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Abstract

This document is an introduction to constraint programming in Oz. We restrict our atten-
tion to combinatorial problems that can be stated with variables ranging over finite sets of
nonnegative integers. Problems in this class range from puzzles to real world applications
as diverse as scheduling, ware house allocation, configuration and placement.
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Introduction

This document is a first introduction to constraint-based problem solving and its imple-
mentation in Oz. We restrict our attention to combinatorial problems that can be stated
with variables ranging over finite sets of nonnegative integers. Problems in this class
range from puzzles to real world applications as diverse as scheduling, ware house
allocation, configuration and placement.

The two basic techniques of constraint programming are constraint propagation and
constraint distribution. Constraint propagation is an efficient inference mechanism
obtained with concurrent propagators accumulating information in a constraint store.
Constraint distribution splits a problem into complementary cases once constraint prop-
agation cannot advance further. By iterating propagation and distribution, propagation
will eventually determine the solutions of a problem.

Constraint distribution can easily lead to an exponential growth of the number of sub-
problems to be considered. Fortunately, this potential combinatorial explosion can of-
ten be contained by combining strong propagation mechanisms with problem specific
heuristics for selecting distribution steps.

The following puzzles give a first idea of the combinatorial problems we will solve in
this document:

Money

The Send More Money Problem consists in finding distinct digits for the letters D, E,
M, N, O, R, S, Y such that S and M are different from zero (no leading zeros) and the
equation

SEND + MORE = MONEY

is satisfied. The unique solution of the problem is 9567+1085 = 10652.
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Safe

The code of Professor Smart’s safe is a sequence of 9 distinct nonzero digits C1, . . . ,C9

such that the following equations and inequations are satisfied:

C4−C6 = C7

C1 ∗C2 ∗C3 = C8 +C9

C2 +C3 +C6 < C8

C9 < C8

C1 6= 1, . . . ,C9 6= 9

Can you determine the code?

Coloring

Given a map showing the West European countries Netherlands, Belgium, France,
Spain, Portugal, Germany, Luxemburg, Switzerland, Austria, and Italy, find a coloring
such that neighboring countries have different color and a minimal number of colors is
used.

Grocery

A kid goes into a grocery store and buys four items. The cashier charges $7.11, the
kid pays and is about to leave when the cashier calls the kid back, and says ‘Hold on, I
multiplied the four items instead of adding them; I’ll try again; Hah, with adding them
the price still comes to $7.11’. What were the prices of the four items?

Queens

Place 8 queens on a chess board such that no two queens attack each other.

The problems have in common that they can be stated with variables that are a priori
constrained to finite sets of nonnegative integers. Consequently, the problems could
be solved by simply checking all possible combinations of the values of the variables.
This naive generate and test method is however infeasible for most realistic problems
since there are just too many possible combinations.

More Information

While this tutorial tries to be as self-contained as possible for constraint programming
in Oz, it is expected that the reader has already a working knowledge of functional Oz
programming. As an introduction for functional and object-oriented programming in
Oz we suggest “Tutorial of Oz” . The full functionality of Oz provided for constraint
programming is included in the document Part Constraint Programming, (System Mod-
ules) .
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The Examples

The tutorial features a large number of examples. To ease the understanding the ex-
amples should be tried in the Oz Programming Environment (OPI)1. The Oz programs
are contained in the following file2. Oz programs for some solutions to the exercises
are contained in the following file3.

Acknowledgements

The tutorial is based on the document “Finite Domain Constraint Programming in Oz.
A Tutorial” by Gert Smolka, Christian Schulte, and Jörg Würtz for a previous version
of Oz.

1“The Oz Programming Interface”
2FiniteDomainTutorial.oz
3FiniteDomainTutorialSolutions.oz
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Propagate and Distribute

This section presents the architecture of constraint-based problem solving at the con-
crete instance of finite domain problems. We will often refer to the underlying solution
method with the slogan ‘propagate and distribute’. The slogan recalls the two inference
rules of the method, constraint propagation and constraint distribution.

2.1 Finite Domains and Constraints

A finite domain is a finite set of nonnegative integers. The notation m#n stands for the
finite domain m, . . . ,n.

A constraint is a formula of predicate logic. Here are typical examples of constraints
occurring with finite domain problems:

X = 67 X ∈ 0#9 X = Y
X2−Y 2 = Z2 X +Y +Z < U X +Y 6= 5 ·Z

X1, . . . ,X9 are pairwise distinct

domain constraints A domain constraint takes the form x ∈D, where D is a finite
domain. Domain constraints can express constraints of the form x = n since x = n is
equivalent to x ∈ n#n.

basic constraints A basic constraint takes one of the following forms: x = n,
x = y, or x ∈ D, where D is a finite domain.

finite domain problems A finite domain problem is a finite set P of quantifier-
free constraints such that P contains a domain constraint for every variable occurring
in a constraint of P. A variable assignment is a function mapping variables to integers.

solutions A solution of a finite domain problem P is a variable assignment that
satisfies every constraint in P.

Notice that a finite domain problem has at most finitely many solutions, provided we
consider only variables that occur in the problem (since the problem contains a finite
domain constraint for every variable occurring in it).
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2.2 Constraint Propagation

Constraint propagation is an inference rule for finite domain problems that narrows the
domains of variables. For instance, given the inequation

X < Y

and the domain constraints
X ∈ 23#100

and
Y ∈ 1#33

constraint propagation can narrow the domains of X and Y to

X ∈ 23#32

and
Y ∈ 24#33

2.3 Spaces, Propagators, and Constraint Stores

The computational architecture for constraint propagation is called a space and consists
of a number of propagators connected to a constraint store:

Propagator Propagator. . .

Constraint Store

The constraint store stores a conjunction of basic constraints up to logical equivalence.
An example for such a conjunction is

X ∈ 0#5 ∧ Y = 8 ∧ Z ∈ 13#23.

The propagators impose nonbasic constraints, for instance, X < Y or X 2 +Y 2 = Z2. A
propagator for a constraint C is a concurrent computational agent that tries to narrow
the domains of the variables occurring in C.

example of communicating propagators Two propagators that share a variable
X can communicate with each other through the constraint store. To see an example
for communicating propagators, suppose we have two propagators imposing the con-
straints

X +Y = 9 2 ·X +4 ·Y = 24

over a constraint store containing the following information about X and Y :

X ∈ 0#9 Y ∈ 0#9
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As is, the first propagator cannot do anything. The second propagator, however, can
narrow the domains of both X and Y :

X ∈ 0#8 Y ∈ 2#6

Now the first propagator can narrow the domain of X :

X ∈ 3#7 Y ∈ 2#6

Now the second propagator can narrow the domains of both X and Y :

X ∈ 4#6 Y ∈ 3#4

This once more activates the first propagator, which narrows the domain of X :

X ∈ 5#6 Y ∈ 3#4

Now the second propagator gets active once more and determines the values of X and
Y :

X = 6 Y = 3

telling a constraint Given a constraint store storing a constraint S and a propagator
imposing a constraint P, the propagator can tell to the constraint store a basic constraint
B if the conjunction S∧P entails B and B adds new and consistent information to the
store. To tell a constraint B to a constraint store storing the constraint S means to update
the store so that it holds the conjunction S∧B.

operational and declarative semantics of propagators The operational se-
mantics of a propagator determines whether the propagator can tell the store a basic
constraint or not. The operational semantics of a propagator must of course respect the
declarative semantics of the propagator, which is given by the constraint the propagator
imposes.

We require that the constraint store be always consistent; that is, there must always be
at least one variable assignment that satisfies all constraints in the constraint store.

determined variables We say that the constraint store determines a variable x if
the constraint store knows the value of x, that is, if there exists an integer n such that
the constraint store entails x = n.

failed propagators We say that a propagator is inconsistent if there is no variable
assignment that satisfies both the constraint store and the constraint imposed by the
propagator (e.g., X +Y = 6 over X ∈ 3#9 and Y ∈ 4#9). We say that a propagator is
failed if its operational semantics realizes that it is inconsistent.
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entailed propagators We say that a propagator is entailed if every variable as-
signment that satisfies the constraint store also satisfies the constraint imposed by the
propagator (e.g., X < Y over X ∈ 3#5 and Y ∈ 6#9). As soon as the operational se-
mantics of a propagator realizes that the propagator is entailed, the propagator ceases
to exist.

We require that the operational semantics of a propagator detects inconsistency and
entailment at the latest when the store determines all variables of the propagator.

stable propagators We say that a propagator is stable if it is either failed or its
operational semantics cannot tell new information to the constraint store.

failed, stable, and solved spaces We say that a space is failed if one of its
propagators is failed. We say that a space is stable if all of its propagators are stable.
We say that a space is solved if it is not failed and there are no propagators left.

propagation order does not matter When a space is created, its propagators
start to tell basic constraints to the constraint store. This propagation activity continues
until the space becomes stable. An important property of constraint propagation as
we consider it here is the fact that the order in which the propagators tell information
to the store does not matter. When we start a space repeatedly from the same state,
it will either always fail or always arrive at the same constraint store (up to logical
equivalence).

solutions of a space A variable assignment is called a solution of a space if it sat-
isfies the constraints in the constraint store and all constraints imposed by the propaga-
tors. The solutions of a space stay invariant under constraint propagation and deletion
of entailed propagators.

2.4 Interval and Domain Propagation

There are two established schemes for the operational semantics of a propagator. Do-
main propagation narrows the domains of the variables as much as possible; interval
propagation only narrows the bounds of a domain.

Consider a propagator for the constraint

2 ·X = Y

over a constraint store
X ∈ 1#10 Y ∈ 1#7

Under domain propagation, the propagator can narrow the domains to

X ∈ 1#3 Y ∈ {2,4,6}

Under interval propagation, the propagator can narrow only the domain bounds, which
yields

X ∈ 1#3 Y ∈ 2#6
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In practice, interval propagation is usually preferable over domain propagation because
of its lower computational costs. We will see later that Oz offers for some constraints
two propagators, one for interval and one for domain propagation.

2.5 Incompleteness of Propagation

Constraint propagation is not a complete solution method. It may happen that a space
has a unique solution and that constraint propagation does not find it. It may also
happen that a space has no solution and that constraint propagation does not lead to a
failed propagator.

A straightforward example for the second case consists of three propagators for

X 6= Y X 6= Z Y 6= Z

and a constraint store

X ∈ 0#1 Y ∈ 0#1 Z ∈ 0#1.

This space has no solution. Nevertheless, none of the propagators is inconsistent or
can tell something to the constraint store.

To see an example for the case where a unique solution is not found by constraint
propagation, suppose we have interval propagators for the constraints

3 ·X +3 ·Y = 5 ·Z X −Y = Z X +Y = Z +2

and a constraint store

X ∈ 4#10 Y ∈ 1#7 Z ∈ 3#9

This space has the unique solution X = 4, Y = 1, Z = 3. Nevertheless, none of the
propagators can narrow a variable domain.

If we narrow the domains to

X ∈ 5#10 Y ∈ 1#6 Z ∈ 4#9

the space becomes unsatisfiable. Still, none of the above propagators is inconsistent or
can narrow a variable domain.

2.6 Distribution and Search Trees

To solve a finite domain problem P, we can always choose a constraint C and solve
both P∪{C} and P∪{¬C}. We say that we have distributed P with C.

We can apply the idea to spaces. Suppose S is a stable space that is neither failed nor
solved. Then we can choose a constraint C and distribute S with C. Distribution yields
two spaces, one obtained by adding a propagator for C, and one obtained by adding a
propagator for ¬C.

The combination of constraint propagation and distribution yields a complete solution
method for finite domain problems. Given a problem, we set up a space whose store
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contains the basic constraints and whose propagators impose the nonbasic constraints
of the problem. Then we run the propagators until the space becomes stable. If the
space is failed or solved, we are done. Otherwise, we choose a not yet determined
variable x and an integer n such that x = n is consistent with the constraint store and
distribute the space with the constraint x = n. Since we can tell both x = n and x 6= n to
the constraint store (the store already knows a domain for x), chances are that constraint
propagation can restart in both spaces.

By proceeding this way we obtain a search tree as shown in Figure 2.1. Each node
of the tree corresponds to a space. Each leaf of the tree corresponds to a space that
is either solved or failed. The search tree is always finite since there are only finitely
many variables all a priori constrained to finite domains.

Figure 2.1: A search tree. Diamonds represent solved spaces and boxes represent failed spaces.

2.7 An Example

To see the outlined propagate and distribute method at a concrete example, consider
the problem specified by the following constraints:

X 6= 7 Z 6= 2 X −Z = 3 ·Y
X ∈ 1#8 Y ∈ 1#10 Z ∈ 1#10

To solve the problem, we start with a space whose store constrains the variables x, Y ,
and Z to the given domains. We also create three propagators imposing the constraints
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X 6= 7, Z 6= 2, and X − Z = 3 ·Y . We assume that the propagator for X − Z = 3 ·Y
realizes interval propagation, and that the propagators for the disequations X 6= 7 and
Z 6= 2 realize domain propagation.

The propagators for the disequations immediately write all their information into the
store and disappear. The store then knows the domains

X ∈ [1#6 8] Y ∈ 1#10 Z ∈ [1 3#10]

where [1 3#10] denotes the finite domain {1}∪{3, . . . ,10}. The interval propagator
for X −Z = 3 ·Y can now further narrow the domains to

X ∈ [4#6 8] Y ∈ 1#2 Z ∈ [1 3#5].

Now the space is stable but neither failed nor solved. Thus, we continue with a first
distribution step. We choose to distribute with the constraint X = 4. Figure 2.2 shows
the resulting search tree.

Figure 2.2: A search tree containing 3 choice nodes, 1 failure node, and 3 solution nodes.

[X[4#6 8] Y[1#2] Z[1 3#5]]

[X[5#6 8] Y[1#2] Z[1 3#5]][4 1 1]

failure [X[6#8] Y[1#2] Z[1 3#5]]

[6 1 3] [8 1 5]

X=4 X6=4

X6=5X=5

X=6 X 6=6

The space obtained by adding a propagator for X = 4 can be solved by propagation and
yields the solution

X = 4 Y = 1 Z = 1

The space obtained by adding a propagator for X 6= 4 becomes stable immediately after
this propagator has written its information into the constraint store, which then looks
as follows:

X ∈ [5#6 8] Y ∈ 1#2 Z ∈ [1 3#5]

This time we distribute with respect to the constraint X = 5.
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The space obtained by adding a propagator for X = 5 fails since X−Z = 3 ·Y is incon-
sistent with the store obtained by adding X = 5.

The space obtained by adding a propagator for X 6= 5 becomes stable immediately after
this propagator has written its information into the constraint store, which then looks
as follows:

X ∈ [6 8] Y ∈ 1#2 Z ∈ [1 3#5]

Now we distribute with respect to the constraint X = 6.

The space obtained by adding a propagator for X = 6 can be solved by propagation and
yields the solution

X = 6 Y = 1 Z = 3

Finally, the space obtained by adding a propagator for X 6= 6 can also be solved by
propagation, yielding the third and final solution

X = 8 Y = 1 Z = 5

An alternative to the propagate and distribute method is a naive enumerate and test
method, which would enumerate all triples (X ,Y,Z) admitted by the initial domain
constraints and test the constraints X 6= 7, Z 6= 2, and X − Z = 3 ·Y for each triple.
There are 8 ∗ 10 ∗ 10 = 800 candidates. This shows that constraint propagation can
reduce the size of the search tree considerably.

2.8 Distribution Strategies

A distributor is a computational agent implementing a distribution strategy. If a thread
creates a distributor, the thread is blocked until the distributor has done its job. If a
distribution step is needed, the distributor becomes active and generates the constraint
with which the space will be distributed. If there is more than one distributor in exis-
tence, one of them is chosen indeterministically whenever a distribution step is needed.

Usually, a distribution strategy is defined on a sequence x1, . . . ,xn of variables. When
a distribution step is necessary, the strategy selects a not yet determined variable in the
sequence and distributes on this variable.

standard possibilities to distribute on a variable There are a few standard
possibilities to distribute on a variable x:

• distribute with x = l, where l is the least possible value for x.

• distribute with x = u, where u is the largest possible value for x.

• distribute with x = m, where m is a possible value for x that is in the middle of
the least and largest possible value for x.

• distribute with x ≤ m, where m is a possible value for x that is in the middle of
the least and largest possible value for x (so called domain splitting).
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naive distribution A naive distribution strategy will select the leftmost undeter-
mined variable in the sequence.

first-fail distribution A first-fail distribution strategy will select the leftmost un-
determined variable in the sequence whose domain in the constraint store has minimal
size. In other words, it will select the leftmost undetermined variable for which the
number of different possible values is minimal.

For most problems, first-fail strategies yield much smaller search trees than naive
strategies.

2.9 Search Order

So far we have not specified in which order search trees are explored. Although this
order has no impact on the shape and size of a search tree, it does have an impact on
the time and memory resources needed to find one or all solutions:

• If we are only interested in one solution, there is no need to explore the entire
search tree. Ideally, we would just explore the path leading from the root to the
solution.

• If we are interested in all solutions, we need to explore the entire search tree.
However, whether we explore the tree in depth-first or breadth-first manner will
make a big difference in the memory needed. The memory requirements of
breadth-first exploration are typically exponentially larger than those of depth-
first exploration.

We will assume that the search engine explores the search trees always in a depth-first
fashion. Moreover, when the engine distributes with a constraint C, it explores the
space obtained with C first and the space obtained with ¬C second.

The above assumptions ensure that the exploration of a search tree is a deterministic
process, provided the distribution strategy generating the constraints to distribute with
is deterministic.

2.10 Models

A model of a problem is a representation of the problem as a finite domain problem (as
defined in Section 2.1). A model specifies the variables and the constraints representing
the problem.

Nontrivial problems will admit different models and different distribution strategies,
coming with different computational properties and search trees of different size. The
art of constraint programming consists in finding for a problem a model and a distribu-
tion strategy that yield a computationally feasible search tree.
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Writing Problem Solvers in Oz

We are now well-prepared to write and run our first finite domain problem solvers in
Oz. For running, analyzing, and debugging problem solvers we will use the Explorer1,
a graphical tool of the Mozart programming environment.

A script for a finite domain problem is a program that can compute one or all solutions
of the problem. In Oz, scripts will be run on predefined search engines implementing
the propagate and distribute method just described. Separating scripts from the search
engines running them is an important abstraction making it possible to design scripts
at a very high level. To develop a script for a given problem, we start by designing a
model and a distribution strategy. We then obtain an executable script by implementing
the model and distribution strategy with the predefined abstractions available in Oz.

3.1 Format of Scripts

In Oz, a script takes the form of a procedure

proc {Script Root}

%% declare variables

in

%% post constraints

%% specify distribution strategy

end

The procedure declares the variables needed, posts the constraints modeling the prob-
lem, and specifies the distribution strategy.

The argument Root stands for the solutions of the problem to be solved. If the solutions
of a problem are given by more than one variable, say X, Y, and Z, we may simply
combine these variables into one record by posting a constraint like

Root = solution(x:X y:Y z:Z)

The procedure

{SearchAll Script ?Solutions}

1“Oz Explorer – Visual Constraint Programming Support”
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will run the script Script until the entire search tree is explored and return the list of
the solutions found.

The procedure

{SearchOne Script ?Solutions}

will run the script Script until the first solution is found. If a solution is found, it is
returned as the single element of a list; otherwise, the empty list is returned.

3.2 Example: Send More Money

We will now write a script for the Send More Money Puzzle.

Problem Specification

The Send More Money Problem consists in finding distinct digits for the letters D, E,
M, N, O, R, S, Y such that S and M are different from zero (no leading zeros) and the
equation

SEND + MORE = MONEY

is satisfied. The unique solution of the problem is 9567+1085 = 10652.

Model

We model the problem by having a variable for every letter, where the variable stands
for the digit associated with the letter. The constraints are obvious from the problem
specification.

Distribution Strategy

We distribute on the variables for the letters with a first-fail strategy. The variables
are ordered according to the alphabetic order of the letters. The strategy tries the least
possible value of the selected variable.

Script

Figure 3.1 shows a script realizing the model and distribution strategy just discussed.
The script first declares a local variable for every letter. Then it posts the following
constraints:

1. Root is a record that has a field for every letter. The fields of Root are the digits
for the corresponding letters. This constraint is basic.

2. The fields of Root are integers in the domain 0#9. This constraint is basic.

3. The fields of Root are pairwise distinct. This constraint is nonbasic.

4. The values of the variables S and M are different from zero (no leading zeros).
These constraints are nonbasic.

5. The digits for the letters satisfy the equation SEND+MORE=MONEY. This constraint
is nonbasic.
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Figure 3.1: A script for the Send More Money Puzzle.

proc {Money Root}

S E N D M O R Y

in

Root = sol(s:S e:E n:N d:D m:M o:O r:R y:Y) % 1

Root ::: 0#9 % 2

{FD.distinct Root} % 3

S \=: 0 % 4

M \=: 0

1000*S + 100*E + 10*N + D % 5

+ 1000*M + 100*O + 10*R + E

=: 10000*M + 1000*O + 100*N + 10*E + Y

{FD.distribute ff Root}

end

Posting of constraints

posting of constraints is defined differently for basic and nonbasic constraints. Basic
constraints are posted by telling them to the constraint store. Nonbasic constraints are
posted by creating propagators implementing them.

Note that the propagators for S\=:0 and M\=:0 can immediately write their complete
information into the constraint store since the store already knows domains for S and
M.

The last line {FD.distribute ff Root} posts a distributor that will distribute on the
field of Root with the first-fail strategy (specified by the atom ff). Equivalently, we
could write

{FD.distribute ff [D E M N O R S Y]}

and thus specify the variables and their order explicitly. The order of the fields of Root
is given by the canonical ordering of the respective features d, e, m, n, o, r, s, and y.

The statement

{Browse {SearchAll Money}}

will compute and display the list of all solutions of the Send More Money Puzzle:

[sol(d:7 e:5 m:1 n:6 o:0 r:8 s:9 y:2)]

To understand the search process defined by Money, we need more information than
just the list of solutions found. Obviously, it would be useful to see a graphical repre-
sentation of the search tree. It would also be nice if we could see for every node of the
search tree what information about the solution was accumulated in the constraint store
when the respective space became stable. Finally, it would be nice to see for every arc
of the tree with which constraint it was distributed.



18 Chapter 3. Writing Problem Solvers in Oz

Figure 3.2 shows the search tree explored by Money together with the information just
mentioned. This gives us a good understanding of the search process defined by Money.
Note that the search tree is quite small compared to the 108 candidates a naive generate
and test method would have to consider.

Figure 3.2: The search tree explored by Money.

sol(d:[2#8] e:[4#7] m:1 n:[5#8] o:0 r:[2#8] s:9 y:[2#8])

failure sol(d:[2#8] e:[5#7] m:1 n:[6#8] o:0 r:[2#8] s:9 y:[2#8])

sol(d:7 e:5 m:1 n:6 o:0 r:8 s:9 y:2)

sol(d:[2#8] e:[6#7] m:1 n:[7#8] o:0 r:[2#8] s:9 y:[2#8])

failure failure

E=4 E6=4

E=5

E6=5

E=6 E6=6

3.3 The Explorer

The Explorer is a graphical tool of the Mozart programming environment. It can run
scripts and display the explored search trees. It can also display the information in the
constraint stores associated with the nodes of the search tree.

The statement

{ExploreAll Money}

tells the Explorer to run the script Money and explore the entire search tree. The Ex-
plorer will pop up a window and display the explored nodes of the search tree (see left
part of Figure 3.3). Choice nodes appear as blue circles, failure nodes as red boxes,
and solution nodes as green diamonds. Fully explored subtrees not containing solution
nodes are collapsed into a single red triangle.

You can select any node of the displayed search tree by clicking it with the left mouse
button. Select the red triangle and type the command h (hide/unhide). This will replace
the triangle with the actual nodes of the tree (see right part of Figure 3.3). You now
see the full search tree of Money, which consists of three choice nodes, three failure
nodes, and one solution node. Typing the command h once more will switch back to
the compact representation of the failed subtree.
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Figure 3.3: The Explorer with the search tree of Money.

double clicking nodes Next, double click the green solution node with the left
mouse button.

This will display the unique solution

sol(d:7 e:5 m:1 n:6 o:0 r:8 s:9 y:2)

of the Money Puzzle in the Browser. You can also double click a blue choice node. This
will display the information about the solution that was accumulated in the constraint
store before the node was distributed. Double clicking the top node of the tree, for
instance, will display

sol(d:_[2#8] e:_[4#7] m:1 n:_[5#8]

o:0 r:_[2#8] s:9 y:_[2#8])

in the Browser. This way, the Explorer and the Browser can display the annotated
search tree shown in Figure 3.2.

open and closed choice nodes The statement

{ExploreOne Money}

tells the Explorer to run the script Money until the first solution is found. This time the
Explorer will show a partial search tree that contains the solution node in the rightmost
position, and also contains an open choice node. An open choice node is a choice node
for which not all direct descendents have been explored yet. A closed choice node is a
choice node for which all direct descendents have been explored already. While closed
choice nodes are displayed in dark blue, open choice nodes are displayed in light blue.
Not yet explored descendents of an open choice node are not displayed.

To check whether there are further solutions, you can resume the search process by
selecting the root node and typing the command n (next). This will resume the search
until either the next solution is found or all nodes of the search tree are explored.
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stopping exploration You can stop the exploring Explorer at any time by typing
the command C-g.

resuming exploration You can resume the exploration of a partial search tree by
selecting any choice node and typing the command n or a. The command n (next)
will resume the exploration of the selected subtree until a further solution is found or
the subtree is fully explored. The command a (all) will resume the exploration of the
selected subtree until it is fully explored.

resetting the Explorer The command C-r will reset the Explorer and show only
the root node of the search tree. By double clicking you can see in the Browser what
is known about the solution before the first distribution step. You can request the
exploration of the seach tree by typing n or a.

hand-guided exploration You can guide the search of the Explorer by hand. Re-
set the Explorer by typing C-r. This will select the root node, which is an open choice
node. Now type the command o (one) to compute the first descendent of the root.
Select the root once more and type o again. This will compute the second and final
descendent of the root. Note that the root has now changed from light blue indicating
an open choice node to dark blue indicating a closed choice node.

zooming the search tree The right vertical scroll bar of the Explorer’s window
zooms the size of the displayed search tree. You can zoom the tree to fit the size of the
window by clicking the zoom bar with the right mouse button.

Exercise 3.1 With the Explorer it is easy to observe the effect of different distribution
strategies. Replace the first-fail distribution strategy in Money with the naive strategy

{FD.distribute naive Root}

which distributes on the leftmost undetermined variable and its least possible value.
Draw the new search tree with the Explorer and observe that it is twice as large as the
tree obtained with first-fail distribution.

Exercise 3.2 Write a script that finds distinct digits for the letters A, B, D, E, G, L,
N, O, R, and T such that the equation

DONALD+GERALD = ROBERT

holds without leading zeros. Run the script with the Explorer and study the search
tree. Try both first-fail and naive distribution. Observe that first-fail distribution yields
a search tree that is by one order of magnitude smaller than the search tree obtained
with naive distribution.
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3.4 New Primitives

This section gives you an idea of the new Oz primitives needed to express search en-
gines and finite domain scripts.

The new primitives come in two orthogonal groups. The first group provides the ability
to create and distribute spaces and to explore search trees. This ability is essential for
the implementation of search engines based on the propagate and distribute paradigm.
As was mentioned before, this paradigm is general and applies also to constraints other
than finite domain constraints.

The second group of primitives provides the ability to create finite domain propagators
and to tell domain constraints to the constraint store. It also provides the ability to
access the domain of a variable in the current constraint store, an expressivity needed
for programming distribution strategies.

first-class spaces Oz provides spaces as first-class citizens that can be created,
distributed, and killed, among other things. A first-class space is almost like Oz’s
unique top-level space, where regular computation takes place. Like the top-level
space, first-class spaces have a constraint store, a procedure store, and a cell store
and can host any number of threads. One important difference between the top-level
and first-class spaces is the treatment of failure, which is considered an error at the top
level and a regular event in first-class spaces (this space has no solution).

attributes of global objects cannot be assigned The parent of a first-class
space is the space that created it. The constraint and the procedure store of a first-class
space inherit all constraints and procedures in the respective stores of the parent space.
However, a first-class space has no write access to the cell store of its parent space.
Consequently, it is impossible to assign in a first-class space attributes of objects that
belong to an ancestor space. On the other hand, a first-class space can create its own
objects and apply them freely.

The details of first-class spaces need only concern programmers who want to imple-
ment new search engines. For finite domain problems, the necessary search engines
are already available as predefined functionality (e.g., SearchOne and SearchAll).

All functionality related to finite domain constraints is provided through the proce-
dures of the module FD. We have already seen FD.distinct (creates a propagator)
and FD.distribute (creates a distributor) in the script for the Send More Money Puz-
zle (see Section 3.2).

infix notations For some of the procedures of the module FD, Oz provides special
infix notations governed by the following operators:

:: ::: =: \=: <: >: =<: >=:

You have already seen examples of the use of :::, \=:, and =: in the script Money.
An equivalent version of Money not using these notational conveniences appears in
Figure 3.4
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Figure 3.4: A script for Money that does not use the infix notations =: and \=:.

proc {Money Root}

S E N D M O R Y

in

Root = sol(s:S e:E n:N d:D m:M o:O r:R y:Y)

{FD.dom 0#9 Root}

{FD.distinct Root}

{FD.sum [S] ’\\=:’ 0}

{FD.sum [M] ’\\=:’ 0}

{FD.sumC

[1000 100 10 1 1000 100 10 1 ~10000 ~1000 ~100 ~10 ~1]

[ S E N D M O R E M O N E Y]

’=:’

0}

{FD.distribute ff Root}

end

3.5 Watching Propagators

It is illuminating to watch the effect of one or several propagators with the Browser.
Enter the following statements line by line and observe in the Browser the shrinking
domains of the variables X, Y, and Z:

declare X Y Z

{Browse [X Y Z]} % [X Y Z]

X :: 1#13 % [X[1#13] Y Z]

Y :: 0#27 % [X[1#13] Y[0#27] Z]

Z :: 1#12 % [X[1#13] Y[0#27] Z[1#12]]

2*Y =: Z % [X[1#13] Y[1#6] Z[2#12]]

X <: Y % [X[1#5] Y[2#6] Z[4#12]]

Z <: 7 % [X[1#2] Y[2#3] Z[4#6]]

X \=: 1 % [2 3 6]

The comments say what you will see in the Browser. Note that the statement 2*Y=:Z
creates a propagator that performs interval rather than domain propagation.
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3.6 Example: Safe

Problem Specification

The code of Professor Smart’s safe is a sequence of 9 distinct nonzero digits C1, . . . ,C9

such that the following equations and inequations are satisfied:

C4−C6 = C7

C1 ∗C2 ∗C3 = C8 +C9

C2 +C3 +C6 < C8

C9 < C8

C1 6= 1, . . . ,C9 6= 9

Can you determine the code?

Model and Distribution Strategy

We choose the obvious model that has a variable for every digit C1, . . . ,C9. We dis-
tribute over these variables with the standard first-fail strategy.

Figure 3.5: A script for the Safe Puzzle.

proc {Safe C}

{FD.tuple code 9 1#9 C}

{FD.distinct C}

C.4 - C.6 =: C.7

C.1 * C.2 * C.3 =: C.8 + C.9

C.2 + C.3 + C.6 <: C.8

C.9 <: C.8

{For 1 9 1 proc {$ I} C.I \=: I end}

{FD.distribute ff C}

end

Script

Figure 3.5 shows a script for the Safe Puzzle. The statement

{FD.tuple code 9 1#9 C}

constrains the root variable C to a tuple with label code whose components are integers
in the domain 1#9. The statement

{For 1 9 1 proc {$ I} C.I \=: I end}

posts the constraint c.i 6= i for every i = 1, . . . ,9.

The full search tree of Safe has 23 nodes and contains the unique solution:

code(4 3 1 8 9 2 6 7 5)
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4

Elimination of Symmetries and
Defined Constraints

In this section you will learn two basic constraint programming techniques. The first
technique consists in eliminating symmetries in the model, which often leads to scripts
with smaller search trees. The second technique introduces defined constraints, a
means for writing modular and concise scripts.

4.1 Example: Grocery

This example illustrates that elimination of symmetries can dramatically reduce the
size of search trees.

Problem Specification

A kid goes into a grocery store and buys four items. The cashier charges $7.11, the
kid pays and is about to leave when the cashier calls the kid back, and says ‘Hold on, I
multiplied the four items instead of adding them; I’ll try again; Hah, with adding them
the price still comes to $7.11’. What were the prices of the four items?

Model

Our model has four variables A, B, C, and D, which stand for the prices of the four
items. In order that the variables can be constrained to finite domains of integers, we
assume that the prices are given in cents. To say that the sum of the four prices is 711,
we impose the constraint A+B+C +D = 711, and to say that the product of the four
prices is 711, we impose the constraint

A ·B ·C ·D = 711 ·100 ·100 ·100

The model admits many different equivalent solutions since the prices of the items
can be interchanged. We can eliminate these symmetries by imposing an order on the
prices of the items, for instance,

A ≤ B ≤C ≤ D.

With these ordering constraints the model has a unique solution.
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Distribution Strategy

For this problem it is advantageous to use a first-fail strategy that splits the domain of
the selected variable and tries the upper part of the domain first. This strategy leads
to a much smaller search tree than the standard first-fail strategy, which tries the least
possible value of the selected variable first.

Figure 4.1: A script for the Grocery Puzzle.

proc {Grocery Root}

A#B#C#D = Root

S = 711

in

Root ::: 0#S

A+B+C+D =: S

A*B*C*D =: S*100*100*100

%% eliminate symmetries

A =<: B

B =<: C

C =<: D

{FD.distribute generic(value:splitMax) Root}

end

Script

The script in Figure 4.1 spawns a search tree with 5039 nodes. It will explore 566
nodes before it finds the unique solution 120#125#150#316. Without the ordering
constraints the script explores more than three times as many nodes before finding a
first solution. We learn that the elimination of symmetries may make it easier to find
the first solution.

A Subtle Symmetry

There exists another symmetry whose elimination leads to a much smaller search tree.
For this we observe that 711 has the prime factor 79 (711 = 9 ·79). Since the product
of the prices of the items is 711, we can assume without loss of generality that 79 is
a prime factor of the price A of the first item. We adapt our script by replacing the
statement A=<:B with

A =: 79*{FD.decl}

The procedure {FD.decl X} constrains its argument to an integer in the finite domain
0#sup, where sup stands for a large implementation-dependent integer (134217726 in
Mozart on Linux or Sparcs).

The new propagator for A=:79*X reduces the search tree of Grocery to 357 nodes, one
order of magnitude less than before. The solution of the problem is now found after
exploring 44 nodes.
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4.2 Example: Family

defined constraints This example illustrates the use of defined constraints. A
defined constraint is a procedure

{DefinedConstraint X1 ... Xn}

posting constraints on the variables X1, . . . Xn. The reasons for introducing defined
constraints are more or less the same as for introducing defined procedures in ordinary
programming.

The script for the example will employ the procedures FD.sum, FD.sumC, and FD.sumCN,
which create propagators for linear and nonlinear summation constraints.

Problem Specification

Maria and Clara are both heads of households, and both families have three boys and
three girls. Neither family includes any children closer in age than one year, and all
children are under age 10. The youngest child in Maria’s family is a girl, and Clara has
just given birth to a little girl.

In each family, the sum of the ages of the boys equals the sum of the ages of the girls,
and the sum of the squares of the ages of the boys equals the sum of the the squares of
ages of the girls. The sum of the ages of all children is 60.

What are the ages of the children in each family?

Model

We model a family as a record

Name(boys:[B1 B2 B3] girls:[G1 G2 G3])

where the variables B1, B2 and B3 stand for the ages of the boys in descending order
(i.e., B3 is the age of the youngest boy in the family), and the variables G1, G2 and G3
stand for the ages of the girls, also in descending order. This representation of a family
avoids possible symmetries. The constraints that must hold for a family F with name
N will be posted by the defined constraint {IsFamily N F}.

A solution is a pair consisting of Maria’s and Clara’s family.

Distribution Stratgey

We distribute on the list of the ages of the children of the two families following a
first-fail strategy. The strategy splits the domain of the selected variable and tries the
lower part of the domain first.
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Figure 4.2: A script for the Family Puzzle.

proc {Family Root}

〈Definition of IsFamily 29b〉
〈Definition of AgeList 29a〉
Maria = {IsFamily maria}

Clara = {IsFamily clara}

AgeOfMariasYoungestGirl = {Nth Maria.girls 3}

AgeOfClarasYoungestGirl = {Nth Clara.girls 3}

Ages = {FoldR [Clara.girls Clara.boys Maria.girls Maria.boys]

Append nil}

in

Root = Maria#Clara

{ForAll Maria.boys proc {$ A} A >: AgeOfMariasYoungestGirl end}

AgeOfClarasYoungestGirl = 0

{FD.sum Ages ’=:’ 60}

{FD.distribute split Ages}

end

Script

The script in Figure 4.2 introduces two defined constraints. The defined constraint

F={IsFamily Name}

imposes constraints saying that F is the representation of a family with name Name
(see Figure 4.3). The defined constraint

L={AgeList}

imposes constraints saying that L is a list of three integers between 0 and 9 appearing
in descending order (see Figure 4.3).

The statement

{FD.sumC Coeffs Ages ’=:’ 0}

creates a propagator for the constraint

1 ·B1 + 1 ·B2 + 1 ·B3 + (−1) ·G1 + (−1) ·G2 + (−1) ·G3 = 0

saying that the sum of the ages of the boys equals the sum of the ages of the girls. The
statement

{FD.sumCN Coeffs {Map Ages fun {$ A} [A A] end} ’=:’ 0}
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Figure 4.3: Defined constraints for the Family Puzzle.

29a 〈Definition of AgeList 29a〉≡
proc {AgeList L}

{FD.list 3 0#9 L}

{Nth L 1} >: {Nth L 2}

{Nth L 2} >: {Nth L 3}

end

29b 〈Definition of IsFamily 29b〉≡
fun {IsFamily Name}

Coeffs = [1 1 1 ~1 ~1 ~1]

BoysAges = {AgeList}

GirlsAges = {AgeList}

Ages = {Append BoysAges GirlsAges}

in

{FD.distinct Ages}

{FD.sumC Coeffs Ages ’=:’ 0}

{FD.sumCN Coeffs {Map Ages fun {$ A} [A A] end} ’=:’ 0}

Name(boys:BoysAges girls:GirlsAges)

end

creates a propagator for the constraint

1 ·B1 ·B1 + 1 ·B2 ·B2 + 1 ·B3 ·B3 + (−1) ·G1 ·G1 +
(−1) ·G2 ·G2 + (−1) ·G3 ·G3 = 0

saying that the sum of the squares of the ages of the boys equals the sum of the squares
of the ages of the girls. The statement

{FD.sum Ages ’=:’ 60}

creates a propagator for the constraint saying that the sum of the ages of all kids equals
60.

4.3 Example: Zebra Puzzle

This example shows a clever problem representation avoiding possible symmetries. It
also illustrates the use of defined constraints.

Problem Specification

Five men with different nationalities live in the first five houses of a street. There are
only houses on one side of the street. The men practice distinct professions, and each
of them has a favorite drink and a favorite animal, all of them different. The five houses
are painted with different colors. The following facts are known:

1. The Englishman lives in a red house.
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2. The Spaniard owns a dog.

3. The Japanese is a painter.

4. The Italian drinks tea.

5. The Norwegian lives in the first house.

6. The owner of the green house drinks coffee.

7. The green house comes after the white one.

8. The sculptor breeds snails.

9. The diplomat lives in the yellow house.

10. Milk is drunk in the third house.

11. The Norwegian’s house is next to the blue one.

12. The violinist drinks juice.

13. The fox is in the house next to that of the doctor.

14. The horse is in the house next to that of the diplomat.

15. The zebra is in the white house.

16. One of the men drinks water.

Who lives where?

Model

We number the houses from 1 to 5, where 1 is the first and 5 is last house in the street.
There are 25 different properties (i.e. hosting an Englishman, being the green house,
hosting a painter, hosting a dog, or hosting someone who drinks juice), and each of
these properties must hold for exactly one house. The properties are partitioned into
five groups of five members each, where the properties within one group must hold for
different houses. The model has one variable for each of these properties, where the
variable stands for the number of the house for which this property holds.

Distribution Strategy

We distribute on the variables for the properties with the standard first-fail strategy.

Script

Figure 4.4 shows a script based on the outlined model and distribution strategy. The
script constrains the root variable Nb to a record that maps every property to a house
number between 1 and 5.

The script introduces two defined constraints. The defined constraint

{Partition Group}
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Figure 4.4: A script for the Zebra Puzzle.

proc {Zebra Nb}

Groups = [ [english spanish japanese italian norwegian]

[green red yellow blue white]

[painter diplomat violinist doctor sculptor]

[dog zebra fox snails horse]

[juice water tea coffee milk] ]

Properties = {FoldR Groups Append nil}

proc {Partition Group}

{FD.distinct {Map Group fun {$ P} Nb.P end}}

end

proc {Adjacent X Y}

{FD.distance X Y ’=:’ 1}

end

in

%% Nb maps all properties to house numbers

{FD.record number Properties 1#5 Nb}

{ForAll Groups Partition}

Nb.english = Nb.red

Nb.spanish = Nb.dog

Nb.japanese = Nb.painter

Nb.italian = Nb.tea

Nb.norwegian = 1

Nb.green = Nb.coffee

Nb.green >: Nb.white

Nb.sculptor = Nb.snails

Nb.diplomat = Nb.yellow

Nb.milk = 3

{Adjacent Nb.norwegian Nb.blue}

Nb.violinist = Nb.juice

{Adjacent Nb.fox Nb.doctor}

{Adjacent Nb.horse Nb.diplomat}

Nb.zebra = Nb.white

{FD.distribute ff Nb}

end
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says that the properties in the list Group must hold for pairwise distinct houses. The
defined constraint

{Adjacent X Y}

says that the properties X and Y must hold for houses that are next to each other. The
statement

{FD.distance X Y ’=:’ 1}

creates a propagator for |X −Y |= 1.

The script defines a search tree with 33 nodes. The unique solution is the record

number(

blue:2 coffee:5 diplomat:3 doctor:4

dog:3 english:4 fox:5 green:5

horse:4 italian:2 japanese:5 juice:1

milk:3 norwegian:1 painter:5 red:4

sculptor:2 snails:2 spanish:3 tea:2

violinist:1 water:4 white:1 yellow:3

zebra:1

)
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Parameterized Scripts

Combinatorial problems typically occur in a general form that can be instantiated with
different data sets. This leads to parameterized scripts separating the general script
from particular data sets.

5.1 Example: Queens

Problem Specification

Place N queens on an N×N chess board such that no two queens attack each other. The
parameter of the problem is N. A solution for the 8-queens problem looks as follows:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
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Model

We will use a clever model avoiding possible symmetries and minimizing the number
of propagators.

We assume that the queens are numbered from 1 to N, and that the k-th queen is always
placed in the k-th column. For every queen i we have one variable Ri saying in which
row the queen is placed. The model guarantees by construction that two queens are
never placed in the same column. To ensure that two queens are never in the same row,
we impose the constraint that the variables R1, . . . ,RN are pairwise distinct.

To enforce that two queens are never in the same diagonal, we need to impose the
constraints

Ri +( j− i) 6= R j and Ri− ( j− i) 6= R j

for all i, j such that 1 ≤ i < j ≤ N. Equivalently, we can impose the constraints

Ri− i 6= R j − j and Ri + i 6= R j + j

for all i, j such that 1 ≤ i < j ≤ N. This is equivalent to saying that the sequences

R1−1 , . . . , RN −N and R1 +1 , . . . , RN +N

are both nonrepetitive. Since Oz has a special propagator for the constraint stating the
nonrepetitiveness of such sequences, this formulation requires only two propagators,
one for each sequence.

Distribution Strategy

We distribute on the variables R1, . . . ,RN using a first-fail strategy that tries the value
in the middle of the domain of the selected variable first. This strategy works well even
for large N.

Figure 5.1: A script for the N-queens Problem.

fun {Queens N}

proc {$ Row}

L1N ={MakeTuple c N}

LM1N={MakeTuple c N}

in

{FD.tuple queens N 1#N Row}

{For 1 N 1 proc {$ I}

L1N.I=I LM1N.I=~I

end}

{FD.distinct Row}

{FD.distinctOffset Row LM1N}

{FD.distinctOffset Row L1N}

{FD.distribute generic(value:mid) Row}

end

end
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Script

Figure 5.1 shows a parameterized script for the N-Queens Problem. The actual script
is created by the procedure Queens, which takes N as parameter. The script constrains
its root variable Row to a tuple having a component for every queen. This implicitly
creates the variables R1, . . . ,RN of the model.

The statements

{FD.distinct Row}

{FD.distinctOffset Row LM1N}

{FD.distinctOffset Row L1N}

create propagators for the constraints stating that the sequences

Row.1 . . . Row.N

Row.1-1 . . . Row.N-N

Row.1+1 . . . Row.N+N

be non repetitive.

5.2 Example: Changing Money

Problem Specification

Given bills and coins of different denominations and an amount A, select a minimal
number of bill and coins to pay A. One instance of the problem assumes that we want
to pay the amount of 1.42, and that we have 6 one dollar bills, 8 quarters (25 cents) ,
10 dimes (10 cents), 1 nickel (5 cents), and 5 pennies (1 cent).

Model

To avoid conversions, we assume that the amount to be paid and all denominations
are specified in the same currency unit (e.g., cents). The data is specified by variables
a1, . . . ,ak specifying the available denominations di and the number ai of available
respective coins or bills.

The model has a variable Ci for ever available denomination saying how many of the
corresponding bills or coins we will use to pay the amount. For all i, we must have
0 ≤Ci ≤ ai Moreover, we must satisfy the constraint

d1 ·C1 +d2 ·C2 + · · ·+dk ·Ck = amount

Distribution Strategy

We distribute on the variables C1,C2, . . ., where we give precedence to larger denomi-
nations and, with second priority, to larger values.
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Figure 5.2: A script for changing money together with a data specification.

fun {ChangeMoney BillsAndCoins Amount}

Available = {Record.map BillsAndCoins fun {$ A#_} A end}

Denomination = {Record.map BillsAndCoins fun {$ _#D} D end}

NbDenoms = {Width Denomination}

in

proc {$ Change}

{FD.tuple change NbDenoms 0#Amount Change}

{For 1 NbDenoms 1 proc {$ I} Change.I =<: Available.I end}

{FD.sumC Denomination Change ’=:’ Amount}

{FD.distribute generic(order:naive value:max) Change}

end

end

BillsAndCoins = bac(6#100 8#25 10#10 1#5 5#1)

Script

The procedure ChangeMoney in Figure 5.2 takes two parameters specifying the avail-
able bills and coins and the amount to be paid. It returns a script that enumerates
the possible ways to pay the specified amount with the specified bills and coins. It is
assumed that the bills and coins are specified in denomination decreasing order.

The statement

{Browse {SearchOne {ChangeMoney BillsAndCoins 142}}}

computes the list

[change(1 1 1 1 2)]

saying that we can pay $1.42 with 1 one dollar bill, 1 quarter, 1 dime, 1 nickel, and
2 pennies. This payment uses the minimal number of bills and coins. The number of
different possibilities to pay $1.42 with the specified stock of bills and coins is 6 and
can be computed with the statement

{Browse {Length {SearchAll {ChangeMoney BillsAndCoins 142}}}}
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Minimizing a Cost Function

In many applications one is interested in solutions that minimize a given cost func-
tion. If the cost function is simple enough, we can obtain the minimization effect by
employing a two-dimensional distribution strategy.

This section will present two examples, map coloring and conference scheduling, for
which a two-dimensional distribution strategy suffices. For each of the two examples
we will develop a parameterized script.

6.1 Example: Coloring a Map

Problem Specification

Given a map showing the West European countries Netherlands, Belgium, France,
Spain, Portugal, Germany, Luxemburg, Switzerland, Austria, and Italy, find a coloring
such that neighboring countries have different color and a minimal number of colors is
used.

Model

We have a variable NbColors saying how many different colors we can use. Moreover,
we have a variable for every country. For every pair A, B of countries having a border
in common we impose the constraint A 6= B. We represent colors as numbers. Hence
we constrain all variables for countries to integers in 0#NbColors.

Distribution Strategy

We first distribute on NbColors, trying the numbers 0,1,2, . . . in ascending order. After
NbColors is determined, we distribute on the variables for the countries using the usual
first-fail strategy.

Script

The script appears in Figure 6.1. It is parameterized with the specification of the map
to be colored. The figure shows the specification of a map containing some European
countries.
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Figure 6.1: A script for the Map Coloring Problem together with a data specification.

fun {MapColoring Data}

Countries = {Map Data fun {$ C#_} C end}

in

proc {$ Color}

NbColors = {FD.decl}

in

{FD.distribute naive [NbColors]}

%% Color: Countries --> 1#NbColors

{FD.record color Countries 1#NbColors Color}

{ForAll Data

proc {$ A#Bs}

{ForAll Bs proc {$ B} Color.A \=: Color.B end}

end}

{FD.distribute ff Color}

end

end

Data = [ austria # [italy switzerland germany]

belgium # [france netherlands germany luxemburg]

france # [spain luxemburg italy]

germany # [austria france luxemburg netherlands]

italy # nil

luxemburg # nil

netherlands # nil

portugal # nil

spain # [portugal]

switzerland # [italy france germany austria] ]

The script first creates a local variable NbColors that specifies the number of differ-
ent colors to be used for coloring the map. Then it distributes naively on NbColors.
Recall that a distributor blocks its thread until it has done its job. After NbColors is
determined by distribution, the variable Color is constrained to a record mapping the
country names to integers in 1#NbColors. This implicitly creates the variables for the
Countries. Next the script creates a propagator

Color.A \=: Color.B

for every pair A, B of bordering countries. Finally, the script distributes on Color using
the first-fail strategy.

The statement

{ExploreOne {MapColoring Data}}

will show the search tree explored to find the first solution, which looks as follows:
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color(

austria: 1 belgium: 3 france: 1

germany: 2 italy: 2 luxemburg: 4

netherlands: 1 portugal: 1 spain: 2

switzerland: 3

)

The search tree of MapColoring is interesting. First, colorings with 0, 1, 2 and 3 colors
are searched and not found. Then a coloring with 4 colors is searched. Now a solution
is found quickly, without going through further failure nodes. There are many solutions
using 4 colors since the particular color given to a country does not matter.

6.2 Example: Conference

This example will employ the constraint provided by FD.atMost.

Problem Specification

We want to construct the time table of a conference. The conference will consist of
11 sessions of equal length. The time table is to be organized as a sequence of slots,
where a slot can take up to 3 parallel sessions. There are the following constraints on
the timing of the sessions:

1. Session 4 must take place before Session 11.

2. Session 5 must take place before Session 10.

3. Session 6 must take place before Session 11.

4. Session 1 must not be in parallel with Sessions 2, 3, 5, 7, 8, and 10.

5. Session 2 must not be in parallel with Sessions 3, 4, 7, 8, 9, and 11.

6. Session 3 must not be in parallel with Sessions 5, 6, and 8.

7. Session 4 must not be in parallel with Sessions 6, 8, and 10.

8. Session 6 must not be in parallel with Sessions 7 and 10.

9. Session 7 must not be in parallel with Sessions 8 and 9.

10. Session 8 must not be in parallel with Session 10.

The time table should minimize the number of slots.

Model

The model has a variable NbSlots saying how many slots the conference has. For the
given data, NbSlots can be constrained to the finite domain 4#11. The model also has a
variable Plani for every session i, where Plani stands for the number of the slot in which
Session i will take place. Every variable Plani can be constrained to the finite domain
1#NbSlots. The remaining constraints are obvious from the problem description.
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Distribution Strategy

We use a two-dimensional distribution strategy. We first distribute on NbSlots, try-
ing smaller values first. Once NbSlots is determined, we distribute on the variables
Plan1, . . . ,Plan11 using the standard first-fail strategy.

Script

The script in Figure 6.2 is parameterized with an argument Data specifying the con-
ference to be organized. The figure also shows the specification of the conference
described in the problem specification.

The script creates a local variable NbSlots specifying the number of slots used by the
conference. It then distributes naively on NbSlots. After NbSlots is determined, it
constrains its root variable Plan to a tuple mapping the session numbers 1, . . . , 11 to
integers in 1#NbSlots. This implicitly creates variables corresponding to the variables
Plani of the model.

The statement

{FD.atMost NbParSessions Plan Slot}

creates a propagator for a constraint saying that at most NbParSessions components
of Plan can be equal to Slot.

The statement {ForAll Constraints ... } imposes the constraints of the confer-
ence to be scheduled.

The last statement distributes on Plan using the first-fail strategy.

The statement

{ExploreOne {Conference Data}}

will explore the search tree until the first solution is found. The first solution minimizes
the number of slots and looks as follows:

plan(1 2 3 1 2 2 3 4 1 3 4)

This plan says that the conference requires 4 slots, where the sessions 1, 4 and 9 take
place in slot 1, the sessions 2, 5 and 6 take place in slot 2, the sessions 3, 7 and 10 take
place in slot 3, and the sessions 8 and 11 take place in slot 4.
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Figure 6.2: A script for conference scheduling together with a data specification.

fun {Conference Data}

NbSessions = Data.nbSessions

NbParSessions = Data.nbParSessions

Constraints = Data.constraints

MinNbSlots = NbSessions div NbParSessions

in

proc {$ Plan}

NbSlots = {FD.int MinNbSlots#NbSessions}

in

{FD.distribute naive [NbSlots]}

%% Plan: Session --> Slot

{FD.tuple plan NbSessions 1#NbSlots Plan}

%% at most NbParSessions per slot

{For 1 NbSlots 1

proc {$ Slot} {FD.atMost NbParSessions Plan Slot} end}

%% impose constraints

{ForAll Constraints

proc {$ C}

case C

of before(X Y) then

Plan.X <: Plan.Y

[] disjoint(X Ys) then

{ForAll Ys proc {$ Y} Plan.X \=: Plan.Y end}

end

end}

{FD.distribute ff Plan}

end

end

Data = data(nbSessions:11 nbParSessions:3

constraints: [ before(4 11) before(5 10) before(6 11)

disjoint(1 [2 3 5 7 8 10])

disjoint(2 [3 4 7 8 9 11])

disjoint(3 [5 6 8]) disjoint(4 [6 8 10])

disjoint(6 [7 10]) disjoint(7 [8 9])

disjoint(8 [10]) ] )
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Propagators for Redundant
Constraints

For some problems, the performance of a script can be drastically improved by intro-
ducing propagators for redundant constraints. Redundant constraints are constraints
that are entailed by the constraints specifying the problem. Additional propagators for
redundant constraints may decrease the size of the search tree by strengthening the
propagation component of the script. They may also reduce the number of propagation
steps needed to reach stability.

7.1 Example: Fractions

Problem Specification

The Fractions Puzzle consists in finding distinct nonzero digits such that the following
equation holds:

A
BC

+
D

EF
+

G
HI

= 1

Model

We have a variable for every letter, similar as in the Send More Money Puzzle. Since
the three fractions are symmetric, we can impose the order

A
BC

≥
D

EF
≥

G
HI

From the order constraints we obtain the redundant constraints

3
A

BC
≥ 1 and 3

G
HI

≤ 1

The order constraints together with the redundant constraints reduce the size of the
search tree by one order of magnitude.

Distribution Strategy

We distribute on the list of letters using the standard first-fail strategy.
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Figure 7.1: A script for the Fractions Puzzle.

proc {Fractions Root}

sol(a:A b:B c:C d:D e:E f:F g:G h:H i:I) = Root

BC = {FD.decl}

EF = {FD.decl}

HI = {FD.decl}

in

Root ::: 1#9

{FD.distinct Root}

BC =: 10*B + C

EF =: 10*E + F

HI =: 10*H + I

A*EF*HI + D*BC*HI + G*BC*EF =: BC*EF*HI

%% impose canonical order

A*EF >=: D*BC

D*HI >=: G*EF

%% redundant constraints

3*A >=: BC

3*G =<: HI

{FD.distribute ff Root}

end

Script

The script in Figure 7.1 constrains its root variable to a record having a field for every
letter. Since Oz has no finite domain propagators for fractions, we eliminate the frac-
tions by multiplying with the denominators. For every denominator we introduce an
auxiliary variable. Since a finite domain propagator starts its work only after all vari-
ables of the constraint implemented by the propagator are constrained to finite domains
in the constraint store, the script constrains the auxiliary variables for the denominators
to the maximal finite domain using the procedure FD.decl.

7.2 Example: Pythagoras

Not all propagators exploit coreferences in products (e.g. x · x + y · y = z · z). For the
example of this section it will be essential to exploit such coreferences, and you will
learn how to do it.

The example also illustrates the case where a propagator for a redundant constraint im-
proves the performance of a script by decreasing the number of necessary propagation
steps, but without significantly changing the search tree.

Problem Specification

How many triples (A,B,C) exist such that\ A2 +B2 = C2 and A ≤ B ≤C ≤ 1000?
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Model

The model has three variables A, B, and C. Each variable is constrained to the finite
domain 1#1000. The model imposes the constraints A2 +B2 = C2 and A ≤ B ≤C.

The script will also create a propagator for the redundant constraint 2 ·B2 ≥C2.

Distribution Strategy

We distribute on the variables A, B, C using the standard first-fail strategy.

Figure 7.2: A script that enumerates Pythagoras triples.

proc {Square X S}

{FD.times X X S}

end

proc {Pythagoras Root}

[A B C] = Root

AA BB CC

in

Root ::: 1#1000

AA = {Square A}

BB = {Square B}

CC = {Square C}

AA + BB =: CC

A =<: B

B =<: C

2*BB >=: CC % redundant constraint

{FD.distribute ff Root}

end

Script

Given the script in Figure 7.2, we can compute the number of different triples with the
statement

{Browse {Length {SearchAll Pythagoras}}}

The script introduces a defined constraint

{Square X S}

saying that S is the square of X. This constraint is implemented with a propagator
provided by

{FD.times X X S}
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This propagator will start propagating as soon as the store constrains X to a finite do-
main. This in contrast to the propagator created by X*X=:S, which will start work only
after both X and S are constrained to finite domains in the constraint store. To define
Square with this constraint, we would have to write

proc {Square X S}

{FD.decl S}

X*X =: S

end

The propagator for the redundant constraint does not significantly reduce the size of the
search tree. However, it reduces the number of propagation steps from about 1000000
to about 500000, which makes computation twice as fast.

statistics To find out about this, pop up the Oz Panel1 and reset the statistics. Also
switch on the status message feature and pop up the emulator buffer. Now enter the
statement

{Browse {Length {SearchAll Pythagoras}}}

and print the statistics after the execution of the statement has finished. This will show
something like

solutions: 881 Variables created: 3

clones: 1488 Propagators created: 7

failures: 608 Propagator invocations: 490299

in the emulator buffer. Now remove the propagator for the redundant constraint from
the definition of the script, redefine it, reset the statistics, run the statement, and print
the statistics. This time you will see something like

solutions: 881 Variables created: 3

clones: 1878 Propagators created: 6

failures: 998 Propagator invocations: 1190397

If we drop the redundant constraint, it seems sensible to not have separate propagators
for the squares but simply have one propagator created with

A*A + B*B =: C*C

Unfortunately, this will dramatically increase the size of the search tree. The reason
for this increase is the fact that the created propagator does not realize the coreferences
in the constraint it implements, that is, it treats the two occurrences of A, say, as if they
were independent variables.

1“Oz Panel”
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7.3 Example: Magic Squares

This example shows a smart representation of a matrix and a concomitant defined con-
straint of higher order. The model will eliminate symmetries by imposing order con-
straints. Propagation will be drastically improved by exploiting a redundant constraint.

Problem Specification

The Magic Square Puzzle consists in finding for given N an N×N-matrix such that:

• Every field of the matrix is an integer between 1 and N2.

• The fields of the matrix are pairwise distinct.

• The sums of the rows, columns, and the two main diagonals are all equal.

A magic square for N = 3 looks as follows:

2 7 6
9 5 1
4 3 8

p> The Magic Square Puzzle is extremely hard for large N. Even for N = 5, our script
will have to explore almost 8000 nodes to find a solution.

Model

We model the problem by having a variable Fi j for every field (i, j) of the matrix.
Moreover, we have one additional variable S and require that the sum of every row,
column, and main diagonal equals S.

Without loss of generality, we can impose the following order constraints eliminating
symmetries:

F11 < FNN , FN1 < F1N , F11 < FN1.

Since the sum of the sums of the rows must equal the sum of all fields, we have the
redundant constraint

N2

2
· (N2 +1) = N ·S

To see this, note that sum of all fields equals

1+2+ . . .+N2 =
N2

2
· (N2 +1)

and that the sum of each of the N rows must be S.

Distribution Strategy

We distribute on the variables F11, . . . ,FNN with a first-fail strategy splitting the domain
of the selected variable and trying the lower half first.
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Figure 7.3: A script for the Magic Square Puzzle.

fun {MagicSquare N}

NN = N*N

L1N = {List.number 1 N 1} % [1 2 3 ... N]

in

proc {$ Square}

fun {Field I J}

Square.((I-1)*N + J)

end

proc {Assert F}

% {F 1} + {F 2} + ... + {F N} =: Sum

{FD.sum {Map L1N F} ’=:’ Sum}

end

Sum = {FD.decl}

in

{FD.tuple square NN 1#NN Square}

{FD.distinct Square}

%% Diagonals

{Assert fun {$ I} {Field I I} end}

{Assert fun {$ I} {Field I N+1-I} end}

%% Columns

{For 1 N 1

proc {$ I} {Assert fun {$ J} {Field I J} end} end}

%% Rows

{For 1 N 1

proc {$ J} {Assert fun {$ I} {Field I J} end} end}

%% Eliminate symmetries

{Field 1 1} <: {Field N N}

{Field N 1} <: {Field 1 N}

{Field 1 1} <: {Field N 1}

%% Redundant: sum of all fields = (number rows) * Sum

NN*(NN+1) div 2 =: N*Sum

%%

{FD.distribute split Square}

end

end
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Script

Figure 7.3 shows a script realizing the model and distribution strategy just discussed.
The actual script is created by a procedure MagicSquare taking N as parameter.

The script represents the matrix as a tuple with N 2 elements. The tuple is the value of
the root variable Square. The function

{Field I J}

returns the component of Square that represents the field at position (I,J). The vari-
able Sum takes the sum of the rows, columns, and main diagonals as value. The proce-
dure

{Assert F}

takes a function F and posts the constraint

{F 1} + {F 2} + ... + {F N} = Sum

Obviously, {Assert F} is a defined constraint of higher order. With the help of this
defined constraint it is straightforward to state that the sums of the rows, columns, and
main diagonals are all equal to Sum.

With the Explorer you can find out that for N=3 there is exactly one magic square
satisfying the ordering constraints of our model. Without the ordering constraints there
are 8 different solutions. Omitting the propagator for the redundant constraint will
increase the search tree by an order of magnitude.

7.4 Exercises

Exercise 7.1 Magic Sequence

A magic sequence of length n is a sequence

x0, x1, . . . , xn−1

of integers such that for every i = 0, . . . ,n−1

• xi is an integer between 0 and n−1.

• the number i occurs exactly xi times in the sequence.

Write a parameterized script that, given n, can enumerate all magic sequences of
length n.

The script should use the procedure

{FD.exactly K S I}
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that creates a propagator for the constraint saying that exactly K fields of the record S
are equal to the integer I.

You can drastically reduce the search space of the script by having propagators for the
redundant constraints

x0 + . . . + xn−1 = n

and
(−1) · x0 + . . . + (n−2) · xn−1 = 0

Explain why these constraints are redundant.
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Reified Constraints

In this section we will see a new class of constraints called reified constraints. Reified
constraints make it possible to express constraints involving logical connectives such
as disjunction, implication, and negation. Reified constraints also make it possible to
solve overconstrained problems, for which only some of the stated constraints can be
satisfied.

8.1 Getting Started

reification of a constraint The reification of a constraint C with respect to a
variable x is the constraint

(C ↔ x = 1) ∧ x ∈ 0#1

where it is assumed that x does not occur free in C.

The operational semantics of a propagator for the reification of a constraint C with
respect to x is given by the following rules:

1. If the constraint store entails x = 1, the propagator for the reification reduces to
a propagator for C.

2. If the constraint store entails x = 0, the propagator for the reification reduces to
a propagator for ¬C}.

3. If a propagator for C would realize that the constraint store entails C, the propa-
gator for the reification tells x = 1 and ceases to exist.

4. If a propagator for C would realize that the constraint store is inconsistent with
C, the propagator for the reification tells x = 0 and ceases to exist.

To understand these rules, you need to be familiar with the definitions in Section 2.2.

0/1-variables A 0/1-variable is a variable that is constrained to the finite domain
0#1. The control variables of reified constraints are 0/1-variables.
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posting refied constraints Here are examples for statements creating propaga-
tors for reified constraints:

• (X<:Y)=B creates a propagator for the reification of X < Y with respect to B.

• (X+Y+Z=:0)=B creates a propagator for the reification of X +Y + Z = 0 with
respect to B.

• (X\=:Y)=B creates a propagator for the reification of X 6= Y with respect to B.

• (X::0#10)=B creates a propagator for the reification of X ∈ 0#10 with respect
to B.

• {FD.reified.distance X Y ’=:’ Z B} creates a propagator for the reifica-
tion of |X −Y |= Z with respect to B.

expressing equivalences With reified constraints it is straightforward to express
equivalences of constraints. For instance, the equivalence

X < Y ↔ X < Z

can be posted with the statement

X<:Y = X<:Z

This statement is a notational convenience for

local B in

X<:Y=B X<:Z=B

end

and creates 2 propagators for reified constraints.

Boolean connectives We can define the Boolean connectives (e.g., conjunction
or negation) by associating 0 with false and 1 with true. The respective Boolean con-
straints can be posted by means of the following procedures:

• {FD.conj X Y Z} posts the constraint (X ∧Y ) = Z.

• {FD.disj X Y Z} posts the constraint (X ∨Y ) = Z.

• {FD.impl X Y Z} posts the constraint (X → Y ) = Z.

• {FD.equi X Y Z} posts the constraint (X ↔ Y ) = Z.

• {FD.nega X Y} posts the constraint ¬X = Y .
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Exercises

Exercise 8.1 Write a statement that posts the constraint

(X < Y → X +Y = Z) ↔ (X ·Y = Z ∨ Z 6= 5)

Exercise 8.2 Write a procedure {Conj X Y Z} that posts the constraints

(X ∧Y ) = Z, X ∈ 0#1, Y ∈ 0#1

The procedure should post the conjunction (X ∧Y ) = Z. by means of the reified form
of the infix operator =:.

Write analogous procedures Equi and Nega posting equivalences and negations.

Write an analogous procedure Dis posting a disjunction (X ∨Y ) = Z. Use the reified
form of <: to post the disjunction.

How would you write a procedure posting an implication (X → Y ) = Z?

8.2 Example: Aligning for a Photo

We will now see an overconstrained problem for which it is impossible to satisfy all
constraints. The problem specification will distinguish between primary and secondary
constraints, and the goal is to find a solution that satisfies all primary constraints and
as many of the secondary constraints as possible.

Problem Specification

Betty, Chris, Donald, Fred, Gary, Mary, and Paul want to align in one row for taking a
photo. Some of them have preferences next to whom they want to stand:

1. Betty wants to stand next to Gary and Mary.

2. Chris wants to stand next to Betty and Gary.

3. Fred wants to stand next to Mary and Donald.

4. Paul wants to stand next to Fred and Donald.

Obviously, it is impossible to satisfy all preferences. Can you find an alignment that
maximizes the number of satisfied preferences?

Model

The model has a variable Ap for every person, where Ap stands for the position p takes
in the alignment. Since there are exactly 7 persons, we have A p ∈ 1#7 for every person
p. Moreover, we have Ap 6= Aq for every pair p,q of distinct persons. The model has
a variable Si ∈ 0#1 for each of the 8 preferences, where Si = 1 if and only if the i-th
preference is satisfied. To express this constraint, we constrain the control variable S
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of a preference “person p wants to stand next to person q” by means of the reified
constraint

(|Ap−Aq|= 1 ↔ S = 1) ∧ S ∈ 0#1

Finally, there is a variable

Satisfaction = S1 + . . . + S8

denoting the number of satisfied preferences. We want to find a solution that maximizes
the value of Satisfaction.

The experienced constraint programmer will note that we can eliminate a symmetry by
picking two persons p and q and imposing the order constraint A p < Aq.

Distribution Strategy.

To maximize Satisfaction, we employ a two-dimensional distribution strategy, which
first distributes on Satisfaction, trying the values 8, 7, . . . 1 in this order. Once Satisfaction
is determined, we distribute on the variables Ap using a first-fail strategy that splits the
domain of the selected variable.

Script.

Figure 8.1: A script for the Photo Puzzle.

proc {Photo Root}

Persons = [betty chris donald fred gary mary paul]

Preferences = [betty#gary betty#mary chris#betty chris#gary

fred#mary fred#donald paul#fred paul#donald]

NbPersons = {Length Persons}

Alignment = {FD.record alignment Persons 1#NbPersons}

Satisfaction = {FD.decl}

proc {Satisfied P#Q S}

{FD.reified.distance Alignment.P Alignment.Q ’=:’ 1 S}

end

in

Root = r(satisfaction: Satisfaction

alignment: Alignment)

{FD.distinct Alignment}

{FD.sum {Map Preferences Satisfied} ’=:’ Satisfaction}

Alignment.fred <: Alignment.betty % breaking symmetries

{FD.distribute generic(order:naive value:max) [Satisfaction]}

{FD.distribute split Alignment}

end

The script in Figure 8.1 constrains its root variable to a record consisting of the number
of satisfied preferences and a record mapping the names of the persons to their positions
in the alignment. The fields of the record Alignment implement the variables A p of
the model.
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Satisfied The script introduces the defined constraint {Satisfied P#Q S}, which
implements the reification of the constraint “P stands next to Q” with respect to S.

The statement

{FD.sum {Map Preferences Satisfied} ’=:’ Satisfaction}

constrains the variable Satisfaction to the number of satisfied preferences.

The statement {ExploreOne Photo} will run the script until a first solution is found.
The first solution satisfies 6 preferences and looks as follows:

6 # alignment(betty:5 chris:6 donald:1 fred:3

gary:7 mary:4 paul:2)

By construction of the script, this is the maximal number of preferences that can be
satisfied simultaneously.

Exercises

Exercise 8.3 Modify the script such that the first solution minimizes the number of
preferences satisfied.

8.3 Example: Self-referential Aptitude Test

This example illustrates three issues: expressing complex propositional formulas as
reified constraints, improving performance and presentation by elimination of common
subconstraints, and using the symbolic constraint posted by FD.element.

Problem Specification

The self-referential aptitude test (which is taken from [10]) consists of 10 multiple
choice questions, referred to as 1 to 10. Each question allows for 5 possible answers,
referred to as a to e. For each of the 50 possible answers, a condition is specified. For
each question, exactly one of the conditions associated with its possible answers must
hold. A solution of the test is a function assigning to every question a letter such that
the condition selected by the assigned letter holds. Here are the questions and their
possible answers:

1. The first question whose answer is b is question (a) 2; (b) 3; (c) 4; (d) 5; (e) 6.

2. The only two consecutive questions with identical answers are questions (a) 2
and 3; (b) 3 and 4; (c) 4 and 5; (d) 5 and 6; (e) 6 and 7.

3. The answer to this question is the same as the answer to question (a) 1; (b) 2;
(c) 4; (d) 7; (e) 6.

4. The number of questions with the answer a is (a) 0; (b) 1; (c) 2; (d) 3; (e) 4.

5. The answer to this question is the same as the answer to question (a) 10; (b) 9;
(c) 8; (d) 7; (e) 6.



56 Chapter 8. Reified Constraints

6. The number of questions with answer a equals the number of questions with
answer (a) b; (b) c; (c) d; (d) e; (e) none of the above.

7. Alphabetically, the answer to this question and the answer to the following ques-
tion are (a) 4 apart; (b) 3 apart; (c) 2 apart; (d) 1 apart; (e) the same.

8. The number of questions whose answers are vowels is (a) 2; (b) 3; (c) 4; (d) 5;
(e) 6.

9. The number of questions whose answer is a consonant is (a) a prime; (b) a fac-
torial; (c) a square; (d) a cube; (e) divisible by 5.

10. The answer to this question is (a) a; (b) b; (c) c; (d) d; (e) e.

To understand the test, verify that

1:c 2:d 3:e 4:b 5:e
6:e 7:d 8:c 9:b 10:a

is a correct set of answers for the test. In particular, convince yourself that for every
question the remaining 4 possibilities to answer it are falsified. The script we are going
to write will prove that there is no other set of correct answers.

Model

Our model has 0/1-variables Ai, Bi, Ci, and Di for i ∈ 1#10 such that:

1. Ai +Bi +Ci +Di +Ei = 1.

2. Ai = 1 iff the answer to Question i is a.

3. Bi = 1 iff the answer to Question i is b.

4. Ci = 1 iff the answer to Question i is c.

5. Di = 1 iff the answer to Question i is d.

6. Ei = 1 iff the answer to Question i is e.

To obtain a compact representation of the questions, we also have variables Q i ∈ 1#5
for i ∈ 1#10 such that

Qi = 1 ↔ Ai = 1 Qi = 2 ↔ Bi = 1
Qi = 3 ↔Ci = 1 Qi = 4 ↔ Di = 1
Qi = 5 ↔ Ei = 1

The first question can now be expressed by means of five equivalences:

A1 = B2

B1 = (B3∧ (B2 = 0))
C1 = (B4∧ (B2 +B3 = 0))
D1 = (B5∧ (B2 +B3 +B4 = 0))
E1 = (B6∧ (B2 +B3 +B4 +B5 = 0))
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These equivalences can be expressed by reifying the nested equality constraints.

The second question can be expressed with the following constraints:

Q1 6= Q2, Q7 6= Q8, Q8 6= Q9, Q9 6= Q10
A2 = (Q2 = Q3), B2 = (Q3 = Q4), C2 = (Q4 = Q5)

D2 = (Q5 = Q6), E2 = (Q6 = Q7)

The third question can be expressed as follows:

A3 = (Q1 = Q3), B3 = (Q2 = Q3), C3 = (Q4 = Q3)
D3 = (Q7 = Q3), E3 = (Q6 = Q3)

The fourth question can be elegantly expressed with the constraint

element(Q4, (0,1,2,3,4)) =
10

∑
i=1

Ai

where the function element(k,x) yields the k-th component of the tuple x.

We choose this formulation since Oz provides a propagator FD.element for the con-
straint element(k,x) = y.

reified membership constraints The nineth question can be expressed with the
following equations

S = ∑10
i=1 (Bi +Ci +Di)

A9 = (S ∈ {2,3,5,7})
B9 = (S ∈ {1,2,6})
C9 = (S ∈ {0,1,4,9})
D9 = (S ∈ {0,1,8})
E9 = (S ∈ {0,5,10})

where S is an existentially quantified auxiliary variable. This time we use reified mem-
bership constraints of the form x ∈ D.

Distribution Strategy

We distribute on the variables Q1, Q2 . . . using the standard first-fail strategy.

Script

elimination of common subconstraints The script in Figure 8.2 implements
the indexed variables Ai, Bi, Ci, Di, Ei, and Qi as tuples with 10 components each.
The three procedures Vector, Sum, and Assert make it more convenient to state the
constraints. For each sum occurring in the questions an auxiliary variable is introduced
so that the corresponding summation constraint needs to be posted only once. This
elimination of common subconstraints provides for a compact formulation of the script
and also improves its performance.

The procedure {FD.element K V X} posts a propagator for the constraint saying
that X is the K-th component of the vector V .

Note the use of FD.decl in the definition of the procedure Sum and in the representation
of the seventh question. Telling an initial domain constraint for the respective variables
is necessary so that the propagators depending on these variables can start their work.
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Figure 8.2: A script for the self-referential aptitude test.

proc {SRAT Q}

proc {Vector V} % V is a 0/1-vector of length 10

{FD.tuple v 10 0#1 V}

end

proc {Sum V S} % S is the sum of the components of vector V

{FD.decl S} {FD.sum V ’=:’ S}

end

proc {Assert I U V W X Y}

A.I=U B.I=V C.I=W D.I=X E.I=Y

end

A = {Vector} B = {Vector}

C = {Vector} D = {Vector} E = {Vector}

SumA = {Sum A} SumB = {Sum B} SumC = {Sum C}

SumD = {Sum D} SumE = {Sum E}

SumAE = {Sum [SumA SumE]} SumBCD = {Sum [SumB SumC SumD]}

in

{FD.tuple q 10 1#5 Q}

{For 1 10 1

proc {$ I} {Assert I Q.I=:1 Q.I=:2 Q.I=:3 Q.I=:4 Q.I=:5} end}

%% 1

{Assert 1 B.2

{FD.conj B.3 (B.2=:0)}

{FD.conj B.4 (B.2+B.3=:0)}

{FD.conj B.5 (B.2+B.3+B.4=:0)}

{FD.conj B.6 (B.2+B.3+B.4+B.5=:0)}}

%% 2

{Assert 2 Q.2=:Q.3 Q.3=:Q.4 Q.4=:Q.5 Q.5=:Q.6 Q.6=:Q.7}

Q.1\=:Q.2 Q.7\=:Q.8 Q.8\=:Q.9 Q.9\=:Q.10

%% 3

{Assert 3 Q.1=:Q.3 Q.2=:Q.3 Q.4=:Q.3 Q.7=:Q.3 Q.6=:Q.3}

%% 4

{FD.element Q.4 [0 1 2 3 4] SumA}

%% 5

{Assert 5 Q.10=:Q.5 Q.9=:Q.5 Q.8=:Q.5 Q.7=:Q.5 Q.6=:Q.5}

%% 6

{Assert 6 SumA=:SumB SumA=:SumC SumA=:SumD SumA=:SumE _}

%% 7

{FD.element Q.7 [4 3 2 1 0] {FD.decl}={FD.distance Q.7 Q.8 ’=:’}}

%% 8

{FD.element Q.8 [2 3 4 5 6] SumAE}

%% 9

{Assert 9 SumBCD::[2 3 5 7] SumBCD::[1 2 6]

SumBCD::[0 1 4 9] SumBCD::[0 1 8]

SumBCD::[0 5 10]}

%% 10

{FD.distribute ff Q}

end
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Exercises

Exercise 8.4 The script in Figure 8.2 uses the statement

{FD.element Q.7 [4 3 2 1 0]

{FD.decl}={FD.distance Q.7 Q.8 ’=:’}}

to post the constraints for the seventh question. It avoids one auxiliary variable by
nesting two equated procedure applications. Give an equivalent statement in which the
auxiliary variable is introduced and the nested procedure applications are unfolded.

8.4 Example: Bin Packing

This example features a nontrivial model involving reified constraints, a three-dimensional
distribution strategy optimizing a cost function, and nontrivial defined constraints. The
script will employ explicit thread creations to prevent blocking. To optimize per-
formance, the script will implement certain implicative constraints with conditionals
rather than reified constraints.

Problem Specification

Given a supply of components and bins of different types, compile a packing lists such
that a minimal number of bins is used and given constraints on the contents of bins are
satisfied.

In our example, there are 3 types of bins and 5 types of components. The bin types are
red, blue, and green. The component types are glass, plastic, steel, wood, and copper.

The following constraints must hold for the contents of bins:

1. Capacity constraints:

(a) Red bins can take at most 3 components, and at most 1 component of type
wood.

(b) Blue bins can take exactly 1 component.

(c) Green bins can take at most 4 components, and at most 2 components of
type wood.

2. Containment constraints (what can go into what):

(a) Red bins can contain glass, wood, and copper.

(b) Blue bins can contain glass, steel, and copper.

(c) Green bins can contain plastic, wood, and copper.

3. Requirement and exclusion constraints applying to all bin types:

(a) Wood requires plastic.

(b) Glass excludes copper.

(c) Copper excludes plastic.

Compile a packing list for an order consisting of 1 glass component, 2 plastic compo-
nents, 1 steel component, 3 wood components, and 2 copper components. The packing
list should require as few bins as possible.
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Model

One possibility for a model consists in having a variable for every component saying
in which bin the component should be packed. The resulting model admits many
symmetric solutions and does not lead to a satisfactory script.

We will use a dual model that has variables for bins but not for components. The model
has a variable NbBins saying how many bins are used to pack the order. The individual
bins are then referred to as first, second, and so on bin. For every i ∈ 1#NbBins we
have 6 variables:

• Typei denoting the type of the i-th bin.

• Glassi denoting the number of glass components to be packed into the i-th bin.

• Plastici denoting the number of plastic components to be packed into the i-th
bin.

• Steeli denoting the number of steel components to be packed into the i-th bin.

• Woodi denoting the number of wood components to be packed into the i-th bin.

• Copperi denoting the number of copper components to be packed into the i-th
bin.

Given these variables, the capacity and containment constraints are easy to express.
The requirement and exclusion constraints are implications that can be expressed by
means of reified constraints.

To reduce the size of the search tree, we exclude some of the symmetries in a packing
list. We require that blue bins appear before red bins, and red bins appear before green
bins. Moreover, if two consecutive bins have the same type, the first bin must contain
at least as many glass components as the second bin.

Distribution Strategy

We will use a three-dimensional distribution strategy. First we distribute on NbBins,
trying smaller values first. Then we distribute on the type variables Type1, Type2, . . .
with a naive strategy trying the values blue, red and green in this order. Finally, after
the number and types of bins are determined, we distribute on the capacity variables

Glass1, Plastic1, Steel1, Wood1, Copper1, Glass2, Plastic2, . . .

with the standard first-fail strategy.

Script

The script is shown in Figure 8.3. It takes as parameter the order for which a packing
list is to be compiled. The statement

{Browse

{SearchOne

{BinPacking

order(glass:2 plastic:4 steel:3 wood:6 copper:4)}}}
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Figure 8.3: A script for the Bin Packing Problem.

fun {BinPacking Order}

ComponentTypes = [glass plastic steel wood copper]

MaxBinCapacity = 4

〈Definition of IsBin 62a〉
〈Definition of IsPackList 63a〉
〈Definition of Match 63b〉
〈Definition of Distribute 64a〉

in

proc {$ PackList}

{IsPackList PackList}

{Match PackList Order}

{Distribute PackList}

end

end

will compute a packing list for the order that was given in the problem specification:

[ b(copper:0 glass:0 plastic:0 steel:1 type:0 wood:0)

b(copper:0 glass:0 plastic:0 steel:1 type:0 wood:0)

b(copper:0 glass:0 plastic:0 steel:1 type:0 wood:0)

b(copper:0 glass:2 plastic:0 steel:0 type:1 wood:0)

b(copper:4 glass:0 plastic:0 steel:0 type:2 wood:0)

b(copper:0 glass:0 plastic:1 steel:0 type:2 wood:2)

b(copper:0 glass:0 plastic:1 steel:0 type:2 wood:2)

b(copper:0 glass:0 plastic:2 steel:0 type:2 wood:2) ]

From the printout we can see that the script represents a packing list as a list of packed
bins. The types of the bins are coded as numbers, where 0 is blue, 1 is red, and 2 is
green. The packed bin

b(copper:0 glass:0 plastic:1 steel:0 type:2 wood:2)

has type green and contains 1 plastic and 2 wood components.

The procedure {BinPacking Order} introduces three defined constraints IsBin, IsPackList,
and Match. It also defines a procedure Distribute implementing the distribution
strategy. Given these procedures, the script itself is straightforward.

IsBin The definition of the procedure {IsBin Bin} appears in Figure 8.4. It im-
poses constraints saying that Bin is a consistently packed bin. In fact, the procedure
{IsBin Bin} implements all the capacity, containment, requirement, and exclusion
constraints of the problem specification. The thread creation at the end of the proce-
dure is needed so that the conditional does not block on the determination of Type.
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Figure 8.4: The defined constraint IsBin.

62a 〈Definition of IsBin 62a〉≡
proc {IsBin Bin}

[Blue Red Green] = [0 1 2]

BinTypes = [Blue Red Green]

Capacity = {FD.int [1 3 4]} % capacity of Bin

Type = {FD.int BinTypes} % type of Bin

Components

[Glass Plastic Steel Wood Copper] = Components

in

Bin = b(type:Type glass:Glass plastic:Plastic

steel:Steel wood:Wood copper:Copper)

Components ::: 0#MaxBinCapacity

{FD.sum Components ’=<:’ Capacity}

{FD.impl Wood>:0 Plastic>:0 1} % wood requires plastic

{FD.impl Glass>:0 Copper=:0 1} % glass excludes copper

{FD.impl Copper>:0 Plastic=:0 1} % copper excludes plastic

thread

case Type

of !Red then Capacity=3 Plastic=0 Steel=0 Wood=<:1

[] !Blue then Capacity=1 Plastic=0 Wood=0

[] !Green then Capacity=4 Glass = 0 Steel=0 Wood=<:2

end

end

end

implementing implicative constraints with conditionals The conditional im-
plements three implicative constraints. Implementing these implicative constraints
with reified constraints would be much more expensive. For instance, the statement
implementing the first implicative constraint would take the form

{FD.impl Type=:Red

((Capacity=:3) + (Plastic=:0)

+ (Steel=:0) + (Wood=<:1) =: 4)

1}

and thus create 7 propagators. In contrast, the implementation of all three implicative
constraints with a single conditional creates at most one propagator.

The reified implementation {FD.impl A B 1} of an implication A→B yields stronger
propagation than the conditional implementation

if A==1 then B=1 else B=0 end

since it will tell A=0 once B=0 is known. Given our distribution strategy, the backward
propagation would not have much effect in our example.
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IsPackList The procedure {IsPackList Xs} (see Figure 8.5) imposes constraints
saying that Xs is a consistent packing list ordered as specified in the description of the
model. The thread creation prevents IsPackList from blocking on the determination
of the list structure of Xs.

Figure 8.5: The defined constraint IsPackList for the Bin Packing Problem.

63a 〈Definition of IsPackList 63a〉≡
proc {IsPackList Xs}

thread

{ForAll Xs IsBin}

{ForAllTail Xs % impose order

proc {$ Ys}

case Ys of A|B|_ then

A.type =<: B.type

{FD.impl A.type=:B.type A.glass>=:B.glass 1}

else skip

end

end}

end

end

Match The procedure {Match PackList Order} (see Figure 8.6) imposes constraints
saying that the packing list PackList matches the order Order. Once more a thread
creation is needed to prevent Match from blocking on the determination of the list
structure of PackList.

Figure 8.6: The defined constraint Match for the Bin Packing Problem.

63b 〈Definition of Match 63b〉≡
proc {Match PackList Order}

thread

{ForAll ComponentTypes

proc {$ C}

{FD.sum {Map PackList fun {$ B} B.C end} ’=:’ Order.C}

end}

end

end

Distribute The procedure {Distribute PackList} implements the distribution
strategy (see Figure 8.7). It first computes a lower bound min for NbBins and then
distributes naively on NbBins. After NbBins is determined, the variables Types and
Capacities are constrained to the respective lists. Then the script first distributes on
Types and afterwards on Capacities.
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Figure 8.7: A distributor for the Bin Packing Problem.

64a 〈Definition of Distribute 64a〉≡
proc {Distribute PackList}

NbComps = {Record.foldR Order Number.’+’ 0}

Div = NbComps div MaxBinCapacity

Mod = NbComps mod MaxBinCapacity

Min = if Mod==0 then Div else Div+1 end

NbBins = {FD.int Min#NbComps}

Types

Capacities

in

{FD.distribute naive [NbBins]}

PackList = {MakeList NbBins} % blocks until NbBins is determined

Types = {Map PackList fun {$ B} B.type end}

Capacities = {FoldR PackList

fun {$ Bin Cs}

{FoldR ComponentTypes fun {$ T Ds} Bin.T|Ds end Cs}

end

nil}

{FD.distribute naive Types}

{FD.distribute ff Capacities}

end

Exercises

Exercise 8.5 The procedure {IsPackList} employs the statement

{FD.impl A.type=:B.type A.glass>=:B.glass 1}

to post an implicative constraint. This will create 3 propagators. Implement the im-
plicative constraint with a conditional that creates only 1 propagator.
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User-Defined Distributors

In this section we show how the user can program his or her own distributors.

9.1 A Naive Distribution Strategy

The distributor we program in this section implements a naive distribution strategy:
choose the first not yet determined variable from a list and try the smallest possible
value first. The distributor is shown in Figure 9.1.

Figure 9.1: A distributor for a naive distribution strategy.

proc {NaiveDistributor Is}

{Space.waitStable}

local

Fs={Filter Is fun {$ I} {FD.reflect.size I}>1 end}

in

case Fs

of nil then skip

[] F|Fr then M={FD.reflect.min F} in

choice F=M {NaiveDistributor Fr}

[] F\=:M {NaiveDistributor Fs}

end

end

end

end

choice-statements To maximize the information available for distribution we wait
until the computation space becomes stable. A thread that executes {Space.waitStable}
blocks until its hosting computation space S becomes stable. When S becomes stable,
execution proceeds with the next statement.

Thus, the variable Fs in Figure 9.1 denotes the list of undetermined variables af-
ter S has become stable. To detect undetermined variables we use the procedure
FD.reflect.size that returns the current size of a variable’s domain. If the domain
size is one, the variable is determined and consequently not included in the list Fs.
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Then the least possible value for the first undetermined variable F is computed by

M={FD.reflect.min I}

binary choice-statements We now have to distribute. To this aim Oz provides a
binary choice-statement. If a thread reaches the statement

choice S1
[] S2
end

the thread is blocked until its hosting computation space becomes stable.

If the space has become stable, the computation in the blocked thread is resumed and
it is distributed. Distribution yields two spaces, one obtained by replacing the choice-
statement by the statement S1, one obtained by replacing the choice-statement by the
statement S2. All search engines in this tutorial will explore the space first which hosts
S1.

In Figure 9.1, we distribute with the constraint that the selected variable is determined
to the current least possible value. The distribution is done if no undetermined variables
are left.

9.2 A Domain-Splitting Distributor

In this section we program a distributor for the domain-splitting strategy (see item 2.8
(page 12)). The program is shown in Figure 9.2. As in the previous section we first
discard all determined variables. Then we select the variable MinVar which has the
smallest domain (as it is done for the first-fail distribution strategy). For the selected
variable we determine the value that is in the middle of the least and largest possible
value by

Mid = {FD.reflect.mid MinVar}

After this is done we distribute with the constraint that MinVar should be smaller than
or equal to Mid.
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Figure 9.2: A distributor for a domain-splitting strategy.

proc {SplitDistributor Is}

{Space.waitStable}

local

Fs={Filter Is fun {$ I} {FD.reflect.size I}>1 end}

in

case Fs

of nil then skip

[] F|Fr then

MinVar#_ = {FoldL Fr fun {$ Var#Size X}

if {FD.reflect.size X}<Size then

X#{FD.reflect.size X}

else

Var#Size

end

end F#{FD.reflect.size F}}

Mid = {FD.reflect.mid MinVar}

in

choice MinVar =<: Mid then {SplitDistributor Fs}

[] MinVar >: Mid then {SplitDistributor Fs}

end

end

end

end
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Branch and Bound

In this chapter we focus on computing an optimal solution according to a given cost
function. While we have searched for optimal solutions already in Section 8.2 and
Section 8.4, we have used a rather ad-hoc strategy there. This strategy lacks generality
and does not provide either for a proof of optimality.

branch and bound In this chapter we introduce a general schema to compute an
optimal solution according to an arbitrary cost function and show how it is avail-
able in Oz. This schema is called branch and bound and is available by procedures
like ExploreBest (see “Oz Explorer – Visual Constraint Programming Support” and
Chapter Search Engines: Search, (System Modules) for more search engines). A
typical application of ExploreBest for a script Script looks like

{ExploreBest Script Order}

The branch and bound schema works as follows. When a solution of Script is found,
all the remaining alternatives in the search tree are constrained to be better with re-
spect to an order available through the procedure Order. Usually Order applies a cost
function to its arguments and creates a propagator imposing the ordering. The first
argument of Order is the previous solution, and the second argument is an alternative
solution we are searching for.

10.1 Example: Aligning for a Photo, Revisited

In Section 8.2 we have searched for a solution of the alignment problem which satisfies
the maximal number of preferences. To this aim we have introduced a variable which
counts the number of satisfied preferences. By distributing this variable with its max-
imal value first, we have guaranteed that the first solution found is indeed the optimal
one.

In this section we replace this ad-hoc approach by branch and bound. We first restate
the script for the problem by omitting the distribution code for the variable summing
up the satisfied preferences. The resulting script is shown in Figure 10.1.

Next we define an ordering procedure which states that the overall sum of satisfied
preferences in an alternative solution must be strictly greater than the corresponding
sum in a previous solution:
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Figure 10.1: The revised script for the Photo Puzzle.

proc {RevisedPhoto Root}

Persons = [betty chris donald fred gary mary paul]

Preferences = [betty#gary betty#mary chris#betty chris#gary

fred#mary fred#donald paul#fred paul#donald]

NbPersons = {Length Persons}

Alignment = {FD.record alignment Persons 1#NbPersons}

Satisfaction = {FD.decl}

proc {Satisfied P#Q S}

{FD.reified.distance Alignment.P Alignment.Q ’=:’ 1 S}

end

in

Root = r(satisfaction: Satisfaction

alignment: Alignment)

{FD. distinct Alignment}

{FD.sum {Map Preferences Satisfied} ’=:’ Satisfaction}

Alignment.fred <: Alignment.betty % breaking symmetries

{FD.distribute split Alignment}

end

proc {PhotoOrder Old New}

Old.satisfaction <: New.satisfaction

end

The optimal solution can be found with the statement

{ExploreBest RevisedPhoto PhotoOrder}

We obtain the same solution as in (page 55). But now only 141 choice nodes are needed
to find the optimal solution whereas 219 choice nodes were needed in Section 8.2.
Furthermore, branch and bound allows us to prove in an efficient way that the last
solution found is really the optimal one. The full search tree (including the proof
of optimality) contains 169 choice nodes; still less than for the search for the best
solution with the ad-hoc method. If we inspect the solutions, we observe that the first
solution satisfies only a single preference. By imposition of the ordering procedure by
the search engine, the next found solution must satisfy more preferences. Indeed, the
second solution satisfies two preferences. Following this approach we finally arrive at
the optimal solution with six satisfied preferences.

10.2 Example: Locating Warehouses

This example features branch and bound to compute an optimal solution, a non-trivial
distribution strategy and symbolic constraints.
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Problem Specification

Assume a company which wants to construct warehouses to supply stores with goods.
Each warehouse to be constructed would have a certain capacity defining the largest
number of stores which can be supplied by this warehouse. For the construction of
a warehouse we have fixed costs. The costs for transportation from a warehouse to a
store vary depending on the location of the warehouse and the supplied store. The aim
is to determine which warehouses should be constructed and which stores should be
supplied by the constructed warehouses such that the overall costs are minimized.

We assume the fixed costs of building a warehouse to be 50. We furthermore assume 5
warehouses W1 through W5 and 10 stores Store1 through Store10. The capacities of
the warehouses are shown in Figure 10.2. The costs to supply a store by a warehouse
are shown in Figure 10.3.

Figure 10.2: Capacities of warehouses.

W1 W2 W3 W4 W5

Capacity 1 4 2 1 3

Figure 10.3: Costs for supplying stores.

W1 W2 W3 W4 W5

Store1 36 42 22 44 52
Store2 49 47 134 135 121
Store3 121 158 117 156 115
Store4 8 91 120 113 101
Store5 77 156 98 135 11
Store6 71 39 50 110 98
Store7 6 12 120 98 93
Store8 20 120 25 72 156
Store9 151 60 104 139 77
Store10 79 107 91 117 154

Model

We assume that the costs are given in the matrix CostMatrix defined by Figure 10.3.
For the model of this problem we introduce the following variables.

• Openi,1 ≤ i ≤ 5, with domain 0#1 such that Openi = 1 if warehouse Wi does
supply at least one store.

• Supplieri,1 ≤ i ≤ 10, with domain 1#5 such that Supplieri = j if store Storei is
supplied by warehouse W j.



72 Chapter 10. Branch and Bound

• Costi,1≤ i≤ 10, such that the domain of Costi is defined by the row CostMatrixi.
The variable Costi denotes the costs of supplying store Storei by warehouse
WSupplieri

, i.e., Costi = CostMatrixi,Supplieri
.

We have the additional constraint that the capacity of the warehouses must not be
exceeded. To this aim we introduce auxiliary variables Supplies i, j with the domain 0#1
as follows.

∀i ∈ {1, . . . ,5}∀ j ∈ {1, . . . ,10} : (Suppliesi, j = 1)↔ (Supplierj = i)

The capacity constraints can then be stated with

∀i ∈ {1, . . . ,5} : Capi ≥
10

∑
j=1

Suppliesi, j

where Capi is defined according to Figure 10.2.

Distribution Strategy

There are several possibilities to define a distribution strategy for this problem.

least regret We choose to determine the variables Cost i by distribution. Because
no entry in a row of the cost matrix occurs twice, we immediately know which store is
supplied by which warehouse. We select the variable Cost i first for which the differ-
ence between the smallest possible value and the next higher value is maximal. Thus,
decisions are made early in the search tree where the difference between two costs by
different suppliers are maximal. The distribution strategy will try the minimal value in
the domain of Costi first. In Operations Research this strategy is known as the principle
of least regret.

Script

The script in Figure 10.4 constrains its root variable to a record containing the supply-
ing warehouse for each store, the costs for each store to be supplied by the correspond-
ing warehouse and the total costs.

The statement

{FD.element Supplier.St CostMatrix.St Cost.St}

connects the costs to supply a store with the supplier. Because no element in a row of
the cost matrix occurs twice, the supplier for a store is known if its costs are determined
and vice versa. Through this statement the constraint Cost i = CostMatrixi,Supplieri

is
imposed.

A propagator for the constraint that the capacity of a warehouse is not exceeded can be
created by the statement

{FD.atMost Capacity.S Supplier S}
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The statement

Open.S = {FD.reified.sum {Map Stores fun {$ St}

Supplier.St =: S end} ’>:’ 0}

guarantees that a variable Openi in the model is constrained to 1 if warehouse Wi sup-
plies at least one store.

The first solution of the problem can be found with the statement

{ExploreOne WareHouse}

To compute the solution with minimal costs we define the following ordering relation.

proc {Order Old New}

Old.totalCost >: New.totalCost

end

The optimal solution with total cost 604 can now be computed with

{ExploreBest WareHouse Order}
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Figure 10.4: A script for the warehouse problem.

Capacity = supplier(3 1 4 1 4)

CostMatrix = store(supplier(36 42 22 44 52)

supplier(49 47 134 135 121)

supplier(121 158 117 156 115)

supplier(8 91 120 113 101)

supplier(77 156 98 135 11)

supplier(71 39 50 110 98)

supplier(6 12 120 98 93)

supplier(20 120 25 72 156)

supplier(151 60 104 139 77)

supplier(79 107 91 117 154))

BuildingCost = 50

fun {Regret X}

M = {FD.reflect.min X}

in

{FD.reflect.nextLarger X M} - M

end

proc {WareHouse X}

NbSuppliers = {Width Capacity}

NbStores = {Width CostMatrix}

Stores = {List.number 1 NbStores 1}

Supplier = {FD.tuple store NbStores 1#NbSuppliers}

Open = {FD.tuple supplier NbSuppliers 0#1}

Cost = {FD.tuple store NbStores 0#FD.sup}

SumCost = {FD.decl} = {FD.sum Cost ’=:’}

NbOpen = {FD.decl} = {FD.sum Open ’=:’}

TotalCost = {FD.decl}

in

X = plan(supplier:Supplier cost:Cost totalCost:TotalCost)

TotalCost =: SumCost + NbOpen*BuildingCost

{For 1 NbStores 1

proc {$ St}

Cost.St :: {Record.toList CostMatrix.St}

{FD.element Supplier.St CostMatrix.St Cost.St}

end}

{For 1 NbSuppliers 1

proc {$ S}

{FD.atMost Capacity.S Supplier S}

Open.S = {FD.reified.sum {Map Stores fun {$ St}

Supplier.St =: S

end} ’>:’ 0}

end}

{FD.distribute

generic(order: fun {$ X Y} {Regret X} > {Regret Y} end)

Cost}

end
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Scheduling

In this section we will consider examples of scheduling problems. Scheduling in this
tutorial means to compute a timetable for tasks competing for a given set of resources.
We assume that the execution of a task can not be interrupted (that is, no preemption is
allowed).

11.1 Building a House

We first consider the problem to build a house (in a simplified way). We will succes-
sively refine the problem specification, the model and the distribution strategy in order
to solve more and more demanding problems.

Problem Specification

The task names, their description, duration (in days) and the company in charge are
given in Figure 11.1. For example, b denotes the task involved with the carpentry for
the roof. This task lasts for 3 days. Task a must be finished before the work for task b

is started (indicated by the column Predecessor). The company in charge for task b is
House Inc. The overall goal is to build the house as quickly as possible.

Figure 11.1: Building a house.

Task Description Duration Predecessor Company
a Erecting Walls 7 none Construction Inc.
b Carpentry for Roof 3 a House Inc.
c Roof 1 b House Inc.
d Installations 8 a Construction Inc.
e Facade Painting 2 c, d Construction Inc.
f Windows 1 c, d House Inc.
g Garden 1 c, d House Inc.
h Ceilings 3 a Construction Inc.
i Painting 2 f, h Builder Corp.
j Moving in 1 i Builder Corp.
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11.1.1 Building a House: Precedence Constraints

For the first model we do not consider the companies in charge for the tasks.

Model

The model introduces for each task a variable which stands for the start time of the
task. In the sequel we will identify a task and its corresponding variable. The end time
of each task is its start time plus its duration. For the time origin we assume 0. A
trivial upper bound for the time to build the house can be obtained by summing up all
durations of tasks. Here, we obtain 29.

precedence constraints From the predecessor relation we can derive a set of so-
called precedence constraints:

A+7 ≤ B, B+3 ≤C, A+7 ≤ D, C +1 ≤ E,
D+8 ≤ E, C +1 ≤ F, D+8 ≤ F, C +1 ≤ G,
D+8 ≤ G, A+7 ≤ H, F +1 ≤ I, H +3 ≤ I,

I +2 ≤ J.

makespan For example, the constraint A+7 ≤ B means that the earliest start time
of b is 7 days after a has been started. We assume an additional task pe modeling the
project end for the problem. All other tasks precede pe. The start time of pe is called
the makespan of the schedule.

Distribution Strategy

If all propagators have become stable, it is sufficient to determine each variable to the
current minimal value in its domain to obtain a solution. This is due to the fact that we
only use constraints of the form x+c≤ y where c is an integer. Hence, we do not need
a distributor at all. Note that this fact remains true if we also consider constraints of
the form x+ c = y (this will be needed later).

Script

The problem specification which is a direct implementation of Figure 11.1 is given
in Figure 11.2. The field under the feature tasks contains the specification as a list
of records. The label of each record gives the task name, the field at feature dur the
duration, the field at feature pre the list of preceding tasks, and the field at feature
res the resource name. The features pre and res are optional, if they are missing
no preceding tasks and no resource are required. The task with name pe denotes the
additional task representing the project end.

scheduling compiler Figure 11.3 shows a procedure that returns a script accord-
ing to our scheduling specification. The used procedures GetDur and GetStart are
shown in Figure 11.4. Such a procedure is called a scheduling compiler because it pro-
cesses the problem specification and returns a script. Hence, the scheduling compiler
compiles the problem specification into an executable script.



11.1. Building a House 77

Figure 11.2: The specification to build a house.

House = house(tasks: [a(dur:7 res:constructionInc)

b(dur:3 pre:[a] res:houseInc)

c(dur:1 pre:[b] res:houseInc)

d(dur:8 pre:[a] res:constructionInc)

e(dur:2 pre:[c d] res:constructionInc)

f(dur:1 pre:[c d] res:houseInc)

g(dur:1 pre:[c d] res:houseInc)

h(dur:3 pre:[a] res:constructionInc)

i(dur:2 pre:[f h] res:builderCorp)

j(dur:1 pre:[i] res:builderCorp)

pe(dur:0 pre:[j])])

Figure 11.3: Scheduling compiler.

fun {Compile Spec}

TaskSpec = Spec.tasks

Dur = {GetDur TaskSpec}

in

proc {$ Start}

Start = {GetStart TaskSpec}

〈Post precedence constraints 78a〉
〈Assign start times 78b〉

end

end

Figure 11.4: Procedures to compute duration and start records.

fun {GetDur TaskSpec}

{List.toRecord dur {Map TaskSpec fun {$ T}

{Label T}#T.dur

end}}

end

fun {GetStart TaskSpec}

MaxTime = {FoldL TaskSpec fun {$ Time T}

Time+T.dur

end 0}

Tasks = {Map TaskSpec Label}

in

{FD.record start Tasks 0#MaxTime}

end
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The durations and start times of tasks are stored in the records Dur and Start, re-
spectively. The record Start is the root variable of the script returned by the function
Compile. First, the propagators for the precedence constraints are created, which is
shown in Figure 11.5. After the space executing the scheduling script has become
stable, the start times are determined. This is shown in Figure 11.6.

Figure 11.5: Posting precedence constraints.

78a 〈Post precedence constraints 78a〉≡
{ForAll TaskSpec

proc {$ T}

{ForAll {CondSelect T pre nil}

proc {$ P}

Start.P + Dur.P =<: Start.{Label T}

end}

end}

Figure 11.6: Assigning start times.

78b 〈Assign start times 78b〉≡
{FD.assign min Start}

The statement

{ExploreOne {Compile House}}

runs the script. The makespan of the schedule is 19. By construction this solution is
the one with the smallest makespan.

11.1.2 Building a House: Capacity Constraints

In this section we take the companies into account which are in charge for the tasks.
We assume that each company cannot handle two tasks simultaneously. That is, the
execution of two tasks handled by the same company must not overlap in time.

Model

For each company (which we also call a resource because the companies are consumed
by a task) we must find a serialization of the handled tasks, i.e. for each task pair A,B
we must decide whether A is finished before B starts or vice versa. Assume two tasks
with start times S1 and S2 and the durations D1 and D2, respectively.
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capacity constraints Then the constraint

S1 +D1 ≤ S2 ∨ S2 +D2 ≤ S1

states that the corresponding tasks do not overlap in time. Such a constraint is also
known as a capacity constraint, because the capacity of the resource must not be ex-
ceeded. The capacity constraints can be modeled by reified constraints for each pair of
tasks handled by the same resource (company). But this leads to a number of propa-
gators which increases quadratically in the number of tasks on a resource. This is not
a feasible approach for problems with many tasks. Thus, we will use a single propa-
gator in the script providing the same propagation as the quadratic number of reified
constraints.

Distribution Strategy

Because of the capacity constraints we have to provide a distribution strategy. We use
the standard first-fail strategy.

Script

We extend the scheduling compiler in Figure 11.3 to extract the tasks handled by a
common resource. The procedure GetTasksOnResource takes a task specification
and returns a record that maps resource names to tasks. Its implementation is shown in
Figure 11.7.

Figure 11.7: Extracting tasks on the same resource.

fun {GetTasksOnResource TaskSpec}

D={Dictionary.new}

in

{ForAll TaskSpec

proc {$ T}

if {HasFeature T res} then R=T.res in

{Dictionary.put D R {Label T}|{Dictionary.condGet D R nil}}

end

end}

{Dictionary.toRecord tor D}

end

The modified scheduling compiler is shown in Figure 11.8. The returned script uses

{Schedule.serializedDisj TasksOnRes Start Dur}

to create for each resource a single propagator for the capacity constraints as described
in the model above.

Exercise 11.1 Write a procedure which implements the capacity constraints of the
problem by reified constraints.
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Figure 11.8: A scheduling compiler with resource constraints.

fun {Compile Spec}

TaskSpec = Spec.tasks

Dur = {GetDur TaskSpec}

TasksOnRes = {GetTasksOnResource TaskSpec}

in

proc {$ Start}

Start = {GetStart TaskSpec}

{Schedule.serializedDisj TasksOnRes Start Dur}

〈Post precedence constraints 78a〉
{FD.distribute ff Start}

end

end

But we are not only interested in the first solution but in the best solution. For our
problem we are interested in the solution with the smallest makespan.

For our example we define the order relation

proc {Earlier Old New}

Old.pe >: New.pe

end

stating that the makespan of the new alternative solution must be strictly smaller than
the makespan of the already found solution. We assume that the refined scheduling
compiler is the procedure CompileHouse2. Thus, the best solution for our problem
can be found by the following statement.

{ExploreBest {Compile House} Earlier}

The first solution which is also the optimal one has a makespan of 21.

11.1.3 Building a House: Serializers

So far we have used only distribution strategies where a variable is selected first and
then the domain is further restricted by a basic constraint. Scheduling applications lead
to distribution strategies where we distribute not only with basic constraints but with
propagators.

serializers In the previous section we have seen that it is necessary to serialize all
tasks on a common resource to satisfy all capacity constraints. This leads to the idea to
use a distributor to serialize the tasks. Such a distributor is called a serializer. Thus, we
refine the scheduling compiler of the previous section by formulating a new distribution
strategy.

Note that we have to refine the notion of distribution here. In Section 2.6 we have
distributed a finite domain problem P only with constraints C and ¬C. But we can
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refine the concept of distribution by distributing with constraints C1 and C2 whenever
P |= C1∨C2 holds.

By this condition we are sure that no solution is lost. For a serializer we distribute
with constraints S1 +D1 ≤ S2 and S2 +D2 ≤ S1 where we assume two tasks with start
times S1 and S2 and the durations D1 and D2, respectively. In the presence of capacity
constraints the required condition holds by construction, i.e. P |= S1 + D1 ≤ S2∨S2 +
D2 ≤ S1.

Ordering Tasks by Distribution

We replace the first-fail distribution strategy by a strategy consisting of two phases. In
the first phase we serialize all tasks on common resources and in the second phase we
determine the start times of the variables. The serialization is achieved by distributing
for each pair of tasks T1 and T2 either with the constraint that task T1 is finished before
T2 starts or that task T2 is finished before task T1 starts.

ordering of tasks If such a distribution step takes place we say that the two con-
cerned tasks are ordered. After the serialization we have only constraints of the form
x + c ≤ y. Thus, it is sufficient for the second phase to determine each variable to the
smallest value in its domain.

Script

The script for the third version of our problem refines the one in the previous section by
replacing the first fail distributor by a distributor that orders task and assigning minimal
start times. The distributor that orders tasks on resources is defined as follows:

81a 〈Order tasks 81a〉≡
{Record.forAll TasksOnRes

proc {$ Ts}

{ForAllTail Ts

proc {$ T1|Tr}

{ForAll Tr

proc {$ T2}

choice Start.T1 + Dur.T1 =<: Start.T2

[] Start.T2 + Dur.T2 =<: Start.T1

end

end}

end}

end}

The complete scheduling compiler can be found in Figure 11.9. The optimal solution
can be found by

{ExploreBest {Compile House} Earlier}

with 28 choice nodes and 3 solution nodes. Thus, for this problem the use of a serializer
results in a larger search tree than the first-fail distributor. In the following section we
will tackle a harder problem and we will show that the first-fail strategy as well as the
naive serializer of this section completely fail to compute the optimal solution of this
more difficult problem.



82 Chapter 11. Scheduling

Figure 11.9: A scheduling compiler with task ordering.

fun {Compile Spec}

TaskSpec = Spec.tasks

Dur = {GetDur TaskSpec}

TasksOnRes = {GetTasksOnResource TaskSpec}

in

proc {$ Start}

Start = {GetStart TaskSpec}

〈Post precedence constraints 78a〉
{Schedule.serializedDisj TasksOnRes Start Dur}

〈Order tasks 81a〉
〈Assign start times 78b〉

end

end

11.2 Constructing a Bridge

The following problem is taken from [4] and is used as a benchmark in the constraint
programming community. The problem is to schedule the construction of the bridge
shown in Figure 11.10.

Problem Specification

The problem is specified as shown in Figure 11.11. From this table we derive prece-
dence and capacity constraints as in the sections before. We also assume that a resource
cannot handle more than one activity at a time. Such a kind of resource is also known
as a unary resource.

unary resources Due to some peculiarities of the problem, we have the following
additional constraints.

1. The time between the completion of the formwork and the completion of the
corresponding concrete foundation is at most 4 days.

2. Between the end of a particular foundation and the beginning of the correspond-
ing formwork can at most 3 days elapse.

3. The erection of the temporary housing must begin at least six days before each
formwork.

4. The removal of the temporary housing can start at most two days before the end
of the last masonry.

5. The delivery of the preformed bearers occurs exactly 30 days after the beginning
of the project.
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Figure 11.10: The Bridge Problem.

To deal with the additional constraints we refine the record containing the specification
of the problem. We add a field under the feature constraints that contains a proce-
dure parameterized by the records containing the start times and the durations of tasks
(see Figure 11.12). This procedure will be applied by the scheduling script.

Model

A trivial upper bound of the makespan is the sum of all durations of the tasks. For
the bridge construction problem we have 271 as the upper bound. We adopt the model
of the house problem including capacity constraints. The additional constraints can
be modeled with propagators for the following constraints over the problem variables
(dur(T ) denotes the duration of a task T ).

1.

(Bi+dur(Bi))− (Si+dur(Si))≤ 4, 1 ≤ i ≤ 6

2.

Si− (Ai+dur(Ai))≤ 3, i ∈ {1,2,5,6}

S3− (P1+ dur(P1))≤ 3

S4− (P2+ dur(P2))≤ 3
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Figure 11.11: Data for bridge construction.

No Na. Description Dur Preds Res
1 pa beginning of project 0 - noResource
2 a1 excavation (abutment 1) 4 pa excavator
3 a2 excavation (pillar 1) 2 pa excavator
4 a3 excavation (pillar 2) 2 pa excavator
5 a4 excavation (pillar 3) 2 pa excavator
6 a5 excavation (pillar 4) 2 pa excavator
7 a6 excavation (abutment 2) 5 pa excavator
8 p1 foundation piles 2 20 a3 pile driver
9 p2 foundation piles 3 13 a4 pile driver
10 ue erection of temporary housing 10 pa noResource
11 s1 formwork (abutment 1) 8 a1 carpentry
12 s2 formwork (pillar 1) 4 a2 carpentry
13 s3 formwork (pillar 2) 4 p1 carpentry
14 s4 formwork (pillar 3) 4 p2 carpentry
15 s5 formwork (pillar 4) 4 a5 carpentry
16 s6 formwork (abutment 2) 10 a6 carpentry
17 b1 concrete foundation (abutment 1) 1 s1 concrete mixer
18 b2 concrete foundation (pillar 1) 1 s2 concrete mixer
19 b3 concrete foundation (pillar 2) 1 s3 concrete mixer
20 b4 concrete foundation (pillar 3) 1 s4 concrete mixer
21 b5 concrete foundation (pillar 4) 1 s5 concrete mixer
22 b6 concrete foundation (abutment 2) 1 s6 concrete mixer
23 ab1 concrete setting time (abutment 1) 1 b1 noResource
24 ab2 concrete setting time (pillar 1) 1 b2 noResource
25 ab3 concrete setting time (pillar 2) 1 b3 noResource
26 ab4 concrete setting time (pillar 3) 1 b4 noResource
27 ab5 concrete setting time (pillar 4) 1 b5 noResource
28 ab6 concrete setting time (abutment 2) 1 b6 noResource
29 m1 masonry work (abutment 1) 16 ab1 bricklaying
30 m2 masonry work (pillar 1) 8 ab2 bricklaying
31 m3 masonry work (pillar 2) 8 ab3 bricklaying
32 m4 masonry work (pillar 3) 8 ab4 bricklaying
33 m5 masonry work (pillar 4) 8 ab5 bricklaying
34 m6 masonry work (abutment 2) 20 ab6 bricklaying
35 l delivery of the preformed bearers 2 - crane
36 t1 positioning (preformed bearer 1) 12 m1, m2, l crane
37 t2 positioning (preformed bearer 2) 12 m2, m3, l crane
38 t3 positioning (preformed bearer 3) 12 m3, m4, l crane
39 t4 positioning (preformed bearer 4) 12 m4, m5, l crane
40 t5 positioning (preformed bearer 5) 12 m5, m6, l crane
41 ua removal of the temporary housing 10 - noResource
42 v1 filling 1 15 t1 caterpillar
43 v2 filling 2 10 t5 caterpillar
44 pe end of project 0 t2, t3, t4, v1, v2, ua noResource
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Figure 11.12: Specification for bridge construction.

bridge(tasks:

〈Bridge task specification 103a〉
constraints:

proc {$ Start Dur}

{ForAll [s1#b1 s2#b2 s3#b3 s4#b4 s5#b5 s6#b6]

proc {$ A#B}

(Start.B + Dur.B) - (Start.A + Dur.A) =<: 4

end}

{ForAll [a1#s1 a2#s2 a5#s5 a6#s6 p1#s3 p2#s4]

proc {$ A#B}

Start.B - (Start.A + Dur.A) =<: 3

end}

{ForAll [s1 s2 s3 s4 s5 s6]

proc {$ A}

Start. A >=: Start.ue + 6

end}

{ForAll [m1 m2 m3 m4 m5 m6]

proc {$ A}

(Start.A + Dur.A) - 2 =<: Start.ua

end}

Start.l =: Start.pa + 30

Start.pa = 0

end)

3.

UE+6 ≤ Si, 1 ≤ i ≤ 6

4.

(Mi+dur(Mi))−2 ≤ UA, 1 ≤ i ≤ 6

5.

L = PA+30

Distribution Strategy

We first try the distribution strategy of Section 11.1.2, i.e. the first-fail strategy. The
first solution of the problem is found with 97949 choice nodes and has a makespan of
133. After 500000 choice nodes no better solution is found. This is very unsatisfactory
if we know that the optimal makespan is 104.

Thus, we try the distributor described in Section 11.1.3, i.e. the naive serializer. Now
we find the first solution with makespan 120 with only 77 choice nodes. With 95
choice nodes we find a solution with makespan 112. After 500000 choice nodes no
better solution is found.
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In order to solve the problem we combine the ideas of first-fail and of serializers. The
idea behind first-fail is to distribute first with a variable which has the smallest domain.
This variable should occur in many constraints and should lead to much constraint
propagation. The variable with the smallest domain acts as a bottleneck for the prob-
lem. This idea can be transferred to scheduling problems. A simple criterion for a
resource to be a bottleneck is the sum of the durations of tasks to be scheduled on
that resource. Hence, we will serialize first the tasks on a resource where the sum of
durations is maximal.

Script

Figure 11.13: A scheduling compiler for the bridge problem.

fun {Compile Spec Capacity Serializer}

TaskSpec = Spec.tasks

Constraints = 〈Extract additional constraints 86a〉
Dur = {GetDur TaskSpec}

TasksOnRes = {GetTasksOnResource TaskSpec}

in

proc {$ Start}

Start = {GetStart TaskSpec}

〈Post precedence constraints 78a〉
{Constraints Start Dur}

{Capacity TasksOnRes Start Dur}

{Serializer TasksOnRes Start Dur}

〈Assign start times 78b〉
end

end

Figure 11.13 shows the scheduling we will employ for the remaining problems. The
variable Constraints refers to a binary procedure possibly containing additional con-
straints for a scheduling problem, it is computed as follows:

86a 〈Extract additional constraints 86a〉≡
if {HasFeature Spec constraints} then

Spec.constraints

else

proc {$ _ _}

skip

end

end

Note that we have parameterized the scheduling compiler with procedures to post the
capacity constraints and the serializer. This makes it straightforward to solve the bridge
problem with stronger techniques.

The procedure DistributedSorted orders the tasks on resources according to our
bottleneck criterion (see Figure 11.14).

The optimal solution can be found by
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Figure 11.14: Serializer that orders tasks by bottleneck criterion.

proc {DistributeSorted TasksOnRes Start Dur}

fun {DurOnRes Ts}

{FoldL Ts fun {$ D T}

D+Dur.T

end 0}

end

in

{ForAll {Sort {Record.toList TasksOnRes}

fun {$ Ts1 Ts2}

{DurOnRes Ts1} > {DurOnRes Ts2}

end}

proc {$ Ts}

{ForAllTail Ts

proc {$ T1|Tr}

{ForAll Tr

proc {$ T2}

choice Start.T1 + Dur.T1 =<: Start.T2

[] Start.T2 + Dur.T2 =<: Start.T1

end

end}

end}

end}

end

{ExploreBest {Compile Bridge

Schedule.serializedDisj

DistributeSorted}

Earlier}

The full search tree consists of 1268 choice nodes and 8 solution nodes (see Fig-
ure 11.15).

The optimal solution can be visualized by a kind of Gantt-chart (see Figure 11.16). The
makespan of the schedule (104 in this case) is indicated by a dashed line. Rectangles
denote tasks. The left border of the rectangle indicates the start time of the task and the
width of the rectangle indicates the duration of the task. Tasks scheduled on the same
resource have the same texture.

The way we can solve scheduling problems by now seems to be satisfactory. But the
current approach has two major flaws. First, the propagation of capacity constraint
is rather weak. If we want to solve more demanding scheduling problems (like some
benchmark problems from Operations Research) we need stronger propagation. Sec-
ond, the bottleneck criterion of the serializer is rather coarse. We need more subtle
techniques to solve more demanding problems. Furthermore, we need (n · (n− 1))/2
ordering decisions for n tasks on the same resource which may result in deep search
trees. This is not feasible for larger problems. Both problems will be solved in forth-
coming sections.



88 Chapter 11. Scheduling

Figure 11.15: A search tree for the bridge problem.

11.3 Strong Propagators for Capacity Constraints

In this section we introduce the ideas for stronger propagation employed for capacity
constraints in Oz.

First we show the weakness of the propagators we have introduced so far. We consider
three tasks A, B and C, each with duration 8 and with the domain 1#10. If we state
for the pairs (A,B), (A,C) and (B,C) that the contained tasks must not overlap in time
by using reified constraints or by applying Schedule.serializedDisj, no further
propagation will take place. This is due to the local reasoning on task pairs. For each
pair no value in the corresponding domains can be discarded. On the other hand, the
tasks must be scheduled between time point 1 and 18 (the latest completion time of
either A, B or C). But because the overall duration is 24, this is impossible.

Hence, we will use stronger propagators reasoning simultaneously on the whole set
of tasks on a resource. The principal ideas behind this reasoning are simple but very
powerful. First, for an arbitrary set of tasks S to be scheduled on the same resource,
the available time must be sufficient (see the example above). Furthermore, we check
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Figure 11.16: The Gantt-chart for the bridge problem.

whether a task T in math/S/ must be scheduled as the first or last task of S (and analo-
gously if T is not in S).

We introduce the following abbreviations for a task T .

est(T ) least possible start time for T
lst(T ) largest possible start time for T
ect(T ) earliest completion time for T , i.e. ect(T ) = est(T )+dur(T )
lct(T ) latest possible completion time for T , i.e., lct(T ) = lst(T )+dur(T )

For a set S of tasks we define

est(S) = min({est(T )| T ∈ S})
lct(S) = max({lct(T )| T ∈ S})
dur(S) = ∑

T∈S
dur(S)

If the condition
lct(S)− est(S) > dur(S)

holds, no schedule of the tasks in S can exist. A strong propagator for capacity con-
straints fails in this case.

Now we introduce some domain reductions by considering a task T and a set of tasks
S where T does not occur in S. Assume that we can show that T cannot be scheduled
after all tasks in S and that T canot be scheduled between two tasks in S (if S contains
at least two tasks). In this case we can conclude that T must be scheduled before all
tasks in S.

More formally, if
lct(S)− est(S) < dur(S)+dur(T )
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holds, T cannot be scheduled between lct(S) and est(S) (it cannot be scheduled be-
tween two tasks of S if S contains at least two tasks). If

lct(T )− est(S) < dur(S)+dur(T )

holds, T cannot be scheduled after all tasks in S. Hence, if both conditions hold, T
must be scheduled before all tasks of S and corresponding propagators can be imposed,
narrowing the domains of variables.

Analogously, if
lct(S)− est(S) < dur(S)+dur(T )

and
lct(S)− est(T ) < dur(S)+dur(T )

holds, T must be last.

edge-finding Similar rules can be formulated if T is contained in S. For this kind of
reasoning, the term edge-finding was coined in [2]. There are several variations of this
idea in [5], [2], [6], [11] for the Operations Research community and in [13], [7], [3],
[14] for the constraint programming community; they differ in the amount of propaga-
tion and which sets S are considered for edge-finding. The resulting propagators do a
lot of propagation, but are also more expensive than e.g. reified constraints. Depending
on the problem, one has to choose an appropriate propagator.

For unary resources Oz provides two propagators employing edge-finding to imple-
ment capacity constraints. The propagator Schedule.serialize is an improved ver-
sion of an algorithm described in [11]. A single propagation step has complexity O(n2)
where n is the number of tasks the propagator is reasoning on, i.e. the number of tasks
on the resource considered by the propagator. Because the propagator runs until prop-
agation reaches a fixed-point, we have the overall complexity of O(k ·n3) when k is the
size of the largest domain of a task’s start time (at most k ·n values can be deleted from
the domains of task variables).

The propagator Schedule.taskIntervals provides weaker propagation than described
in [7] but provides stronger propagation than Schedule.serialize. While a single
propagation step has complexity O(n3), the overall complexity is O(k ·n4).

Now we can solve the bridge construction problem with a propagator using edge-
finding. By the statement

{ExploreBest {Compile Bridge

Schedule.serialized

DistributeSorted}

Earlier}

we compute the optimal solution in a full search tree with 508 choice nodes instead of
1268 as in the section before.
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proof of optimality The improvement by strong propagation becomes even more
dramatic if we constrain the bridge problem further by stating that the makespan must
be strictly smaller than 104. Since we know that 104 is the optimal solution we, thus,
prove optimality of this makespan. The modified problem specification is

OptBridge = {AdjoinAt Bridge constraints

proc {$ Start Dur}

{Bridge.constraints Start Dur}

Start.pe <: 104

end}

Solving the modified problem with the simple propagator by

{ExploreBest {Compile OptBridge

Schedule.serializedDisj

DistributeSorted}

Earlier}

we obtain a search tree with 342 choice nodes. Using the edge-finding propagator
Schedule.serialized instead we obtain a search tree with only 22 choice nodes.
By using Schedule.taskIntervals the search tree shrinks further to the size of 17
choice nodes.

Note that for the proof of optimality the domains of the start times are rather narrow.
If we start with an unconstrained problem, the domains are rather wide. But if the
domains are more narrow compared to the durations of the tasks, the conditions we
have described above are more likely to become true and propagation may take place.
This is the reason why edge-finding turns out to be a stronger improvement for the
proof of optimality.

11.4 Strong Serializers

So far we only have considered serializers which result in a search tree which depth
grows quadratically in the number of tasks on a resource. In this section we will intro-
duce a serializer where the depth of a search tree grows only linear in the number of
tasks. In each choice node we will order several tasks not only two tasks. each choice
node but several of them. This is done by stating that a single task must precede all
other tasks on a resource.

A further disadvantage of the bottleneck serializer considered in Section 11.3 is its
static bottleneck criterion. Instead we take the changing size of domains during run
time into account to select a resource which should be serialized. This is also the
approach chosen for the first-fail distribution strategy.

supply We start with a better criterion to select a resource. Let S be the set of tasks
on a resource r. The available time to schedule all the tasks in S is lct(S)−est(S). This
value is called the supply of r. The overall time needed to schedule the tasks in S is
dur(S).
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demand, global slack This value is called the demand of r. The difference be-
tween supply and demand is called global slack of r (slackr

g) and denotes the free space
on the resource. The smaller the value of the global slack the more critical is the re-
source (the tasks on it can be shifted only in a very limited way).

Hence, one could use the global slack as a criterion to select a resource. But a small
example reveals that this criterion has still an important flaw: it is too coarse-grained.
Assume S to be the set {A,B,C} described in the following table.

task domain dur(t)
A 0#18 2
B 1#7 5
C 2#9 4

The global slack is lct(S)− est(S)− dur(S) = 20− 0− 11 = 9. But now consider the
set S′ = {B,C}. We obtain lct(S′)− est(S′)− dur(S′) = 13− 1− 9 = 3. This means
that for B and C we have far less free place to shift the tasks than it is indicated by the
global slack. Thus, we refine our criterion as follows.

task interval Let T1 and T2 be two tasks on the same resource r and S the set of all
tasks running on r. If est(T1)≤ est(T2) and lct(T1)≤ lct(T2), we call the set I(T1,T2) =
{T | T ∈ S, est(T1) ≤ est(T ), lct(T )≤ lct(T2)} the task interval defined by T1 and T2

(see also [7]). Intuitively, a task interval is the set of tasks which must be scheduled
between est(T1) and lct(T2). Let Ir be the set of all task intervals on the resource r.

local slack The local slack of r (slackr
l ) is now defined as

min({lct(I)− est(I)−dur(I)|I ∈ Ir})

.

critical resource If two resources have the same local slack, we use the global
slack to break this tie. Thus, we select the resource next for serialization which is
minimal according to the lexicographic order (slackr

l ,slackr
g). The selected resource is

called the critical resource. Note that a local slack of a resource with n tasks can be
computed in O(n3) time.

Next we will determine the constraints to distribute with. Let u(r) be the set of tasks
on the critical resource r which are not ordered with all other tasks on r yet. Using the
ideas of edge-finding we compute the set F of all tasks in u(r) which can be sched-
uled first: F = {T | T ∈ u(r), lct(u(r)\{T})− est(T ) ≥ dur(u(r))}. In a distribution
step each of the tasks in F , say T , may be scheduled before all others and T can be
deleted from u(r). The task in F which is smallest according to the lexicographic order
(est(T ), lst(T )) is first selected for distribution. By this choice we leave as much space
for the remaining tasks to be scheduled on the resource. We now distribute with the
constraints that T precedes all other tasks in u(r): ∀T ′ ∈ u(r)\{T} : T +dur(T )≤ T ′.
If this choice leads to failure, the next task in F is tried according to our criterion.

The overall strategy is as follows. We select a critical resource according to our crite-
rion developed above. Then we serialize the critical resource by successively selecting



11.5. Solving Hard Scheduling Problems 93

tasks to be scheduled before all others. After the critical resource is serialized, the next
critical resource is selected for serialization. This process is repeated until all resources
are serialized.

The described serializer follows the ideas of [3] which in turn adopts ideas of [5]. The
serializer is available through Schedule.firstsDist.

We immediately apply our new serializer to the bridge problem.

{ExploreBest {Compile Bridge

Schedule.serialized

Schedule.firstsDist}

Earlier}

The optimal solution can be found and its optimality can be proven with only 90 choice
nodes. Now the proof of optimality (problem OptBridge) needs only 22 choice nodes.

But we can do better. In addition to the set F of tasks we can compute the set L of
tasks which may be scheduled after all other tasks (see also Section 11.3). In this
case the task T which is tried first to be scheduled after all the others is the one which
is maximal according to the lexicographic order (lct(T ),ect(T )). A further serializer
computes both F and L. Then it selects the set which has the smallest cardinality. This
serializer is available through Schedule.firstsLastsDist.

Using Schedule.firstsLastsDist we can find the optimal solution and prove its
optimality with only 30 choice nodes (see Figure 11.17). Note that in contrast to Fig-
ure 11.15 where we have needed 8 solutions to reach the optimal one, we now find the
optimal solution immediately. The size of the search tree is reduced by more than an
order of magnitude.

The optimality of the problem can be proven with only 4 choice nodes.

Let m be the number of resources to consider in a scheduling problem and let n be the
maximal number of tasks on a common resource. Then the described serializer has a
run time complexity of O(m ·n3) if a resource has to be selected and O(n) if only the
set F or L has to be computed.

resource-oriented Because this kind of serializer successively serializes all re-
sources, we call it resource-oriented serializer.

11.5 Solving Hard Scheduling Problems

In this section we tackle more difficult scheduling problems. To this aim we will also
develop a new serializer.

We consider two problems in this section. Both are used as standard benchmark prob-
lems for scheduling. The first one is called ABZ6 and was introduced in [1]. The
second one is the famous MT10 and was introduced in [12]. MT10 was considered
as an especially hard problem for several years. It took more than 25 years that the
optimality of a found makespan was proven [5].
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Figure 11.17: A search tree for the bridge problem.

These problems belong to the class of so-called job-shop problems (see [9] or a good
text book on scheduling). We slightly simplify the definition for our purposes. A job-
shop problem consists of n jobs of tasks. Each job j consists of m tasks t j

1 through t j
m

such that each task of the job is scheduled on a different (unary) resource. Thus, we
have m resources. Furthermore, we have the constraint t j

i +dur(t j
i )≤ t j

i+1 for all tasks
of job j, i.e. the tasks in a job are serialized. The latter constraints are already known
as precedence constraints (see Section 11.1.1).

11.5.1 The Problem ABZ6

We will consider problem ABZ6 first. The specification is given in (page 104). The
problem consists of 10 jobs and 10 resources. We first search for the optimal solution
and prove its optimality:

{ExploreBest {Compile ABZ6

Schedule.serialized
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Schedule.firstsLastsDist}

Earlier}

The resulting search tree contains 2424 choice nodes. The optimal makespan is 943.

We now only want to prove the optimality of the makespan 943. To this aim we declare
a modified problem as follows.

OptABZ6 = {AdjoinAt ABZ6 constraints

proc {$ Start Dur}

Start.pe <: 943

end}

The proof of optimality needs 761 choice nodes.

Hence, the problem ABZ6 seems to be rather easy to solve and we can try our previous
bottleneck serializer DistributeSorted. To find the optimal solution and to prove
its optimality a search tree is computed which contains more than 1.2 million choice
nodes. Therefore, the problem is difficult for our simpler strategies and the gain by our
new serializer is dramatic.

But we can do still better. To this aim we introduce a new serializer. This serializer will
not serialize one resource after the other as the previous serializer. Instead a resource r
is selected first. Then two tasks are selected which are running on r and it is distributed
with a certain ordering. For the resource selection a criterion is used which combines
the global slack and the local slack of each resource. For the task ordering the sets F
and L are computed as shown in the previous section. From these sets two tasks are
selected according to a subtle criterion (see [7]). After an ordering decision is made
by distribution the process is repeated until all resources are serialized. In contrast to
the strategy in Section 11.4, a task pair on a resource may be ordered without that the
resource which was previously considered needs to be serialized.

task-oriented Thus, we call such a serializer a task-oriented serializer The strategy
implemented in Oz is very similar to the one suggested in [7].

Since we have to compute local slacks, the serializer has a run time complexity of
O(m ·n3) in each step. Thus, it is more expensive than the resource-oriented serializer
of the previous section. Furthermore, the use of this serializer might result in very deep
search trees because we order only two tasks at each choice node. But the presented
task-oriented serializer has a very important operational behavior besides the fact that
it is used for distribution. While it is computing the local slacks of the resources it
additionally employs edge-finding for the task intervals considered during this com-
putation. In this way, the serializer may detect several orderings which must hold by
the edge-finding rules presented in Section 11.3. This information is exploited at each
choice node by additionally creating the corresponding propagators. Thus, the seri-
alizer orders two tasks by distribution and simultaneously adds orderings which are
detected deterministically. By this approach the search tree may be reduced dramati-
cally if edge-finding can be applied. As we have seen before, this is the case when the
domains are rather narrow, i.e. for example when we want to prove optimality.

Oz provides the serializer Schedule.taskIntervalsDistP which has the described
behavior. To prove optimality for ABZ6 we now only need 145 choice nodes.
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This serializer is especially designed for proving optimality. Hence, do not use this
strategy when you want to find the optimal solution from scratch. If we search for
the optimal solution the search tree becomes rather deep (a depth larger than 450)
(including the proof of optimality) and the full tree contains more than 47000 choice
nodes.

A variant of this task-oriented serializer is especially designed to find good solutions.
To this aim Oz provides Schedule.taskIntervalsDistO (see also [8]). To find the
optimal solution and to prove its optimality with this strategy we need 2979 choice
nodes. But be aware that the use of this strategy may also lead to deep search trees
which result in high memory consumption.

11.5.2 The MT10 Problem

In this section we tackle the famous MT10 problem (the data specification is (page 105)).
From the literature we know that 930 is the optimal makespan and we can define a
script (compiled from OptMT10, see (page 106)) which can be used for proving opti-
mality. The proof of optimality can be done with 1850 choice nodes:

{ExploreBest {Compile OptMT10

Schedule.serialized

Schedule.taskIntervalsDistP}

Earlier}

Note that the depth of the search tree is only 39. This emphasizes the fact that many
orderings can be determined by edge-finding which is employed by the task-oriented
serializer.

To find the optimal solution we better use the serializer Schedule.firstsLastsDist:

{ExploreBest {Compile MT10

Schedule.serialized

Schedule.firstsLastsDist}

Earlier}

The full search tree to find the optimal solution and to prove its optimality contains
16779 choice nodes and has depth 91.
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Traps and Pitfalls

This section lists traps and pitfalls that beginners typically fall into when writing their
first finite domain problem scripts in Oz.

Ordinary Arithmetic Blocks

There is a big difference between the statement

X+Y =: Z

and the statement

X+Y = Z

The first statement creates a concurrent finite domain propagator and never blocks. The
second statement creates an addition task that blocks until its arguments X and Y are
known. Blocking means that the statements following the addition statement will not
be executed.

This pitfall can be particulary malicious if the infix expressions (X mod Y) or (X div Y)

are used. For instance,

X mod Y =: Z

is equivalent to

local A in

X mod Y = A

A =: Z

end

and will thus block until X and Y are determined. In contrast, a statement like

U + X*(Y-Z) =: ~Y

is fine since the operations +, *, -, and ~ are implemented by the created propagator.
The general rule behind this is simple: The infix operators =:, \=:
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:

, >:, =<:, and >=: absorp the arithmetic operators +, -, *, and ~, and no others.

Incidentally, interval and domain propagators for the modulo constraint can be cre-
ated with the procedures {FD.modI X Y Z} and {FD.modD X Y Z}, respectively (see
Section 2.4).

There is an easy way to check whether a statement in a script blocks: Just insert as last
statement

{Browse ’End of script reached’}

and check in the Browser. If ’End of script reached’ appears in the Browser
when you execute the script (e.g. with the Explorer), no statement in the script can have
blocked, except for those that have been explicitly parallelized with thread ... end.

Delay of Propagators

Almost all propagators start their work only after all variables occurring in the imple-
mented constraint are constrained to finite domains in the constraint store. For instance,
the propagator created by

X*47 =: _

will never start propagation since it will wait forever that the anonymous variable cre-
ated by the wildcard symbol _ is constrained to a finite domain. This problem can
easily be avoided by writing

X*47 =: {FD.decl}

The procedure {FD.decl X} constrains its argument to the largest finite domain pos-
sible (i.e. 0#sup).

The Operators =: and :: don’t Introduce Pattern Variables

The statement

local X =: Y+Z in ... end

does not declare X as local variable, which is in contrast to the statement

local X = Y+Z in ... end

which however does not create a propagator. The desired effect can be obtained by
writing

local X = {FD.decl} in X =: Y+Z ... end
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A related pitfall is the wrong assumtion that a statement

local X :: 4#5 in ... end

declares X as local variable. This is not the case. To obtain the desired effect, you can
write

local X = {FD.int 4#5} in ... end

Delay of Domain Specifications

A domain specification like X::L#U constrains X only after both L and U are determined.
Thus

L :: 5#13

U :: 14#33

X :: L#U

will constrain X only after both L and U have been determined.

Coreferences are not Always Realized

The propagator created by

A*A + B*B =: C*C

provides much less propagation than the four propagators created by

{FD.times A A} + {FD.times B B} =: {FD.times C C}

The reason is that the first propagator does not realize the coreferences in the constraint
it implements, that is, it treats the two occurrences of A, say, as if they were independent
variables. On the other hand, the propagator created by {FD.times A A $} exploits
this coreference to provide better propagation. The Pythagoras Puzzle (see Section 7.2)
is a problem, where exploiting coreferences is essential).

Large Numbers

There is an implementation-dependent upper bound for the integers that can occur in a
finite domain stored in the constraint store. This upper bound is available as the value
of FD.sup. In Mozart, FD.sup is 134 217 726 on Linux and Sparc platforms.

The same restriction applies to constants appearing in propagators. For instance, the
creation of a propagator

X*Y <: 900*1000*1000



100 Appendix A. Traps and Pitfalls

will result in a run-time error since the constant 900 000 000 computed by the compiler
is larger than FD.sup. There is a trick that solves the problem for some cases. The trick
consists in giving a large number as a product involving an auxiliary variable:

local A = 900 in

X*Y <: A*1000*1000

end

The trick exploits that propagators can compute internally with integers larger than
FD.sup, and that the compiler does not eliminate the auxiliary variable. The Grocery
Puzzle in Section 4.1 uses this trick.
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Golden Rules

We offer the following rules for the design of efficient constraint programs.

Analyze and Understand your Script

The first script for a difficult problem usually does not show satisfactory performance,
even if you are expert. To improve it, you need to analyze and understand the search
tree. The Explorer is a powerful tool for doing this. Use the statistics feature of the
Panel to analyse the performance of your script: how many variables and propagators
have been created? How often where the propagators invoked?

Experiment

Once you have analyzed the search tree and performance of your script, start to ex-
periment with different models, different distribution strategies, and propagators for
redundant constraints.

Have as much Constraint Propagation as Possible

More constraint propagation results in smaller search trees. Try to design a model
that yields strong propagation. Try to eliminate symmetries by imposing canonical
orders. Finally, try to find redundant constraints that result in stronger propagation
when imposed as propagators.

Find a Good Distribution Strategy

A good distribution strategy can reduce the size of the search trees dramatically. Usu-
ally, it’s a good idea to start with a first-fail strategy. The Grocery Puzzle (see Sec-
tion 4.1) is an example where domain splitting is much better than trying the least
possible value. Our script for the Queens Puzzle (see Section 5.1) can solve the puzzle
even for large N’s by using a first-fail distribution strategy that tries the value in the
middle of the domain of the selected variable first.
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Keep the Number of Variables and Propagators Low

The memory consumption of a script depends very much on the number of propaga-
tors and finite domain variables created. Models that keep these numbers low usually
lead to more efficient scripts. The model for the Queens Problem in Section 5.1 is
particularly successful in keeping the number of propagators low.

Use the statistics feature of the Panel to find out how many variables and propagators
were created.

This rule conflicts with the rule asking for maximization of constraint propagation.
Extra propagators for redundant constraints will improve performance if they reduce
significantly either the size of search tree or the number of propagation steps (for the
latter, see the Pythagoras Example in Section 7.2).

Eliminate Symmetries

It is always a good idea to design a model such that symmetries are avoided as much
as possible. The model for the Queens Puzzle (see Section 5.1) avoids possible sym-
metries by having a minimal number of variables. The models for the Grocery and
Family Puzzles (see Section 4.1 and Section 4.2) eliminate symmetries by imposing a
canonical order on the variables by means of additional constraints. The model of the
Grocery Puzzle eliminates a subtle symmetry by stating that the price of the first item
must have a large prime factor in common with the product of the prices of the items.
The Fraction Puzzle (see Section 7.1) eliminates symmetries by imposing an order on
the three occurring fractions.

Introduce Propagators for Redundant Constraints

Propagators for redundant constraints can often strengthen a script’s propagation. A
redundant constraint is a constraint that is logically entailed by the constraints speci-
fying the problem. Try to find redundant constraints that yield nonredundant propa-
gators. The models for the Fraction and Magic Square puzzles (see Section 7.1 and
Section 7.3) feature good examples for nonredundant propagators for redundant con-
straints.

Use Recomputation if Memory Consumption is a Problem

Scripts which create a large number of variables or propagators or scripts for which the
search tree is very deep might use too much memory to be feasible. Search engines de-
scribed in Chapter Search Engines: Search, (System Modules) and the Explorer (see
“Oz Explorer – Visual Constraint Programming Support” ) feature support for so-called
recomputation. Recomputation reduces the space requirements for these problems in
that it trades space for time.
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Example Data

The following appendix features some data specifications omitted in the chapters’ text.

Scheduling

103a 〈Bridge task specification 103a〉≡
[pa(dur: 0)

a1(dur: 4 pre:[pa] res:excavator)

a2(dur: 2 pre:[pa] res:excavator)

a3(dur: 2 pre:[pa] res:excavator)

a4(dur: 2 pre:[pa] res:excavator)

a5(dur: 2 pre:[pa] res:excavator)

a6(dur: 5 pre:[pa] res:excavator)

p1(dur:20 pre:[a3] res:pileDriver)

p2(dur:13 pre:[a4] res:pileDriver)

ue(dur:10 pre:[pa])

s1(dur: 8 pre:[a1] res:carpentry)

s2(dur: 4 pre:[a2] res:carpentry)

s3(dur: 4 pre:[p1] res:carpentry)

s4(dur: 4 pre:[p2] res:carpentry)

s5(dur: 4 pre:[a5] res:carpentry)

s6(dur:10 pre:[a6] res:carpentry)

b1(dur: 1 pre:[s1] res:concreteMixer)

b2(dur: 1 pre:[s2] res:concreteMixer)

b3(dur: 1 pre:[s3] res:concreteMixer)

b4(dur: 1 pre:[s4] res:concreteMixer)

b5(dur: 1 pre:[s5] res:concreteMixer)

b6(dur: 1 pre:[s6] res:concreteMixer)

ab1(dur:1 pre:[b1])

ab2(dur:1 pre:[b2])

ab3(dur:1 pre:[b3])

ab4(dur:1 pre:[b4])

ab5(dur:1 pre:[b5])

ab6(dur:1 pre:[b6])

m1(dur:16 pre:[ab1] res:bricklaying)

m2(dur: 8 pre:[ab2] res:bricklaying)

m3(dur: 8 pre:[ab3] res:bricklaying)
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m4(dur: 8 pre:[ab4] res:bricklaying)

m5(dur: 8 pre:[ab5] res:bricklaying)

m6(dur:20 pre:[ab6] res:bricklaying)

l(dur: 2 res:crane)

t1(dur:12 pre:[m1 m2 l] res:crane)

t2(dur:12 pre:[m2 m3 l] res:crane)

t3(dur:12 pre:[m3 m4 l] res:crane)

t4(dur:12 pre:[m4 m5 l] res:crane)

t5(dur:12 pre:[m5 m6 l] res:crane)

ua(dur:10)

v1(dur:15 pre:[t1] res:caterpillar)

v2(dur:10 pre:[t5] res:caterpillar)

pe(dur: 0 pre:[t2 t3 t4 v1 v2 ua])]

104a 〈ABZ6 Specification 104a〉≡
abz6(tasks:

[pa(dur: 0)

a1(dur:62 pre:[pa] res:m7) a2(dur:24 pre:[a1] res:m8)

a3(dur:25 pre:[a2] res:m5) a4(dur:84 pre:[a3] res:m3)

a5(dur:47 pre:[a4] res:m4) a6(dur:38 pre:[a5] res:m6)

a7(dur:82 pre:[a6] res:m2) a8(dur:93 pre:[a7] res:m0)

a9(dur:24 pre:[a8] res:m9) a10(dur:66 pre:[a9] res:m1)

b1(dur:47 pre:[pa] res:m5) b2(dur:97 pre:[b1] res:m2)

b3(dur:92 pre:[b2] res:m8) b4(dur:22 pre:[b3] res:m9)

b5(dur:93 pre:[b4] res:m1) b6(dur:29 pre:[b5] res:m4)

b7(dur:56 pre:[b6] res:m7) b8(dur:80 pre:[b7] res:m3)

b9(dur:78 pre:[b8] res:m0) b10(dur:67 pre:[b9] res:m6)

c1(dur:45 pre:[pa] res:m1) c2(dur:46 pre:[c1] res:m7)

c3(dur:22 pre:[c2] res:m6) c4(dur:26 pre:[c3] res:m2)

c5(dur:38 pre:[c4] res:m9) c6(dur:69 pre:[c5] res:m0)

c7(dur:40 pre:[c6] res:m4) c8(dur:33 pre:[c7] res:m3)

c9(dur:75 pre:[c8] res:m8) c10(dur:96 pre:[c9] res:m5)

d1(dur:85 pre:[pa] res:m4) d2(dur:76 pre:[d1] res:m8)

d3(dur:68 pre:[d2] res:m5) d4(dur:88 pre:[d3] res:m9)

d5(dur:36 pre:[d4] res:m3) d6(dur:75 pre:[d5] res:m6)

d7(dur:56 pre:[d6] res:m2) d8(dur:35 pre:[d7] res:m1)

d9(dur:77 pre:[d8] res:m0) d10(dur:85 pre:[d9] res:m7)

e1(dur:60 pre:[pa] res:m8) e2(dur:20 pre:[e1] res:m9)

e3(dur:25 pre:[e2] res:m7) e4(dur:63 pre:[e3] res:m3)

e5(dur:81 pre:[e4] res:m4) e6(dur:52 pre:[e5] res:m0)

e7(dur:30 pre:[e6] res:m1) e8(dur:98 pre:[e7] res:m5)

e9(dur:54 pre:[e8] res:m6) e10(dur:86 pre:[e9] res:m2)

f1(dur:87 pre:[pa] res:m3) f2(dur:73 pre:[f1] res:m9)

f3(dur:51 pre:[f2] res:m5) f4(dur:95 pre:[f3] res:m2)

f5(dur:65 pre:[f4] res:m4) f6(dur:86 pre:[f5] res:m1)

f7(dur:22 pre:[f6] res:m6) f8(dur:58 pre:[f7] res:m8)

f9(dur:80 pre:[f8] res:m0) f10(dur:65 pre:[f9] res:m7)

g1(dur:81 pre:[pa] res:m5) g2(dur:53 pre:[g1] res:m2)

g3(dur:57 pre:[g2] res:m7) g4(dur:71 pre:[g3] res:m6)
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g5(dur:81 pre:[g4] res:m9) g6(dur:43 pre:[g5] res:m0)

g7(dur:26 pre:[g6] res:m4) g8(dur:54 pre:[g7] res:m8)

g9(dur:58 pre:[g8] res:m3) g10(dur:69 pre:[g9] res:m1)

h1(dur:20 pre:[pa] res:m4) h2(dur:86 pre:[h1] res:m6)

h3(dur:21 pre:[h2] res:m5) h4(dur:79 pre:[h3] res:m8)

h5(dur:62 pre:[h4] res:m9) h6(dur:34 pre:[h5] res:m2)

h7(dur:27 pre:[h6] res:m0) h8(dur:81 pre:[h7] res:m1)

h9(dur:30 pre:[h8] res:m7) h10(dur:46 pre:[h9] res:m3)

i1(dur:68 pre:[pa] res:m9) i2(dur:66 pre:[i1] res:m6)

i3(dur:98 pre:[i2] res:m5) i4(dur:86 pre:[i3] res:m8)

i5(dur:66 pre:[i4] res:m7) i6(dur:56 pre:[i5] res:m0)

i7(dur:82 pre:[i6] res:m3) i8(dur:95 pre:[i7] res:m1)

i9(dur:47 pre:[i8] res:m4) i10(dur:78 pre:[i9] res:m2)

j1(dur:30 pre:[pa] res:m0) j2(dur:50 pre:[j1] res:m3)

j3(dur:34 pre:[j2] res:m7) j4(dur:58 pre:[j3] res:m2)

j5(dur:77 pre:[j4] res:m1) j6(dur:34 pre:[j5] res:m5)

j7(dur:84 pre:[j6] res:m8) j8(dur:40 pre:[j7] res:m4)

j9(dur:46 pre:[j8] res:m9) j10(dur:44 pre:[j9] res:m6)

pe(dur:0 pre:[a10 b10 c10 d10 e10 f10 g10 h10 i10 j10])])

105a 〈MT10 Specification 105a〉≡
mt10(tasks:

[pa(dur:0)

a1(dur:29 pre:[pa] res:m1) a2(dur:78 pre:[a1] res:m2)

a3(dur: 9 pre:[a2] res:m3) a4(dur:36 pre:[a3] res:m4)

a5(dur:49 pre:[a4] res:m5) a6(dur:11 pre:[a5] res:m6)

a7(dur:62 pre:[a6] res:m7) a8(dur:56 pre:[a7] res:m8)

a9(dur:44 pre:[a8] res:m9) a10(dur:21 pre:[a9] res:m10)

b1(dur:43 pre:[pa] res:m1) b2(dur:90 pre:[b1] res:m3)

b3(dur:75 pre:[b2] res:m5) b4(dur:11 pre:[b3] res:m10)

b5(dur:69 pre:[b4] res:m4) b6(dur:28 pre:[b5] res:m2)

b7(dur:46 pre:[b6] res:m7) b8(dur:46 pre:[b7] res:m6)

b9(dur:72 pre:[b8] res:m8) b10(dur:30 pre:[b9] res:m9)

c1(dur:91 pre:[pa] res:m2) c2(dur:85 pre:[c1] res:m1)

c3(dur:39 pre:[c2] res:m4) c4(dur:74 pre:[c3] res:m3)

c5(dur:90 pre:[c4] res:m9) c6(dur:10 pre:[c5] res:m6)

c7(dur:12 pre:[c6] res:m8) c8(dur:89 pre:[c7] res:m7)

c9(dur:45 pre:[c8] res:m10) c10(dur:33 pre:[c9] res:m5)

d1(dur:81 pre:[pa] res:m2) d2(dur:95 pre:[d1] res:m3)

d3(dur:71 pre:[d2] res:m1) d4(dur:99 pre:[d3] res:m5)

d5(dur: 9 pre:[d4] res:m7) d6(dur:52 pre:[d5] res:m9)

d7(dur:85 pre:[d6] res:m8) d8(dur:98 pre:[d7] res:m4)

d9(dur:22 pre:[d8] res:m10) d10(dur:43 pre:[d9] res:m6)

e1(dur:14 pre:[pa] res:m3) e2(dur: 6 pre:[e1] res:m1)

e3(dur:22 pre:[e2] res:m2) e4(dur:61 pre:[e3] res:m6)

e5(dur:26 pre:[e4] res:m4) e6(dur:69 pre:[e5] res:m5)

e7(dur:21 pre:[e6] res:m9) e8(dur:49 pre:[e7] res:m8)

e9(dur:72 pre:[e8] res:m10) e10(dur:53 pre:[e9] res:m7)

f1(dur:84 pre:[pa] res:m3) f2(dur: 2 pre:[f1] res:m2)
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f3(dur:52 pre:[f2] res:m6) f4(dur:95 pre:[f3] res:m4)

f5(dur:48 pre:[f4] res:m9) f6(dur:72 pre:[f5] res:m10)

f7(dur:47 pre:[f6] res:m1) f8(dur:65 pre:[f7] res:m7)

f9(dur: 6 pre:[f8] res:m5) f10(dur:25 pre:[f9] res:m8)

g1(dur:46 pre:[pa] res:m2) g2(dur:37 pre:[g1] res:m1)

g3(dur:61 pre:[g2] res:m4) g4(dur:13 pre:[g3] res:m3)

g5(dur:32 pre:[g4] res:m7) g6(dur:21 pre:[g5] res:m6)

g7(dur:32 pre:[g6] res:m10) g8(dur:89 pre:[g7] res:m9)

g9(dur:30 pre:[g8] res:m8) g10(dur:55 pre:[g9] res:m5)

h1(dur:31 pre:[pa] res:m3) h2(dur:86 pre:[h1] res:m1)

h3(dur:46 pre:[h2] res:m2) h4(dur:74 pre:[h3] res:m6)

h5(dur:32 pre:[h4] res:m5) h6(dur:88 pre:[h5] res:m7)

h7(dur:19 pre:[h6] res:m9) h8(dur:48 pre:[h7] res:m10)

h9(dur:36 pre:[h8] res:m8) h10(dur:79 pre:[h9] res:m4)

i1(dur:76 pre:[pa] res:m1) i2(dur:69 pre:[i1] res:m2)

i3(dur:76 pre:[i2] res:m4) i4(dur:51 pre:[i3] res:m6)

i5(dur:85 pre:[i4] res:m3) i6(dur:11 pre:[i5] res:m10)

i7(dur:40 pre:[i6] res:m7) i8(dur:89 pre:[i7] res:m8)

i9(dur:26 pre:[i8] res:m5) i10(dur:74 pre:[i9] res:m9)

j1(dur:85 pre:[pa] res:m2) j2(dur:13 pre:[j1] res:m1)

j3(dur:61 pre:[j2] res:m3) j4(dur: 7 pre:[j3] res:m7)

j5(dur:64 pre:[j4] res:m9) j6(dur:76 pre:[j5] res:m10)

j7(dur:47 pre:[j6] res:m6) j8(dur:52 pre:[j7] res:m4)

j9(dur:90 pre:[j8] res:m5) j10(dur:45 pre:[j9] res:m8)

pe(dur:0 pre:[a10 b10 c10 d10 e10 f10 g10 h10 i10 j10])])

106a 〈Definition of OptMT10 106a〉≡
OptMT10 = {AdjoinAt MT10 constraints

proc {$ Start Dur}

Start.pe <: 930

end}
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Answers To Exercises

Answer to exercise 3.1. This does not really require to be answered. Just try it.

Answer to exercise 3.2.

proc {Donald Root}

sol(a:A b:B d:D e:E g:G l:L n:N o:O r:R t:T) = Root

in

Root ::: 0#9

{FD.distinct Root}

D\=:0 R\=:0 G\=:0

100000*D + 10000*O + 1000*N + 100*A + 10*L + D

+ 100000*G + 10000*E + 1000*R + 100*A + 10*L + D

=: 100000*R + 10000*O + 1000*B + 100*E + 10*R + T

{FD.distribute split Root}

end

Answer to exercise 7.1. The first redundant constraint follows from the fact that
the total number of occurrences in the sequence is n, and that no numbers but those
between 0 and n−1 occur in the sequence.

The second redundant constraint follows from the fact that

0 · x0 + . . . + (n−1) · xn−1 = x0 + . . . + xn−1

Here is a parametrized script for the Magic Sequence Puzzle:

fun {MagicSequence N}

Cs = {List.number ~1 N-2 1}

in

proc {$ S}

{FD.tuple sequence N 0#N-1 S}

{For 0 N-1 1

proc {$ I} {FD.exactly S.(I+1) S I} end}

%% redundant constraints

{FD.sum S ’=:’ N}

{FD.sumC Cs S ’=:’ 0}
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%%

{FD.distribute ff S}

end

end

Answer to exercise 8.1.

{FD.impl X<:Y X+Y=:Z} = {FD.disj X*Y=:Z Z\=:5}

Answer to exercise 8.2.

proc {Conj X Y Z}

X::0#1 Y::0#1

(X+Y=:2) = Z

end

proc {Equi X Y Z}

X::0#1 Y::0#1

(X=:Y) = Z

end

proc {Nega X Z}

X::0#1

(X=:0) = Z

end

proc {Disj X Y Z}

X::0#1 Y::0#1

(X+Y>:0) = Z

end

proc {Impl X Y Z}

X::0#1 Y::0#1

(X=:0) + (Y>:0) = Z

end

Answer to exercise 8.3. To minimize the value of Satisfaction, we modify the
distributor for Satisfaction such that it tries smaller values first:

{FD.distribute generic(order:naive value:min) [Satisfaction]}

It turns out that the persons can be aligned such that no preference is satisfied.

Answer to exercise 8.4.

local Aux in

{FD.decl Aux}

{FD.distance Q.7 Q.8 ’=:’ Aux}

{FD.element Q.7 [4 3 2 1 0] Aux}

end
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Answer to exercise 8.5.

thread

if A.type==B.type then

A.glass >=: B.glass

end

end

Answer to exercise 11.1. A possible solution is as follows.

proc {CapacityConstraints TasksOnRes Start Dur}

{Record.forAll TasksOnRes

proc {$ Ts}

{ForAllTail Ts

proc {$ T1|Tr}

{ForAll Tr

proc {$ T2}

(Start.T1 + Dur.T1 =<: Start.T2) +

(Start.T2 + Dur.T2 =<: Start.T1) =: 1

end}

end}

end}

end
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