
Oz Shell Utilities

Denys Duchier
Leif Kornstaedt

Christian Schulte

Version 1.2.3
December 1, 2001

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 The Oz Engine: ozengine 1

2 The Oz Compiler: ozc 3

2.1 Batch Compiler Modes . 3

2.2 Options Valid in All Modes . 4

2.3 Options for Output Files . 4

2.4 Options to Set the Compiler State 5

3 The Oz Linker: ozl 9

3.1 Basic Usage . 9

3.2 Including and Excluding Functors 10

3.3 Pickling Options . 11

3.4 Miscellaneous Options . 12

4 The Oz Debugger: ozd 13

5 The Oz Profiler: ozd -p 15

6 The Oz DLL Builder: oztool 17

7 Conversion of Pickles: convertTextPickle 19

1

The Oz Engine: ozengine

Like Java, Oz is also based on the idea of byte code execution. ozengine is an emulator
that implements the Oz virtual machine. It is normally invoked as follows:

ozengine url args...

where url identifies an Oz application (a pickled functor) and args... are the arguments
for the application.

It is also possible to create executable functors. These are ordinary functors, except that
when one is invoked as a shell command, it automatically starts ozengine on itself.

Under Windows, an alternative to ozengine is provided called ozenginew. While
ozengine is a console-based application, ozenginew is a GUI-based application. Its
output appears in message boxes instead of in a console window. Other than that, they
behave the same.

Instead of supplying arguments on the command line, you can also indicate a prefer-
ence for using a graphical interface for editing an application’s input parameters:

ozengine --gui url

The -gui option is convenient for starting applications directly from a web browser,
simply by clicking. This makes ozengine -gui %s a good choice of a helper applica-
tion for web documents with MIME type application/x-oz-application. Consult
Chapter Application Deployment, (Application Programming) for more detailed infor-
mation.

2 Chapter 1. The Oz Engine: ozengine

2

The Oz Compiler: ozc

The Oz compiler is extensively documented in “The Mozart Compiler” . We describe
it here in its incarnation as a command line application. It is most frequently invoked
as follows:

ozc -c Foo.oz

File Foo.oz is expected to contain an expression which is then compiled and evalu-
ated and the resulting value is written (pickled) into file Foo.ozf.

2.1 Batch Compiler Modes

The batch compiler can operate in one of several mutually exclusive modes selected by
the options below:

-h, -?, -help

Prints out information on all legal options, then exits.

-c, -dump
ozc -c ... FILE.oz ...

Compiles and evaluates the expression in file FILE.oz, then pickles the resulting value
into the output file, FILE.ozf by default.

-e, -feedtoemulator
ozc -e ... FILE.oz ...

Compiles and executes the statement in file FILE.oz. This is the default mode of
operation.

-E, -core
ozc -E ... FILE.oz ...

Translates the statement in file FILE.oz into the core language, then writes this ex-
panded form into the output file, FILE.ozi by default.

-S, -scode
ozc -S ... FILE.oz ...

Compiles the statement in file FILE.oz into the assembly bytecode format, then writes
it to the output file, FILE.ozm by default.

4 Chapter 2. The Oz Compiler: ozc

-s, -ecode
ozc -s ... FILE.oz ...

Like -scode, except that the file is compiled as an expression instead of as a statement.

-x, -executable
ozc -x ... FILE.oz ...

Much like -c, compiles and evaluates the expression in file FILE.oz, then writes the
resulting value into the output file, by default FILE (without extension) under Unix or
FILE.exe under Windows. Additionally, it makes the output file executable. Thus, if
Foo.oz contains an application functor,

ozc -x Foo.oz

creates the file Foo (Foo.exe under Windows), which is executable and can be in-
voked directly from the shell. Note also that you can always run an application functor
as follows:

ozengine url args ...

where url is a URL or pathname that references the application functor.

2.2 Options Valid in All Modes

-v, -verbose

Display all compiler messages.

-q, -quiet

Inhibit compiler messages.

-M, -makedepend

Instead of executing, write a list of dependencies to stdout.

2.3 Options for Output Files

-o FILE, -outputfile=FILE

Write output to FILE (- for stdout). If this option is given, then a single input file may
be given. Otherwise, an arbitrary number of input files can be processed.

-unix, -target=unix

When invoked with -x, produce Unix executables even if running under Windows.

-windows, -target=windows

When invoked with -x, produce Windows executables even if running under Unix.

-execheader=STRING

When invoked with option -x, the compiler prepends a header to the output file so that
it is interpreted as executable by the operating system. Under Unix, the default header
is as follows:

2.4. Options to Set the Compiler State 5

#!/bin/sh

exec ozengine $0 "$@"

The -execheader option allows you to specify a different header.

-execpath=STRING

Uses the header given above in the description of -execheader, except that ozengine
is replaced by STRING.

-execfile=FILE

Reads in FILE and uses this as header. Under Windows, the default behaviour is to use
the file provided in ozhome/bin/ozwrapper.bin, where ozhome is Mozart’s in-
stallation folder. ozwrapper.bin is a Windows executable that launches ozengine,
i.e., a console application (CUI).

-execwrapper=FILE

Reads in ozhome/bin/FILE and uses it as header for executable files. Apart from
ozwrapper.bin, an ozwrapperw.bin is supplied that launches ozenginew
instead of ozengine, i.e., a Windows application (GUI). This option provides a con-
venient way to use this alternative wrapper.

-z N, -compress=N

Pickles may be written in a compressed format. By default they are not compressed.
-z N selects the compression level: N is an integer between 0 (uncompressed) and
9 (maximum compression). Compressing a pickle may improve loading/downloading
time.

2.4 Options to Set the Compiler State

For the following options, the order is important, and even in which order they are
intermixed with the input files: When an input file is processed, the compiler state is
determined by all options preceding it. Options may be overridden by other options
given later on the command line.

Macro Directives

-D NAME, -define=NAME

Define macro NAME. Macros allow for conditional compilation using \ifdef NAME
and \ifndef NAME macro directives.

-U NAME, -undefine=NAME

Undefines macro NAME.

Environment

-l MODULES, -environment=MODULES

Makes MODULES, a comma-separated list of pairs VAR=URL, available in the en-
vironment. For each VAR=URL, the module available through the functor at URL is
obtained and VAR is bound to it. The source files then compiled can reference variable
VAR.

6 Chapter 2. The Oz Compiler: ozc

Inserting Files

-I DIR, -incdir=DIR

Adds DIR to the head of OZPATH which is used to locate files to \insert.

-include=FILE

Compile and execute the statement in FILE before processing the remaining options.
For instance, this can be used to extend the compilation environment by executing a
declare.

Compiler Switches

Most of the compiler switches can be set via command line options. Please refer to
Appendix Compiler Switches, (The Mozart Compiler) for more detailed descriptions
and defaults.

-g, -(no)debuginfo

Emits code with debugging information. Use this option if you want to use the Mozart
Debugger1. The -g option is actually an abbreviation for the combination of -controlflowinfo
and -staticvarnames.

-(no)controlflowinfo

Include control flow information.

-(no)staticvarnames

Include static variable name information.

-(no)dynamicvarnames

Attach print names to variables created at run-time.

-p, -(no)profile

Emits code with profiling information. Use this option if you want to use the Mozart
Profiler2.

-(no)gump

Allow Gump definitions.

-(no)compilerpasses

Show compiler passes.

-(no)warnredecl

Warn about top-level redeclarations.

-(no)warnunused

Warn about unused variables.
1“The Mozart Debugger”
2“The Mozart Profiler”

2.4. Options to Set the Compiler State 7

-(no)warnunusedformals

Warn about unused variables and formals.

-(no)warnforward

Warn about forward class declarations.

-(no)warnopt

Warn about missed optimizations.

-(no)expression

Expect expressions, not statements.

-(no)allowdeprecated

Allow use of deprecated syntax.

-(no)staticanalysis

Run static analysis.

-(no)realcore

Output the real non-fancy core syntax.

-(no)debugvalue

Annotate variable values in core output.

-(no)debugtype

Annotate variable types in core output.

Compiler Options

-maxerrors=N

Limit the number of errors reported to N.

-baseurl=STRING

Set the base URL to resolve imports of computed functors to STRING.

-gumpdirectory=STRING

Set the directory where Gump output files are placed to STRING.

8 Chapter 2. The Oz Compiler: ozc

3

The Oz Linker: ozl

Application development can be considerably eased by splitting the application in a
large number of orthogonal and reusable functors. However, deployment of an appli-
cation gets harder in the presence of a large number of functors:

• Installing the application requires correct installation of a large number of func-
tors.

• Execution might be slow due to frequent file- or even network accesses.

The commandline tool ozl eases deployment by creating a new functor that includes
imported functors in a prelinked fashion: it is possible to collapse a hierarchy of func-
tors into a single equivalent one. The model that should be kept in mind, is that the
newly created functor employs an internal, private module manager that excutes the
toplevel application functor together with all included functors.

A short introduction by means of examples can be found in Section Linking Functors,
(Application Programming) .

3.1 Basic Usage

The linker can be invoked on the input functor In in order to create an output functor
Out as follows:

% ozl In -o Out

Consider for example the pickled functors A.ozf, B.ozf, and subdir/C.ozf,
where A.ozf has been created from the following functor definition:

functor

import B

C at ’subdir/C.ozf’

Application

end

and the other functors have empty imports. By executing

10 Chapter 3. The Oz Linker: ozl

% ozl A.ozf -o D.ozf

a new pickled functor D.ozf is created that contains both the functors contained in
B.ozf and subdir/C.ozf but not the system functor Application.

If the linker is invoked in verbose mode as

% ozl --verbose A.ozf -o D.ozf

or

% ozl -v A.ozf -o D.ozf

for short, it prints the following information on which functors are in fact included and
which are still imported by the newly created functor.

Include:

A.ozf, B.ozf, subdir/C.ozf.

Import:

x-oz://system/Application.

If we now invoke the linker on the newly created pickled functor D.ozf in verbose
mode as follows:

% ozl -v D.ozf

it only prints the following information without creating a new functor:

Include:

D.ozf.

Import:

x-oz://system/Application.

By default, the linker includes (or links) all functors that are referred to by relative urls
as in our previous example. How to change this behaviour is discussed in Section 3.2.

3.2 Including and Excluding Functors

-relative

-relative (default), -norelative

All functors that are referred to by relative urls are included. Import urls in the resulting
functor remain relative.

-include

-include=URL,...,URL

Include all functors whose url matches one of the comma separated url prefixes.

-exclude

3.3. Pickling Options 11

-exclude=URL,...,URL

Exclude all functors whose url matches one of the comma separated url prefixes.

-rewrite

-rewrite=RULE,...,RULE

When the functors are gathered that make up the linked functor, all import URLs are
resolved with respect to the importing functor. This means that all file urls become
absolute, and as such make up the import of the output functor.

This is often not desirable. In the common case that the imported functors lie in the
same directory or in subdirectories as the root functor, the -relative option can be
used, in which case the import urls remain relative.

The -rewrite option generalizes this principle: It allows to specify a list of rules of
the form FROM=TO, meaning: If a url has prefix FROM, then replace it by TO. The
first matching rule is applied.

Note that multiple -include and -exclude directives can be given on the comman-
dline. They have cummulative effect, with the policy that later directives take prece-
dence over earlier ones. For example:

ozl --include=/foo/ --exclude=/foo/bar/ ...

causes all imports from files below directory /foo to be included except those under
directory /foo/bar. We can further refine this policy by introducing an exception
to the last exclusion pattern and request inclusion of modules imported from below
directory /foo/bar/baz:

ozl --include=/foo/ --exclude=/foo/bar/ --include=/foo/bar/baz/ ...

3.3 Pickling Options

The linker supports the following default options for pickles.

-compress

-compress=N, -z N

The created pickle is compressed with level N (a single digit). By default the compres-
sion level N is 0, that is, no compression is employed.

-executable

-executable (-x), -noexecutable (default)

Output the pickled functor as being executable (that is, with an additional header).

-execheader=STRING

When invoked with option -x the linker first outputs a header so that the output file
may be interpreted by the operating system as an executable. Under Unix, the default
behaviour is to use the following as header:

12 Chapter 3. The Oz Linker: ozl

#!/bin/sh

exec ozengine $0 "$@"

The -execheader option allows you to specify a different header.

-execpath=STRING

Uses the header given above in the description of -execheader, except that ozengine
is replaced by STRING.

-execfile=FILE

Reads in FILE and uses this as header. Under Windows, the default behaviour is to use
the file provided in ozhome/bin/ozwrapper.bin, where ozhome is Mozart’s in-
stallation folder. ozwrapper.bin is a Windows executable that launches ozengine.

-execwrapper=FILE

Reads in ozhome/bin/FILE and uses it as header for executable files. Apart from
ozwrapper.bin, an ozwrapperw.bin is supplied that launches ozenginew
instead of ozengine. This option provides a convenient way to use this alternative
wrapper.

-target=unix, -unix
-target=windows, -windows

When creating an executable functor, do it for the specified target platform rather than
for the current host platform.

3.4 Miscellaneous Options

-sequential

-sequential, -nosequential (default)

Do not create a thread per executed functor body, rather execute all functor bodies in
the same thread in a bottom up fashion.

Use with care! In case the functors included have cyclic imports, it is not used.

4

The Oz Debugger: ozd

The Oz debugger is extensively documented in “The Mozart Debugger” . We describe
it here merely in its incarnation as a command line application. Furthermore, we only
document its options.

If you have created an Oz application which you normally start from the shell as fol-
lows:

Foo Args ...

Then you can run it under control of the Oz debugger by using the following command
instead:

ozd Foo -- Args ...

Any Oz application can be run in the debugger, but you only get the full benefit of the
debugging interface when the code being executed was compiled with the -g option to
include debugging information.

The double dash - separates the arguments intended for ozd from those intended for
the application being run under the debugger.

-help, -h, -?

Display information on legal options, then exit

-g, -debugger, -mode=debugger

This option is the default: it starts the debugger. The other possibility is -p to start the
profiler (see Chapter 5).

-p, -profiler, -mode=profiler

This is the other mode of operation: it starts the profiler instead (see Chapter 5).

-E, -(no)useemacs

Starts a subordinate Emacs process. This will be used to display the source code cur-
rently being debugged. You will also be able to set breakpoints easily on source lines.

-emacs=FILE

Specifies the Emacs binary to run for option -E. The default is $OZEMACS if set, else
emacs.

14 Chapter 4. The Oz Debugger: ozd

5

The Oz Profiler: ozd -p

The Oz profiler is extensively documented in “The Mozart Profiler” . We describe it
here merely in its incarnation as a command line application. Furthermore, we only
document its options.

If you have created an Oz application which you normally start from the shell as fol-
lows:

Foo Args ...

Then you can run it under control of the Oz profiler by using the following command
instead:

ozd -p Foo -- Args ...

Any Oz application can be run in the profiler, but you only get the full benefit of the
profiling interface when the code being executed was compiled with the -p option to
include profiling instrumentation code. The profiler and the debugger share the same
interface.

The double dash - separates the arguments intended for ozd from those intended for
the application being run under the profiler.

-help, -h, -?

Display information on legal options, then exit

-p, -profiler, -mode=profiler

You must supply this option in order to start the profiler; otherwise the debugger is
started instead (see Chapter 4).

-g, -debugger, -mode=debugger

This is the default option: it starts the debugger (see Chapter 4). As mentioned above,
in order to actually start the profiler, you must supply the -p option.

-E, -(no)useemacs

Starts a subordinate Emacs process. This will be used to display the source code cor-
responding to the profile data being examined.

-emacs=FILE

Specifies the Emacs binary to run for option -E. The default is $OZEMACS if set, else
emacs.

16 Chapter 5. The Oz Profiler: ozd -p

6

The Oz DLL Builder: oztool

oztool facilitates the creation of native functors (see Part Native C/C++ Extensions,
(Application Programming) and “Interfacing to C and C++”). A native functor is
a DLL, i.e. a library that is dynamically loaded by the Oz emulator and interfaces
with it. Creating a native functor often involves complicated compilation and linking
technicalities (e.g. options). oztool takes care of these details for you.

oztool c++ ...

Instead of calling the C++ compiler directly, you should invoke it through oztool. The
advantages are: it calls the right compiler, with the right options, and also extends the
include search path to find the Mozart specific includes such as mozart.h. Normally,
you would compile a native functor implemented in foo.cc using:

oztool c++ -c foo.cc

oztool cc ...

Same idea, but for the C compiler

oztool ld ...

Instead of calling the linker directly, you should also invoke it through oztool. Again,
the advantages are that it calls the right linker, with the right options. Normally, you
would create a DLL from foo.o as follows:

oztool ld -o foo.so foo.o

oztool platform

The default Resolution1 mechanism locates architecture specific DLLs as follows: If
the system needs a native functor called (abstractly) foo.so, then it will look for a
DLL called foo.so-linux-i486 on a Linux machine, foo.so-solaris-sparc on a
Solaris machine, or foo.so-win32 on a Windows machine, etc. . . Thus, when you
create a DLL, you should install it with a name where the machine’s architecture is
appended. Invoking oztool platform simply prints out the appropriate architecture
name for your machine. In this respect, oztool helps you write portable Makefiles: to
create a DLL from file foo.cc you would normally invoke:

oztool c++ -c foo.cc

oztool ld -o foo.so-‘oztool platform‘ foo.o

1Chapter Resolving URLs: Resolve, (System Modules)

18 Chapter 6. The Oz DLL Builder: oztool

7

Conversion of Pickles:
convertTextPickle

If you had saved data structures into pickles with Mozart 1.0.1, then you’ll want to
use them in newer releases of Mozart as well. The format of pickles has changed after
1.0.1, however. This command line utility can help you to convert pickles. Concerning
limitations and how to overcome them, please refer to the compat1 module.

-help, -h, -?

Display information on legal options, then exit.

-in=file, -i file

Select the file from which to read a text pickle in old format.

-out=file, -o file

Select the file to which to write the converted pickle in new format.

1Chapter Backwards Compatibility, (Contributed Libraries)

