The Distribution Subsystem

Erik Klintskog
Anna Neiderud

Version 1.2.3

December 1, 2001 m 0 1 a rt

Abstract

Mozart provides support for distributed programming. This is realized by a Distribution
Subsystem that offers communication with an arbitrary number of sites, a modular design
that allows customization, communication over multiple platforms, and reliable message
delivery and fault tolerance; all this with high throughput through an efficient implemen-
tation.

To allow application programmers to more efficiently utilize distributed programming an
overview of the Distribution Subsystem with references to other documentation is pre-
sented by this document.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

[l Introduction|

.1 LayeredDesign i

P Connection Establishment|

.1 Bootstrapping a Connection

5
5

2.2 Dynamic Connection Establishment through Connect-Accept-Paird 6

2.3 Automatic Connection Opening and Closing

B Entities and Protocols - a Background

B.1 Distribution of Referencey

B.2 Consistency Protocold
8.3 Distribution of MozartEntities

B.4 Distributed Memory Managemen{

¢ Efficient Implementation|

U1 Throughpul.
B.2 ResourceUsagel.

.3 Zero Impact Implementation of the Distribution Subsystem . . .

6.1 Handling Faults fromMozart
b.2 FaultDetection|,

5.2.1 PermanentFaull

b.2.2 TemporaryFault§
6.3 FaultTolerancg

b.4 Permand Temponthelnternef

7

10
11
11

13
13
13
14

b Monitoring Toolg 19

6.1 The DistributionPanel 19
6.2 The Oz Message Tracer o . v v v v v ... 19
.3 The Mozart Distribution-Subsystem Simulatof 20

23

Introduction

Mozart provides support for distributed programming. This document describes how
distribution is realized and what features Mozart offers to deal with distribution. Guid-
ance on how to practically do distributed programming can be found in the “Distributed
Programming in Mozart - A Tutorial Introduction”.

Distribution is realized by a Distribution Subsystem (DS) used by the Mozart process.
The DS implements a state-of-the-art middleware abstracting away the network from
higher levels. This is achieved by defining entity consistency protocols that maintain
the semantics of local Oz-entities also when distributed. Messages in these protocols
are reliably delivered disregarding, transient network congestion and partitions.

Communication with an arbitrary number of sitesfj

Through a 128 bit unique-id schema, billions of remote machines can be addressed.
By letting connections time-share the usage of physical channels when there is a lack
of resources, the DS is able to handle thousands of simultaneous connections even on
off-the-shelf hardware.

Modular design allows customization The DS has a layered and modular de-
sign enabling additions of new transport protocols. The DS currently uses TCP, but
work is being done to add a lean reliable UDP implementation and a shared memory
communication schema.

Platform Independent The implementation of the DS is mature, stable, and avail-
able on multiple platforms. Currently, versions for Linux, Windows and many flavours
of Unix exist. The protocols used for transferring data are platform independent, en-
abling inter-platform communication.

Serialization of the language graph An advanced marshaler is available to se-
rialize language graphs to be fit in messages. During marshaling the different types of
entities are treated separately to allow replication of stateless entities, and distribution
of references to stateful ones. An unmarshaler is able to build a corresponding language
graph at the receiver side, replacing remote entity references with proxy structures.

1Every Mozart process is referred to as a site.

2 Chapter 1. Introduction

Reliable message delivery and fault tolerant The DS ensures reliable delivery
of messages even in the case of transient faults. By use of an acknowledge schema,
transient faults can be recovered.

High throughput with an efficient implementation By clever usage of pipelin-
ing in bounded memory, together with priority based message sending, the overhead
imposed by the complexity of the DS makes the communication only slightly slower
than over a raw socket implemented in C.

1.1 Layered Design

The DS is responsible for opening and closing connections, transferring messages,
reporting network problems and executing the consistency protocols attached to all
distributed entities. This is implemented by a three-layered structure (see Figure
with the three layers Protocol Layer, Communication Layer and Transport Layer. The
topmost layer, the Protocol Layer, is responsible for running the protocols that the DS
implements. The middle layer, the Communication Layer, handles virtual channels
that are created between different processes. The lowest layer, the Transport Layer,
implements an interface to any transport protocol used to transfer messages between
machines. The Communication Layer and the Transport Layer together are also re-
ferred to as the Message Passing Layer. A more detailed description of this design can
be found in Anna Neiderud’s master’s thesis reportf].

Figure 1.1: The Mozart Virtual machine and the Distribution Subsystem

Mozart Virtual Machine

Protocol laver

Communicationlayerl Distributed Subsy stemn
Transpont layer

[Operating system J

1.2 Outline

The remainder of this document describes some major parts of the DS and their im-
plementation. Chapter Pl explains the bootstrapping sequence for connections and how
connection establishment can be customized. Chapter § then discusses how entities of

2htt p: // www. si cs. se/ ~annan/ Thesi sReport . doc

1.2. Outline

Mozart are distributed. After that Chapter f] shows how the implementation has been
made efficient. A challenging question in distributed programming is failure, and how
to deal with it is discussed in Chapter Bl Chapter f and Chapter [7] give useful pointers
to understanding and using all the features described.

Chapter 1. Introduction

Connection Establishment

When a Mozart site is a participant in a distributed computation, entities are automati-
cally distributed via lexical scoping and connections are opened when needed. Before
this can take place an initial entry point in the distributed application must exist. This
is what we refer to as bootstrapping a connection.

2.1 Bootstrapping a Connection

The Mozart programmer establishes connections to the outside world by offering a
ticket to an entity. Such a ticket is an character string containing enough information
for other Mozart sites to connect to the offering site and access the offered entity. This
connection establishment procedure is illustrated in Figure

Figure 2.1: Bootstrapping a Connection

1 2
Site 4 // Site B

Site 4 Site B

Channel

===

6 Chapter 2. Connection Establishment

1. Site Aoffers a ticket to entity X and saves the string to persistent storage available
to B.

2. Site B loads the string and takes this ticket which will cause a representation of
site A and a representation of X to be created at B.

3. Site B creates a message requesting access to X and passes the message down to
the representation of A.

4. A connection to A is requested from the connect-accept-module.

5. Atsite Aan incoming request for a connection is accepted. During a hand-shake
phase the representation of B is passed to A.

6. Site B marshals the message and sends it to A.

7. Site Aunmarshals the message and passes it to the appropriate protocol message
handler.

2.2 Dynamic Connection Establishment through
Connect-Accept-Pairs

How a message is transferred between two sites, and how a physical connection is
initialized is of no importance to the semantics of entities. However, this is of great
importance when it comes to communicating over different types of networks with
different restrictions such as security requirements or firewalls. Mozart offers a default
connect-accept-module with non-secure initialization of a connection over TCP, but
the interfaces are open for the programmer to customize parts or all of the procedure.
This is possible through the notion of Connect-Accept-Pairs and the three layer design,
allowing for replacement of the transport layer.

Connect-Accept-Pairs To define how a physical connection is initialized, a pair
consisting of a connection and an accept procedure can be customly defined. The
accept procedure defines how a site accepts incoming requests for connections and
runs locally at that specific site. The connection and accept procedure must agree on
a scheme to establish a connection, and the connection procedure should in the future
be possible to pass around with any reference to the site. Currently an application
programmer can create a custom pair and manually install it in all processes involved
in a distributed application. This will create a subdomain only accessible to those
processes.

Transport Modules A transport module is responsible of delivering messages from
one site to another. It may be a very lean layer interfacing TCP or contain a complete
implementation of a new transport protocol.

2.3. Automatic Connection Opening and Closing 7

2.3 Automatic Connection Opening and Closing

For efficiency reasons, physical connections should be open while there is a need for
them from at least one end, and there are enough resources to maintain them. To
achieve this, connections are automatically established when the need arises and closed
when the need no longer remains. The latter part is handled by the garbage collec-
tor; once the last reference is garbage collected locally, the connection will be closed.
When resources are low, connections will be taken down temporarily.

Chapter 2. Connection Establishment

Entities and Protocols - a Background

Distribution in Mozart is realized by sharing language entities. How this is done de-
pends on if they are stateless or stateful. Stateless entities are replicated between sites
whereas stateful entities create access structures. The local semantics of the stateful
entities are maintained in a distributed setting by a number of consistency protocols.

Mozart entities may be in one of two states: plain or globalized. A plain entity is only
referenced within its virtual machine. This virtual machine is called the entity’s home
site. A plain entity will become globalized at the instance when a reference to it is
shared. A globalized entity is returned to being plain when no more remote references
exist; this is called localization.

The Distribution Subsystem offers four kinds of distribution behavior and four kinds of
replication patterns. Distribution behavior and replication patterns are paired together
to create different distribution semantics. Each entity type in Mozart has been assigned
a pair to define its distributed semantics and behavior.

3.1 Distribution of References

At globalization an entity is given a globally unique identity (GUId). This name is
used to identify imported references, to see if a copy of the entity already exists at the
importing site. The GUId consists of a reference to the home site and an identifier that
is unique at the home site.

When entities are transferred from one site to another five kinds of replication pat-
terns exist. The importing site is responsible for building a structure according to the
replication pattern. The five patterns are described here:

Replicated Replicated entities do not have a GUId. Instead enough information
is transferred at distribution time to enable the importer to build a complete copy of
the data structure. Without a GUId it is not possible to determine whether the entity
already exists at the importing site or not.

Replicated Uniquely An entity that is Replicated Uniquely transfers enough infor-
mation to build a complete replica of it at the importing site. In contrast to Replicated
entities, Replicated Uniquely entities have a GUId that enables the importer to make
sure that there may exist one and only one instance of the entity at the importing site.

10

Chapter 3. Entities and Protocols - a Background

Access Structure When a stateful entity is globalized, a Manager is constructed
at its home site. References to the the entity imported at other sites result in the con-
struction of proxies pointing to the manager (see Figure B.1). This structure is called
an access structure. The GUId of the entity is used to ensure that one and only one
proxy is built at site that imports references to the entity.

Figure 3.1: A Proxy at site A refers to its Manager at site B

Site A Site B
(1)
Proxy Manager

Access structures are used to maintain reference consistency and as a base for the
consistency protocols described below.

Lazy Replication Lazy Replication is a special case of Replicated Uniquely. In-
stead of sending the whole value of the entity the possibility to build an access structure
is transferred. If no instance of the entity exists at the importer, the access structure
is built. When a Lazy Replicated entity is accessed for the first time the value of the
entity is requested and the access structure is removed when the value arrives.

Resource Placeholder Some data structures should not be available remotely.
This is handled by replacing those entities with a placeholder on which no operations
can be performed except equality. This placeholder is reflected to language level as a
Resource.

3.2 Consistency Protocols

As stated earlier, the DS uses consistency protocols to maintain the semantics of a plain
entity also when it has been globalized. Note that this is of course not necessary for
replicated stateless entities.

Stateful entities can have a real state or be single assignment, where single assignment
means transforming into another entity once. This is used to implement distributed
logic variables. Single assignment entities can be dealt with efficiently by a proxy-
manager structure where the manager knows and notifies its proxies. Other stateful
entities may implement distribution by letting their state move around to active proxies
or by letting a manager act as a server for read and write requests. This gives us with
three different protocols for maintaining entity semantics:

3.3. Distribution of Mozart Entities

11

Stationary State The manager maintains the state of a stateful entity locally, and

proxies send read and write requests asynchronously to access the state.

Mobile State Any proxy can attract the state of a stateful entity and operate on it
locally as on a plain entity while the state is present.

Single Assignment The manager knows all of its proxies and can administer any
request to transform the entity to a reference to another entity, and forward this to all

proxies.

3.3 Distribution of Mozart Entities

Figure B.2 shows the class of reference distribution and the consistency protocol used
for entities in Mozart.

Entity Type
Port

Variable

Cell

Lock

Object

Record

Atoms

List

Chunk

Name

Class

Functor
Procedure
Code
Dictionary
Array

Sited Entities
Builtin
Constraint Variable

Reference Distribution
Access Structure
Access Structure
Access Structure
Access Structure
Lazy Replication
Replicated
Replicated
Replicated
Replicated Unique
Replicated Unique
Replicated Unique
Replicated Unique
Replicated Unique
Replicated Unique
Resource Placeholder
Resource Placeholder
Resource Placeholder
Resource Placeholder
Resource Placeholder

Figure 3.2:

Consistency Protocol

Stationary
Single assignment
Mobile state
Mobile state
Mobile state
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed
none needed

3.4 Distributed Memory Management

Every Mozart site performs garbage collection locally. During this process all repli-
cated entities and proxies are treated as plain Mozart data structures. Managers on the
other hand act as roots for the local garbage collector.

12

Chapter 3. Entities and Protocols - a Background

To ensure that globalized entities are localized if and only if no more remote references
exist, the DS has a distributed reference consistency algorithm. This is currently im-
plemented by an extended version of Weighted Reference Countingf] called Secondary
Weight. Weighted Reference Counting is an algorithm that assigns a total weight to an
entity. When references are shared, a part of this weight is shared too. When all weight
is present at the manager, the entity is local. The original algorithm has a problem in
that weight is limited. Secondary Weight overcomes that problem, by allowing proxies
to create a new range of weight that they manage.

Ipresented independently by D | Bevan in Distributed Garbage Collection Using Reference Count-
ing,1987, and Watson and Watson in An Efficient Garbage Collection Scheme for Parallel Computer
Architecture, 1987.

Efficient Implementation

The Distribution Subsystem of Mozart boosts throughput and can communicate with
an unbounded number of sites in spite of bounded resources such as memory or a
limited number of connections. The ability to distribute any entity does not impose
any noticeable performance loss on local entities. These properties are achieved by an
efficient implementation which will be discussed in this section.

4.1 Throughput

Over most transport media throughput can be boosted by sending few fairly large pack-
ets rather than many small ones. The DS utilizes this by pipelining, that is sending
several messages to the same destination in one packet. This is possible since all mes-
sages to one site are sent via the same (virtual) connection, and since all sends are
asynchronous. Asynchronous sends allow a short delay between the time a message
is constructed and actually sent. During this period of time, more messages from the
same or a different computation may be constructed and can be sent together. fj

The perceived throughput consists not only of the amount of bytes transmitted, but
also of the importance of the transmitted data. Important data is therefore sent with a
higher priority. Large low priority messages may also be interleaved by high priority
messages by sending large messages in pieces. Note that no messages are lost.

4.2 Resource Usage

The resources that are limited in this context are mainly memory and number of con-
nections. The number of connections available depends on what transfer medium and
what operating system is used. For a TCP-connection the limit is imposed by a limited
number of file descriptors.

Memory The largest amount of memory necessary for communication is that of the
buffers necessary for marshaling. To avoid a memory blowup when sending large mes-
sages, the DS uses a suspendable marshaler. This marshaler marshals data to buffers
limited in size and suspends in case they are filled. The partial message can then be
sent and marshaling can be continued later.

1This is a more fine-grained version of the Nagle algorithm.

14 Chapter 4. Efficient Implementation

Connections The fact that only one virtual connection per pair of sites is used,
limits the number of physical connections. Unfortunately, when resources are scarce,
this is not always enough. Some applications may acquire references to a large number
of sites without ever communicating with all of these. Other applications may need to
do concurrent communication with more sites than can be simultaneously physically
connected. The former case is handled by the automatic connection establishment
property, the latter by a round robin scheduling mechanism that lets all virtual connec-
tions take turns on having one of the possible physical connections on a need to use
basis.

4.3 Zero Impact Implementation of the Distribution Subsystem

The Distribution Subsystem does not interfere with the performance of the local Mozart
engine. This is achieved in several ways:

e The DS is a dynamically loadable library that will only be loaded into the system
when communication is needed.

e All sockets used for communication are non-blocking, enabling the local com-
putation to advance while the network is transmitting data.

e The implementation of entities is done in such a way that the distributed version
will only be invoked when necessary.

e The execution time of the operating system process is shared between the Mozart
Virtual Machine and the DS. This is achieved by passing messages asynchronously
via queues between the two systems, and processing them in each systems time-
slice (See Figure B.T)).

Figure 4.1: Time sharing between the Mozart Virtual Machine and the Distribution Subsystem

O0ms | |0ws LT 10 fos |
Thiead 1 —
Thiead 2]
Thiead 3 I Mozart Yirtual Machine
TIME
Send 1 | i e
Distribution Subsystem
Read |1 1 1 1 ¥

Faillure

The Mozart system uses a three-state-model for remote sites. The three states are: OK,
Temporarily Lost (Temp) , and Permanently Lost (Perm). At first introduction a remote
site is always in the state OK, further use might change the state of the site into one of
the other two states. The states are described here:

e OK: No problem has yet been detected on the remote site.

e Temporary Lost: Some transient kind of problems has been detected. A network
fluctuation or partitioning can be the cause.

e Permanently Lost: The site is gone and will never be contactable again. The
process is gone or the machine is taken down.

Figure B.7 shows the transition-graph for the different states. Note that Perm is a non-
transient state.

Figure 5.1: Transition-graph over OK, Temp and Perm

The classification of site failures into the two categories Temp and Perm, simplifies
construction of fault tolerant applications. By reflecting the failure state of an entity’s
home site to language level, the programmer is presented detailed information on what
to expect from an entity in the future. The interpretation of the state then is: An entity
in the state Temp might be accessible again while a Perm state clearly defines that the
entity will never be accessible again.

5.1 Handling Faults from Mozart

Mozart offers different ways to instrument the behavior of distributed entities in the
case of failure (also see Chapter Detecting and Handling Distribution Problems: Faul t ,

16

Chapter 5. Failure

(System Modules) and Chapter Failure Model, (Distributed Programming in Mozart
- A Tutorial Introduction)). A fault condition can be paired together with a reaction
strategy implemented by a procedure; this pair can be installed on a particular entity.
When a fault occurs that matches the fault condition the reaction strategy is executed.

There are three different ways to instrument an entity’s behavior when faults interfere
with their usage:

o Fault Exceptions: Fault Exceptions are per default thrown when an operation on
a failed entity is attempted. The condition on when an entity is failed is set by a
global fault condition.

e Watchers: A Watcher is an asynchronous fault handler that monitors a specific
entity. When the fault condition for that entity matches the installed fault condi-
tion the reaction procedure is started in a new thread.

e Handlers: An Handlers is similar to a Watcher, but is only triggered when an
operation is attempted on the particular entity. If the entity has a fault condi-
tion that matches the installed fault condition, the reaction procedure is executed
instead of the operation, in the same thread.

5.2 Fault Detection

The Message Passing Layer (the Communication Layer together with the Transport
Layer) monitors its channels to detect any kinds of problems. To simplify the design
Perm is only detected while opening connections, while Temp is detected on an open
channel as described below.

5.2.1 Permanent Fault

Operating system error codes are used to deduce that a remote site is permanently
down. The main reason for this is that the error codes that guarantee that a process
does not exists are only propagated at connection attempts.

5.2.2 Temporary Faults

Temporary Fault detection is done on Round Trip (RT) calculations. Each Mozart site
has an Acceptable Round Trip (ART), when a RT to a remote site is higher than the
ART the remote site is defined as Temp. When the RT goes down below the ART
the remote site is considered OK again. The ART can be instrumented from language
level.

The message passing layer constantly measures the RT to all remote sites it is con-
nected to. RT information is piggybacked on ordinary messages to minimize the net-
work traffic.

5.3. Fault Tolerance 17

5.3 Fault Tolerance

The DS has been designed to be as fault tolerant as possible, with the limited knowl-
edge available. The Message Passing Layer assures reliable delivery as long as it is
possible. Messages to a remote site that is in the Perm state will of course not be de-
livered, and can therefore be discarded. If a connection is lost, a reconnect will be
attemptedfj.

On top of this mechanism the protocols are implemented with recovery mechanisms,
when possible. The mobile state protocol can bypass lost sites and avoid loss of the
state. The Lock protocol, for instance, can recreate its mobile lock if it is lost.

5.4 Perm and Temp on the Internet

Detecting that a remote site is Perm gone on the Internet is hard, almost impossible.
With dynamic addressing schemas as DHCP and and NAT’s nothing can be said about
the correct state of a machine. Perm is most likely detected on local LANs where
distributed programs running over WANSs will probably just experience Temp faults.

1These attempts will continue until a Perm is detected, but the interval between reconnection attempts
will grow to avoid harassing servers.

18

Chapter 5. Failure

Monitoring Tools

To help the programmer understand, tune, and debug distributed applications Mozart
provides three tools for understanding the behavior of the DS.

e For real-time monitoring of communication, there is a panel tool called Distri-
bution Panel that displays the current activity of the running site.

o To evaluate the result of a distributed application, the DS can be instrumented to
write all events to a file. With help of a tool that displays logs graphically, logs
from multiple sites can be displayed together in a graph.

e To simulate the behavior of a distributed application there is a tool that can sim-
ulate a set of Mozart sites in a controlled environment. The simulator executes
Mozart code and simulates distributed events by a discrete event simulation en-
gine.

6.1 The Distribution Panel

The Distribution Panel periodically retrieves the internal state of the Distribution Sub-
system. The information is then displayed in a graphical tool (see Figure f.1] and
“Distribution Panel”). The Distribution Panel enables monitoring the behavior of a
Mozart site in runtime. Information of currently known remote sites, exported enti-
ties, imported entities, sent messages summarized by message type, and marshaling
information is displayed.

6.2 The Oz Message Tracer

The tool merges logs from different Mozart engines doing distributed computation.
The logs are sorted in the casual order imposed by their internal message sending and
receiving, and displayed graphically (see Figure f.4). From the visualization of the
casual order of events in a distributed computation the behavior of a set of Mozart sites
can be examined in detail. The OzMessageTracer is available via Mogulf].

Ihttp: //ww. npzart - oz. or g/ mogul /i nf o/ kl i nt skog/ ozmessaget r ace. ht m

20

Chapter 6. Monitoring Tools

— = Distribution Panel

Cammunication

o ra = o

il
g

Figure 6.1: An example of the Distribution Panel.

<Port= explimpi
<Paort= explimpi
=Port= expdimpl
=Port= exp/imp1

=Port= exp/imp1

<Port= exp/imp1
<Port= expimpil
<Port= expimpl
=Port= expdimpl
<Port= expimpl
<Port= expimpl
<Port= expdimpl

Exported entities

Imported entiies | Messages | Diff Types

X

Number of imported/exported Entities

& AR &

Humber of Entities

j:

6.3 The Mozart Distribution-Subsystem Simulator

The simulator is a graphical tool (see Figure for development and understanding
of networked programming languages. It enables simulation of a set of communicating
virtual machines in a controlled environment.

By giving the developer a tool where execution can be controlled, statistics can be
retrieved and faults can be inserted, the simulator simplifies verification of new features
for a networked programming language.

6.3. The Mozart Distribution-Subsystem Simulator 21

Figure 6.2: An example of the LogTool.

=l OzMessaneTrace - 0O X
Z607E 1583435 15361 I
£
P~ =
Figure 6.3: An example of the Simulator.
— SE X
N
— 4 Distributed Mozas - O X
Play | Step | Time: 30
Delay between time ticks:
100
| L1
. i Show Mode Layout
te .| Show Message Log
Run GC |
L 2
L
v
]

22

Chapter 6. Monitoring Tools

Interfaces

The Distribution Subsystem offers interfaces for both getting data and setting parame-
ters to the Language level. The following modules interface the DS:

e DPIniff}: Initialization of the DS.

DPStatisticsfl: Various statistics on the performance of the DS.

Remotef}: Spawning remote processes.

Faulff]: Handling failure in customized ways.

Connectionf]: Creating tickets and taking for bootstrapping connections.

There is also a set of properties that affect the behavior of the DS. These settings affect
all distributed activities for the whole site so they should be used with care. They are
defined in Chapter Emulator Properties: Property, (System Modules) under dp and
dpLog.

1Chapter Initializing and instrumenting the distribution layer: DPI ni t , (System Modules)

2Chapter Retriving statistical information from the Distribution layer: DPSt at i st cs, (System Mod-
ules)

SChapter Spawning Computations Remotely: Renot e, (System Modlules)

4Chapter Detecting and Handling Distribution Problems: Faul t , (System Modules)

5Chapter Connecting Computations: Connect i on, (System Modules)

