The case statement (a conditional) suspends until it can be determined whether L

matches H|T, i.e. is a list pair.

8.3.1 The Short-Circuit Technique

The short-circuit technique is the standard means of programming an n-way rendez-
vous in concurrent constraint programming. The problem is the following: given n
concurrent threads, how to synchronize on the fact that they have all terminated? The
idea is to have a determined termination token, and to require that each thread, when
it terminates, passes the token that it got from its left neighbour to its right neightbour.
When the termination token really arrives at the rightmost end, we know that all threads
have terminated.

For example, in the example below, we create Token0 with value unit, and then each
thread, when it terminates, passes the token on to the next thread. When the value unit
reaches Token5, we know that all threads have terminated.

local Token0 Token1 Token2 Token3 Token4 Token5 in

Token0 = unit

thread ... Token1=Token0 end

thread ... Token2=Token1 end

thread ... Token3=Token2 end

thread ... Token4=Token3 end

thread ... Token5=Token4 end

in

%% synchronize on the termination of all 5 threads

{Wait Token5}

end

This technique was used in Section 7. Of course it can be used for any arbitrary n-way
rendez-vous, and not exclusively for synchronizing on the termination of a collection
of threads.

Part III

Client/Server Applications

39

9

Introduction

A large fraction of client/server applications fall in the same simple pattern: there is
a basic service encapsulated as an object and we wish to allow remote clients to send
requests to this object, to be processed at the server host.

The basic idea is to make available to clients a procedure that forwards a client’s request
to the live server object. This forwarding is effected by means of a port. The forwarding
procedure itself is made available indirectly through a ticket. This ticket is placed in a
file that is accessible through a URL.

9.1 A Generic Server server.oz

It is straightforward to write a generic server module that exports a Start procedure.
The latter takes 2 arguments: Proc the object or procedure implementing the service
and File the name of the file where the ticket should be saved. Proc is intended to
be applied to messages forwarded by clients.

The forwarding procedure Proxy takes the clients message Msg and sends request(Msg OK)
to the server’s port. The server binds OK to true or false depending on whether the Msg
is processed successfully or an exception is raised.

functor

import Connection Pickle

export Start

define

proc {Start Proc File}

Requests P = {NewPort Requests} Ticket

proc {Proxy Msg}

if {Port.send P request(Msg $)} then skip

else raise remoteError end end

end

in

{New Connection.gate init(Proxy Ticket) _}

{Pickle.save Ticket File}

{ForAll Requests

proc {$ R}

case R of request(Msg OK) then

try {Proc Msg} OK=true catch _ then

42 Chapter 9. Introduction

try OK=false catch _ then skip end

end

else skip end

end}

end

end

The server functor will be used as an import in subsequent examples and can be com-
piled as follows:

ozc -c server.oz

10

Registry Application

An example application is where the service is a shared registry. A client can connect
to the registry server and add or lookup an entry. The registry is simply a dictionary.

10.1 Server db-server.oz

The registry server is compiled as follows:

ozc -x db-server.oz -o db-server.exe

and can be started with the command line:

db-server.exe --ticketfile file

Initially, it has an empty registry.

functor

import

Server at ’server.ozf’

Application

define

class Registry

feat db

meth init {Dictionary.new self.db} end

meth put(Key Val) {Dictionary.put self.db Key Val} end

meth get(Key Val) {Dictionary.get self.db Key Val} end

meth condGet(Key Default Val)

{Dictionary.condGet self.db Key Default Val}

end

end

DB = {New Registry init}

Args = {Application.getCmdArgs

record(

ticketfile(single char:&t type:string optional:false))}

{Server.start DB Args.ticketfile}

end

44 Chapter 10. Registry Application

10.2 Client db-client.oz

The client loads the pickled ticket from the given URL and uses it to obtain from the
server the forwarding procedure. The client can be compiled as follows:

ozc -x db-client.oz -o db-client.exe

and can be invoked in one of two ways:

db-client.exe --url=URL --get=KEY
db-client.exe --url=URL --put=KEY VAL

The first form retrieves a entry from the registry and displays it on standard output.
The second form stores an entry in the registry.

functor

import

Application Connection System Pickle

define

Args = {Application.getCmdArgs

record(

url(single type:string optional:false)

get(single type:atom)

put(single type:atom))}

DB = {Connection.take {Pickle.load Args.url}}

if {HasFeature Args get} then

{System.showInfo {DB get(Args.get $)}}

elseif {HasFeature Args put} then

case Args.1 of [Value] then

{DB put(Args.put Value)}

else

{System.showError ’Missing value argument’}

{Application.exit 1}

end

else

{System.showError ’One of --get or --put is required’}

{Application.exit 1}

end

{Application.exit 0}

end

11

Compile Server Application

We now develop an application where a client can send an Oz file containing a functor
expression to a compile server and gets back the corresponding compiled functor. The
server provides a compilation service.

11.1 Server ozc-server.oz

The compile server is compiled as follows:

ozc -x ozc-server.oz -o ozc-server.exe

and can be started with the command line:

ozc-server.exe --ticketfile file

the server returns yes(F) where F is a functor value, or no(Msgs), if compilation
failed, where Msgs are the error messages obtained from the compiler’s interface.

functor

import

Compiler Application

Server at ’server.ozf’

define

class OZC

prop locking

feat engine interface

meth init

self.engine = {New Compiler.engine init}

self.interface = {New Compiler.interface init(self.engine)}

{self.engine enqueue(setSwitch(expression true))}

end

meth compile(VS $)

lock F in

{self.engine

enqueue(feedVirtualString(VS return(result:F)))}

{Wait {self.engine enqueue(ping($))}}

46 Chapter 11. Compile Server Application

if {self.interface hasErrors($)} then

no({self.interface getMessages})

else yes(F) end

end

end

end

Service = {New OZC init}

Args = {Application.getCmdArgs

record(

ticketfile(single char:&t type:string optional:false))}

{Server.start Service Args.ticketfile}

end

11.2 Client ozc-client.oz

The client can be compiled as follows:

ozc -x ozc-client.oz -o ozc-client.exe

and can be invoked with:

ozc-client.exe --url=URL --in=InFile --out=OutFile

It loads the compile server’s ticket from URL, uses it to obtain the forwarding proce-
dure, applies it to the textual contents of InFile and saves the returned functor value in
OutFile. Note that we convert the string (i.e. list) representation of the file’s contents to
a byte string for more efficient transmission; this is not necessary, but greatly reduces
the amount of data that needs to be transmitted.

functor

import Application Open Pickle Connection

define

Args = {Application.getCmdArgs

record(

url(single type:string optional:false)

’in’(single type:string optional:false)

out(single type:string optional:false))}

File = {New Open.file init(name:Args.’in’)}

Text = {File read(list:$ size:all)}

{File close}

OZC = {Connection.take {Pickle.load Args.url}}

case {OZC compile({ByteString.make Text} $)}

of yes(F) then

{Pickle.save F Args.out}

{Application.exit 0}

elseof no(Msgs) then raise ozc(Msgs) end end

end

Part IV

Programming the Web

47

12

Applets

Oz applications can be executed by clicking links on web pages.

12.1 Enabling Oz Applets

In order to start Oz applications by clicking links on web pages, the web browser must
be Mozart enabled, which is described in Chapter Enabling Oz Applets, (Installation
Manual) .

50 Chapter 12. Applets

13

Servlets

A servlet is a small application that exists on a Web server and that can be invoked by
a CGI command. A servlet is usually called a CGI script. CGI (Common Gateway
Interface) is a protocol that defines how data is passed between a Web server and a
servlet.

A servlet is a program that accepts an input and calculates a result. To be precise, it
does the following steps:

• Get the arguments for the servlet by calling Application.getCgiArgs. A stan-
dard application would call Application.getCmdArgs for this purpose. The
former is used in exactly the same way as the latter, but instead of parsing com-
mand line arguments, it parses CGI arguments.

• Calculate the result.

• Print a header on stdout that defines the content type. The content type tells the
Web browser what the type of the result is, so that it knows how to display it.
For example, if the servlet outputs HTML, you have to print something like:

’Content-type: text/html\n\n’

(without the quotes). The Open.html class has support for this (see example
below).

• Output the real data. For example, text in HTML format.

The following example follows this structure. It uses a class Open.html to generate
HTML code on the fly. You can test it by sending a URL that looks like this:

’http://www.you.edu/~you/small.cgi?number=10&text=Hi’

In this example, the value 10 is passed for the argument ’number’ and the value
"Hi+Guys" for the argument ’text’ (in CGI argument syntax, the plus is used to
quote a space).

functor

import Application Open

define

%% Parse the arguments

52 Chapter 13. Servlets

Args={Application.getCgiArgs

record(number(single type:int default:0)

text(single type:string default:"none"))}

%% A file that supports HTML output

Out={New class $

from Open.file Open.html

end

init(name:stdout)}

%% Print MIME content header

{Out header}

%% Print HTML output

{Out tag(html(head(title(’My First CGI’))

body(bgcolor:’#f0f0e0’

h1(’My First CGI’)

p(’The number is: ’#Args.number)

p(’The text is: ’#Args.text))))}

%% Terminate

{Application.exit 0}

end

In order to compile this servlet, you have to do:

ozc --execpath=OZHOME/bin/ozengine -x small.oz -o small.cgi

Where OZHOME denotes the installation directory of the Mozart system. The execpath
argument is needed because the servlet needs an absolute path. Servlets are normally
executed by the Web server in an extremely minimal user environment. The user is
typically called nouser or www and has almost no rights. In particular you cannot ex-
pect the Mozart system to be in the path of the user! This is why you need an absolute
pathname when compiling the servlet.

On a Unix system, you can more simply invoke:

ozc --execpath=‘which ozengine‘ -x small.oz -o small.cgi

The final step is to install the servlet in your Web server. For this you should contact
your local Web site administrator.

Part V

Distributed Applications

53

14

Chat Application

A chat system permits participants on arbitrary machines on the internet to engage in a
real-time text-based discussion. New individual can join or leave the chat forum at any
time. This scenario is intended to be realistic, which means that the chat system must
be reasonably robust in the face of network failures, as well as machine and process
crashes.

In this tutorial application, we will not set out to solve all problems that may be as-
sociated with distributed applications; rather, we will demonstrate how simple it is to
realize a fully distributed application with reasonable robustness properties.

14.1 Chat Server

The server creates a port NewsPort and makes it available through a ticket. The ticket,
as usual, is saved into a file which clients normally will load through a url. When
a client wants to participate in the discussion forum, it needs not only NewsPort in
order to post messages, but also the stream of messages that results from all posts to
NewsPort, in order to display these messages to the user. The server could hand out
the stream of all messages from the creation of NewsPort, but it seems more desirable
to only hand out a stream that has only the messages posted after the client’s request to
connect to the discussion.

When a client wants to connect to the chat forum, it obtains NewsPort by means of
the ticket that the server made available at some url, and it posts a message of the form
connect(Messages), where Messages is a new variable. The server then binds the
variable to the stream of messages following the connect(...) message.

55a 〈Chat Server 55a〉≡
functor

import

Application(getCmdArgs) Connection(gate) Pickle(save)

define

Args = {Application.getCmdArgs

record(ticketfile(single type:string optional:false))}

NewsPort

local Ticket in

{New Connection.gate init(NewsPort Ticket) _}

{Pickle.save Ticket Args.ticketfile}

56 Chapter 14. Chat Application

end

{List.forAllTail {Port.new $ NewsPort}

proc {$ H|T}

case H of connect(Messages) then Messages=T else skip end

end}

end

The server (source in chat-server.oz1) can be compiled as follows:

ozc -x chat-server.oz

and invoked as follows:

chat-server --ticketfile FILE

14.2 Chat Client

The client consists of 2 agents: (1) a user interface agent and (2) a message stream
processor.

56a 〈Chat Client 56a〉≡
functor

import

Application(getCmdArgs) Pickle(load) Connection(take)

Viewer(chatWindow) at ’chat-gui.ozf’

define

Args = {Application.getCmdArgs

record(url(single type:string optional:false)

name(single type:string optional:false)

)}

NewsPort={Connection.take {Pickle.load Args.url}}

SelfPort

〈Chat Client: obtain and process message stream 56b〉
〈Chat Client: create user interface agent 57a〉
〈Chat Client: process message stream 57b〉

end

The client obtains the stream of messages from the server by sending a connect(...)
message. It then forwards every message on that stream to its internal SelfPort. The
user interface will also direct messages to this internal port.

56b 〈Chat Client: obtain and process message stream 56b〉≡
thread

{ForAll {Port.send NewsPort connect($)}

proc {$ Msg} {Port.send SelfPort Msg} end}

end

1chat-server.oz

14.3. Graphical User Interface 57

When creating the user interface, we supply it with the internal SelfPort so that it
may also post internal messages. In this simplistic implementation, the user interface
simply posts messages of the form say(String) to request that this String be posted to
the global chat message stream.

57a 〈Chat Client: create user interface agent 57a〉≡
Chat = {New Viewer.chatWindow init(SelfPort)}

Finally, here is where we process all messages on the internal stream. A msg(FROM TEXT)

message is formatted and shown in the chat window. A say(TEXT) message is trans-
formed into msg(NAME TEXT), where NAME identifies the user, and posted to the global
chat stream; actually TEXT is additionally converted into the more compact byte string
representation for more efficient transmission.

57b 〈Chat Client: process message stream 57b〉≡
NAME = Args.name

{ForAll {Port.new $ SelfPort}

proc {$ Msg}

case Msg of msg(FROM TEXT) then

{Chat show(FROM#’:\t’#TEXT)}

elseof say(TEXT) then

{Port.send NewsPort msg(NAME {ByteString.make TEXT})}

else skip end

end}

The client (source in chat-client.oz2) can be compiled as follows:

ozc -x chat-client.oz

and invoked as follows:

chat-client --name USER --url URL

14.3 Graphical User Interface

The user interface is always what requires the most code. We won’t go through the
details here (but see the Window Programming Tutorial for extensive information), but
merely point out that the @entry widget is asked to respond to a Return keypress, by
invoking the post method. The latter posts a say(Text) message to the internal port,
where Text is the text of the entry as typed by the user. This text is then deleted and the
entry can be reused to compose and submit another message.

57c 〈Chat GUI 57c〉≡
functor

import

Tk Application(exit:Exit)

export

2chat-client.oz

58 Chapter 14. Chat Application

ChatWindow

define

class ChatWindow from Tk.toplevel

attr canvas y:0 vscroll hscroll tag:0 selfPort entry quit

meth init(SelfPort)

Tk.toplevel,tkInit

selfPort <- SelfPort

canvas <- {New Tk.canvas

tkInit(parent:self bg:ivory width:400 height:300)}

vscroll <- {New Tk.scrollbar tkInit(parent:self orient:v)}

hscroll <- {New Tk.scrollbar tkInit(parent:self orient:h)}

entry <- {New Tk.entry tkInit(parent:self)}

quit <- {New Tk.button tkInit(parent:self text:’Quit’

action:proc{$} {Exit 0} end)}

{Tk.addYScrollbar @canvas @vscroll}

{Tk.addXScrollbar @canvas @hscroll}

{@canvas tk(configure scrollregion:q(0 0 200 0))}

{@entry tkBind(event:’<KeyPress-Return>’

action:proc {$} {self post} end)}

{Tk.batch [grid(row:0 column:0 @canvas sticky:ns)

grid(row:1 column:0 @entry sticky:ew)

grid(row:0 column:1 @vscroll sticky:ns)

grid(row:2 column:0 @hscroll sticky:ew)

grid(row:3 column:0 @quit sticky:w)

grid(columnconfigure self 0 weight:1)

grid(rowconfigure self 0 weight:1)]}

end

meth show(TEXT)

{@canvas tk(create text 0 @y text:TEXT anchor:nw tags:@tag)}

local

[X1 Y1 X2 Y2] = {@canvas tkReturnListInt(bbox all $)}

in

y<-Y2

{@canvas tk(configure scrollregion:q(X1 Y1 X2 Y2))}

end

end

meth post

{Port.send @selfPort say({@entry tkReturn(get $)})}

{@entry tk(delete 0 ’end’)}

end

end

end

Part VI

Native C/C++ Extensions

59

15

Global Counter Library

Oz can be very simply extended with new functionality and datatypes implemented
in C or C++. This capability is often used to interface Oz to existing libraries: for
example, the regex and gdbm modules are implemented in this fashion.

Every extension is presented to the system in the form of a native functor, i.e. a functor
which happens to be implemented in C or C++ rather than in Oz.

In this chapter, we define a native functor that exports a next function which returns
the next value of a global counter each time it is called.

15.1 Implementation

#include "mozart.h"

static long n;

OZ_BI_define(counter_next,0,1)

{

OZ_RETURN_INT(n++);

}

OZ_BI_end

OZ_C_proc_interface * oz_init_module(void)

{

static OZ_C_proc_interface table[] = {

{"next",0,1,counter_next},

{0,0,0,0}

};

n = 1;

return table;

}

OZ_BI_define(counter_next,0,1) indicates that we are defining a procedure counter_next
that implements a new builtin which takes 0 input arguments and returns 1 output value.
OZ_BI_end is required to finish this definition.

OZ_RETURN_INT(d) is a macro that causes the builtin to return integer d as an Oz
integer. This should only be used when the builtin has one unique output value; and it
is essentially equivalent to the code sequence:

62 Chapter 15. Global Counter Library

OZ_out(0)=OZ_int(d);

return PROCEED;

Finally procedure oz_init_module implements the native functor: it performs arbi-
trary initializations and then returns a table of builtins. Each entry in this table consists
of (1) the name of the export, (2) the input arity, (3) the output arity, (4) the procedure
implementing the builtin. The table must be terminated by an entry whose fields are
all zero.

Note that global variable n is explicitly initialized by oz_init_module rather than with
a static initializer. Here, it probably makes no difference, but you cannot in general rely
on the fact that constructors for global objects will be properly invoked when the native
functor is loaded. What actually happens varies from one system to another. The only
reliable technique is to perform all initializations in oz_init_module.

You may also define the variable oz_module_name to give your native module a name
that can be used when printing the builtins which it exports. This is particularly useful
for debugging and for interactively looking at values. For example, you could give it
the name "GlobalCounter":

char oz_module_name[] = "GlobalCounter";

15.2 Compilation

We must now make this native module available as a shared object library. First we
must compile it and create counter.o:

oztool c++ -c counter.cc

Then we must produce a platform specific shared object library:

oztool ld counter.o -o counter.so-‘oztool platform‘

You may find it useful to create a Makefile of the form:

PLATFORM = $(shell oztool platform)

NATIVES = counter

TARGETS = $(addsuffix .so-$(PLATFORM),$(NATIVES))

all: $(TARGETS)

%.so-$(PLATFORM): %.o

oztool ld $< -o $@

%.o: %.cc

oztool c++ -c $< -o $@

oztool is a program that invokes the facility named as its first argument with appropri-
ate options. For example, it is essential to invoke the same C++ compiler and with the
same e.g. code generation options as were used for building the Oz emulator; otherwise
it will not be possible to dynamically link your library into a running Oz process. Nor-
mally, the Oz emulator is compiled without run time information (option -fno-rtti

15.3. Deployment 63

for g++) and without support for C++ exceptions (option -fno-exceptions for g++).
oztool c++ automatically invokes the right compiler with the right options. oztool
is documented in Chapter The Oz DLL Builder: oztool, (Oz Shell Utilities) .

Even more complicated is how to create a DLL from a compiled object file: it varies
depending on the system, compiler and linker used. Under Windows, the sequence of
necessary incantations is so arcane and highly magical, it could well endanger your
sanity. Fortunately oztool ld automatically takes care of the details.

15.3 Deployment

Normally, you will then place the resulting shared object file, e.g. counter.so-linux-i486
on a Linux system, in an installation directory; let’s call it install. If your site has sev-
eral platforms sharing one file system, then you can place all platform specific shared
object libraries that you create from counter.cc in the same install directory. They
all have distinct names since the platform name is appended.

In an Oz functor, you then write an import of the form:

Cnt at ’install/counter.so{native}’

The {native} suffix indicates to the system that this denotes a native functor whose
platform independent basename is install/counter.so. The module manager dy-
namically links the appropriate platform specific shared object library (by appending
the platform specific extension to the basename) and makes available the module it
defines as the value of Cnt. The body of your functor can invoke {Cnt.next} to get
the next value of the global counter.

In the emacs OPI, you can try this out immediately:

declare [M] = {Module.link [’install/counter.so{native}’]}

64 Chapter 15. Global Counter Library

16

Native Counter Objects

In this chapter, we are going to generalize the counter idea: instead of having just one
global counter, we are going to have counter objects implemented as extensions. Of
course, this is intended purely as a didactic exercise: such counters could much more
easily be defined as Oz objects directly.

16.1 Counter Class

We derive a new Counter class from the base class OZ_Extension.

#include "mozart.h"

class Counter : public OZ_Extension {

public:

long * n;

Counter();

Counter(long*);

static int id;

virtual int getIdV();

virtual OZ_Term typeV();

virtual OZ_Extension* gCollectV(void);

virtual OZ_Extension* sCloneV(void);

virtual void gCollectRecurseV(void) {}

virtual void sCloneRecurseV(void) {}

virtual OZ_Term printV(int depth = 10);

};

A Counter object contains a pointer to a malloced long. Why not simply have a mem-
ber of type long: simply because we want to illustrate an application of finalization;
malloced memory is a resource that needs to be freed when no longer needed.

The Counter class provides implementations for a number of virtual member functions
introduced by class Oz_Extension. We are now going to explain each of them and
provide the necessary code.

66 Chapter 16. Native Counter Objects

16.2 Counter Creation

For this we need the Counter() constructor and the new builtin counter_new. The
constructor allocates a new long, sets n to its address and initializes it with 1. The
builtin creates a new instance of the Counter class, boxes it as an Oz value by invoking
OZ_extension and returns the result.

Counter::Counter() { n = new long[1]; n[0]=1; }

OZ_BI_define(counter_new,0,1)

{

OZ_RETURN(OZ_extension(new Counter));

}

OZ_BI_end

16.3 Type Testing

Every extension class should be uniquely identified. This is the purpose of virtual
function getIdV. Here we illustrate the usual way of doing so: the class is equipped
with a static id member and getIdV() returns it. This static member is initialized by
oz_init_module() (see Section 16.9).

int Counter::id;

int Counter::getIdV() { return id; }

Your code will also need to test whether some OZ_Term is in fact a boxed Counter.

inline OZ_Boolean OZ_isCounter(OZ_Term t)

{

t = OZ_deref(t);

return OZ_isExtension(t) &&

OZ_getExtension(t)->getIdV()==Counter::id;

}

Additionally, you should probably provide a builtin to perform this test in Oz code:

OZ_BI_define(counter_is,1,1)

{

OZ_declareDetTerm(0,t);

OZ_RETURN_BOOL(OZ_isCounter(t));

}

OZ_BI_end

Finally, it would be nice if {Value.type C} would return the atom counter when C

is a counter object.

OZ_Term Counter::typeV() { return OZ_atom("counter"); }

16.4. Expecting Counter Arguments in Builtins 67

16.4 Expecting Counter Arguments in Builtins

Obviously we need a way to unbox counter objects.

inline Counter* OZ_CounterToC(OZ_Term t)

{

return (Counter*) OZ_getExtension(OZ_deref(t));

}

Now we can define a convenient macro that we can use in the implementation of a
builtin to wait until argument ARG is determined, check that it is a boxed Counter, and
declare a variable VAR to hold a pointer to its unboxed value.

#define OZ_declareCounter(ARG,VAR) \

OZ_declareType(ARG,VAR,Counter*,"counter",OZ_isCounter,OZ_CounterToC)

Next, we illustrate how to use this macro.

16.5 Operations on Counters

The first operation obtains the current value of the counter object, but does not change
it. We use our new macro to state that the first argument (i.e. argument number 0)
should be a determined boxed counter and that c should be set to point to its unboxed
value.

OZ_BI_define(counter_get,1,1)

{

OZ_declareCounter(0,c);

OZ_RETURN_INT(*c->n);

}

OZ_BI_end

Thanks to our macro, if the argument is not determined, the builtin will automatically
suspend, and if it is determined but is not a counter object, it will raise an error excep-
tion.

We can similarly define a builtin for setting the value of the counter. It takes 2 argu-
ments: a counter object and an integer.

OZ_BI_define(counter_set,2,0)

{

OZ_declareCounter(0,c);

OZ_declareInt(1,i);

*c->n=i;

return PROCEED;

}

OZ_BI_end

68 Chapter 16. Native Counter Objects

Finally, we can define a builtin to obtain the current value of a counter object and post
increment the counter by 1.

OZ_BI_define(counter_next,1,1)

{

OZ_declareCounter(0,c);

long i = *c->n;

*c->n = i+1;

OZ_RETURN_INT(i);

}

OZ_BI_end

16.6 Printing Support

Of course, it would be nice if {Show C}, when C is a counter object, would display
<counter n> where n is the current value of the counter. This is easily achieved by
defining virtual function printV to return an appropriate virtual string.

OZ_Term Counter::printV(int depth = 10)

{

return OZ_mkTupleC("#",3,

OZ_atom("<counter "),

OZ_int(*n),

OZ_atom(">"));

}

16.7 Garbage Collection

An instance of an OZ_Extension class lives on the heap and must be properly copied
at each garbage collection. This is realized simply by creating a new instance (auto-
matically allocated on the to heap) and initializing it with the appropriate info. In the
case of a counter object, we must copy the n pointer. For this purpose we define a one
argument constructor.

Counter::Counter(long*p):n(p){}

OZ_Extension* Counter::gCollectV() { return new Counter(n); }

Cloning is a kind of copying used during search rather than garbage collection. Every
variable and every data-structure that has token equality (rather than structural equal-
ity), e.g. OZ_Extension, is situated in a space: its home space, i.e. the computation
space in which it was created. When its home space H is cloned, the data-structure D
must also be cloned: the clone of D must be situated in the clone of H. In the present
case, for simplicity we only intend to support counters at top level; thus, the sClone

method should never be used:

OZ_Extension* Counter::sCloneV() { Assert(0); return 0; }

16.8. Finalization 69

16.8 Finalization

When all references to a counter object disappear, we would like the malloced long to
be freed. We cannot easily register a counter object for finalization from the C++ code
(this will have to be delegated to Oz code), but we can provide the implementation of
the finalization handler.

OZ_BI_define(counter_free,1,0)

{

OZ_declareCounter(0,c);

free(c->n);

return PROCEED;

}

OZ_BI_end

16.9 Native Functor

We must now package this library as a native functor. This is done by providing the
function oz_init_module() which returns a table of builtins. Here, it must also ini-
tialize the static member Counter::id.

OZ_C_proc_interface * oz_init_module(void)

{

static OZ_C_proc_interface table[] = {

{"new",0,1,counter_new},

{"is",1,1,counter_is},

{"get",1,1,counter_get},

{"set",2,0,counter_set},

{"next",1,1,counter_next},

{"free",1,0,counter_free},

{0,0,0,0}

};

Counter::id = OZ_getUniqueId();

return table;

}

Assuming the code above is put in file counter-obj.cc1, we first compile and then
create a DLL as follows

oztool c++ -c counter-obj.cc

oztool ld counter-obj.o -o counter-obj.so-‘oztool platform‘

16.10 Oz Wrapper Module

The counter object native library will now be wrapped in an Oz module that registers
every new counter object for finalization.

1counter-obj.cc

70 Chapter 16. Native Counter Objects

functor

import

CNT(new:NEW is:Is get:Get set:Set next:Next free:Free)

at ’counter-obj.so{native}’

Finalize(guardian)

export

New Is Get Set Next

define

Register = {Finalize.guardian Free}

proc {New C}

{NEW C}

{Register C}

end

end

17

Situated Cell-Like Objects

In this chapter, we implement Celloids: an extension class for objects that behave
essentially like cells; they have content which can be accessed (read) and assigned
(written). The new challenge here is twofold: (1) during garbage collection the content
of a Celloid must also be copied, (2) we must ensure that only a local Celloid can
be mutated (for a non-local one, we should signal an error).

A Celloid is situated. What does situated mean? Simply that the object resides in one
specific constraint store, aka a computation space. If Celloid C resides in space S1,
and S2 is a subspace of S1 (i.e. is subordinated to S1), it is meaningful for a thread in
S2 to access C since any constraint (therefore value) from S1 are visible in S2, but it
is generally not meaningful for a thread in S2 to assign C since constraints (therefore
values) specific to S2 are not visible from S1. Our implementation will enforce the
appropriate restrictions.

17.1 Celloid Class

Again, we subclass OZ_Extension.

#include "mozart.h"

class Celloid : public OZ_Extension {

public:

OZ_Term content;

Celloid(OZ_Term t):content(t){}

static int id;

virtual int getIdV() { return id; }

virtual OZ_Term typeV() { return OZ_atom("celloid"); }

virtual OZ_Extension* gCollectV();

virtual OZ_Extension* sCloneV();

virtual void gCollectRecurseV();

virtual void sCloneRecurseV();

virtual OZ_Term printV(int depth = 10);

};

72 Chapter 17. Situated Cell-Like Objects

17.2 Celloid Creation

The celloid_new builtin takes one input argument t, creates a new celloid whose
content is initialized to t, boxes it and returns the result.

OZ_BI_define(celloid_new,1,1)

{

OZ_declareTerm(0,t);

OZ_RETURN(OZ_extension(new Celloid(t)));

}

OZ_BI_end

17.3 Type Testing

The definitions here are similar to the ones presented earlier for the Counter class.

int Celloid::id;

inline OZ_Boolean OZ_isCelloid(OZ_Term t)

{

t = OZ_deref(t);

return OZ_isExtension(t) &&

OZ_getExtension(t)->getIdV()==Celloid::id;

}

OZ_BI_define(celloid_is,1,1)

{

OZ_declareDetTerm(0,t);

OZ_RETURN_BOOL(OZ_isCelloid(t));

}

OZ_BI_end

17.4 Expecting Celloid Arguments in Builtins

Again this is similar to the Counter class: we define an unboxing function and a
convenience macro.

inline Celloid* OZ_CelloidToC(OZ_Term t)

{

return (Celloid*) OZ_getExtension(OZ_deref(t));

}

#define OZ_declareCelloid(ARG,VAR) \

OZ_declareType(ARG,VAR,Celloid*,"celloid",OZ_isCelloid,OZ_CelloidToC)

17.5. Operations on Celloids 73

17.5 Operations on Celloids

First, we provide an access builtin that retrieves the content of the celloid.

OZ_BI_define(celloid_access,1,1)

{

OZ_declareCelloid(0,c);

OZ_RETURN(c->content);

}

OZ_BI_end

Second, we provide an assign builtin that sets the content of the celloid. This operation
should only be allowed for a thread executing in the home space of the celloid. For a
thread executing in a subordinated space, an exception will be raised.

OZ_BI_define(celloid_assign,2,0)

{

OZ_declareCelloid(0,c);

OZ_declareTerm(1,t);

if (c->isLocal()) { c->content=t; return PROCEED; }

else return OZ_raiseErrorC("celloid",3,OZ_atom("nonLocal"),

OZ_in(0),OZ_in(1));

}

OZ_BI_end

virtual member function isLocal() indicates whether the current space is the home
space of the celloid. If yes, we set the content to the given argument; if no, we raise an
error. OZ_in(n) refers to the nth input argument of the builtin.

17.6 Printing Support

We provide here only minimal printing support.

OZ_Term Celloid::printV(int depth = 10)

{

return OZ_atom("<celloid>");

}

17.7 Garbage Collection

The first part of garbage collection is as before: we create a new instance of Celloid
initialized with the current content of the celloid that is being copied by gc.

OZ_Extension* Celloid::gCollectV() { return new Celloid(content); }

The second part involves recursively copying the content of the celloid. This is imple-
mented in a different virtual function:

74 Chapter 17. Situated Cell-Like Objects

void Celloid::gCollectRecurseV() { OZ_gCollect(&content); }

The procedure OZ_gCollect(OZ_Term*) performs the gc copy and update of its argu-
ment.

You may wonder: why not perform the recursive copy of the content in gCollectV()

itself. Under no circumstances should you do this! It would break essential invariants
in the garbage collector. GC copy must proceed in these 2 phases:

1. gCollectV() creates a new instance (on the to heap) and initializes it with the
current contents of the object being gced.

2. gCollectRecurseV() is at some subsequent point invoked on the new instance
and should perform the gc copy and update of its contents.

17.8 Cloning

Cloning is used to produce a copy of a computation space. It has the same structure, and
the underlying implementation in fact shares most of the code with, garbage collection.

OZ_Extension* Celloid::sCloneV() { return new Celloid(content); }

void Celloid::sCloneRecurseV() { OZ_sClone(&content); }

17.9 Native Functor

Again, we proceed as before:

OZ_C_proc_interface * oz_init_module(void)

{

static OZ_C_proc_interface table[] = {

{"new",1,1,celloid_new},

{"is",1,1,celloid_is},

{"access",1,1,celloid_access},

{"assign",2,0,celloid_assign},

{0,0,0,0}

};

Celloid::id = OZ_getUniqueId();

return table;

}

Assuming the code above is put in file celloid.cc1, we first compile and then create
a DLL as follows

oztool c++ -c celloid.cc

oztool ld celloid.o -o celloid.so-‘oztool platform‘

1celloid.cc

17.10. Oz Wrapper Module 75

17.10 Oz Wrapper Module

Here, we hardly need an Oz wrapper module. Unlike for counter objects, we don’t
need to register celloid for finalization: there are no resources off the heap. However,
we can provide a nice error print formatter for the case when an access is attempted
from without the celloid’s home space.

functor

import

Celloid(new:New is:Is access:Access assign:Assign)

at ’celloid.so{native}’

Error(registerFormatter)

export

New Is Access Assign

define

fun {CelloidFormatter E}

T = ’Celloid Error’

in

case E of celloid(nonLocal C V) then

error(kind: T

msg: ’Attempted assign on non local celloid’

items: [hint(l:’Operation’ m:’Celloid.assign’)

hint(l:’Celloid’ m:oz(C))

hint(l:’Value’ m:oz(V))])

else

error(kind: T

items: [line(oz(E))])

end

end

{Error.registerFormatter celloid CelloidFormatter}

end

76 Chapter 17. Situated Cell-Like Objects

Part VII

Appendices

77

A

Data and Code Fragments

This appendix contains code fragments left out in the text’s chapters.

A.1 Application Development

79a 〈Body for DB.oz 79a〉≡
define

Data = {Dictionary.new}

Ctr = {New class $

prop locking

attr i:0

meth init(I <= 0)

lock i <- I end

end

meth get($)

lock @i end

end

meth inc($)

lock I=@i+1 in i <- I I end

end

end init()}

proc {Add X}

I={Ctr inc($)}

in

{Dictionary.put Data I X}

end

fun {Get ID}

{Dictionary.get Data ID}

end

fun {GetAll}

{Map {Dictionary.keys Data}

fun {$ K}

{AdjoinAt {Dictionary.get Data K} key K}

end}

80 Appendix A. Data and Code Fragments

end

proc {Remove ID}

{Dictionary.remove Data ID}

end

80a 〈Implementation of Book 80a〉≡
T ={New Tk.toplevel tkInit}

F1={New Tk.frame tkInit(parent:T relief:sunken bd:2)}

V ={New Tk.variable tkInit(Fs.1.key)}

{Tk.batch

grid(b({Map [’’ ’From’ ’To’ ’Price’]

fun {$ A}

{New Tk.label tkInit(parent:F1 text:A

relief:raised bd:1)}

end})

padx:1 pady:1 sticky:ew) |

{Map Fs

fun {$ F}

grid({New Tk.radiobutton tkInit(parent:F1 var:V

value:F.key)}

b({Map [’from’ to price]

fun {$ A}

{New Tk.label tkInit(parent:F1 text:F.A)}

end}))

end}}

F2={New Tk.frame tkInit(parent:T)}

[FN LN EM] =

{Map [’First name’ ’Last name’ ’E-Mail’]

fun {$ S}

E={New Tk.entry tkInit(parent:F2 width:20 bg:wheat)}

in

{Tk.send grid({New Tk.label

tkInit(parent:F2 text:S#’:’ anchor:w)}

E

sticky:ew)}

fun {$}

{E tkReturnAtom(get $)}

end

end}

B={New Tk.button

tkInit(parent:T text:’Okay’

action: proc {$}

Get=form(first: {FN}

last: {LN}

email: {EM}

key: {V tkReturnInt($)})

{T tkClose}

end)}

A.1. Application Development 81

in

{Tk.send pack(F1 F2 B padx:1#m pady:2#m)}

81a 〈Sample flights 81a〉≡
[f(’from’:’Paris’ to:’Stockholm’ price:234)

f(’from’:’Saarbrücken’ to:’Paris’ price:345)

f(’from’:’New York’ to:’Saarbrücken’ price:567)

f(’from’:’New York’ to:’Bruxelles’ price:363)

f(’from’:’Paris’ to:’Saarbrücken’ price:834)

f(’from’:’Stockholm’ to:’Bruxelles’ price:333)

f(’from’:’London’ to:’Saarbrücken’ price:523)

f(’from’:’Saarbrücken’ to:’London’ price:457)

f(’from’:’Bruxelles’ to:’New York’ price:324)

f(’from’:’Boston’ to:’Stockholm’ price:765)

f(’from’:’Stockholm’ to:’New York’ price:344)

f(’from’:’Sydney’ to:’Saarbrücken’ price:3452)

f(’from’:’Sydney’ to:’Stockholm’ price:2568)]

82 Appendix A. Data and Code Fragments

Bibliography

[1] Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smolka. A Higher-
order Module Discipline with Separate Compilation, Dynamic Linking, and Pick-
ling. Technical report, Programming Systems Lab, DFKI and Universität des Saar-
landes, 1998. DRAFT.

Index

functor
functor, native, 61

oztool, 62

84

