
The Mozart Compiler

Leif Kornstaedt

Version 1.2.3
December 1, 2001

Abstract

This document describes how to use the Oz Compiler in Mozart. This includes the descrip-
tions of the batch compiler and compiler panel as well as of the application programmer’s
interface to the compiler.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 Directives 3

2.1 Compiler Directives . 3

2.2 Macro Directives . 4

3 Standard Applications 5

3.1 The Batch Compiler . 5

3.2 The Compiler Panel . 5

3.3 The Oz Programming Interface 6

4 Application Programmer’s Interface 7

4.1 Additional Secondary Types . 7

4.2 The Compiler Module . 8

4.3 Compiler Engines . 9

4.3.1 Methods of the Compiler.engine Class 9

4.3.2 Queries . 10

4.4 Compiler Interfaces . 12

4.4.1 Sent Notifications . 12

4.4.2 The Compiler.interface Class 14

4.5 A Look into the Provided Abstractions 15

A Compiler Switches 17

B Narrators and Listeners 21

B.1 The Narrator Module . 21

B.2 The Listener Module . 22

B.3 The ErrorListener Module . 22

C Syntax Tree Format 23

C.1 The Base Language . 23

C.2 Finite Domain Extensions and Combinators 28

C.3 Gump Extensions . 28

D Mozart Virtual Machine Bytecode 31

1

Introduction

The Mozart Compiler is, in principle, only a special kind of evaluator. In general, an
evaluator implements the mapping:

source_text× environment → value

Compiling Programs Performing evaluation of Oz programs with a compiler has
some advantages:

• Programs with statically discoverable errors are rejected. Apart from syntax
errors and undeclared variables, this also includes discouraged uses of the lan-
guage that are not–strictly speaking–necessarily errors. For instance, applying a
procedure with the wrong number of arguments does raise a catchable exception,
but may be reported as an error.

• Programs may be translated into a more efficient representation. In the case of
the Mozart Compiler, this consists of bytecode for the Mozart VM.

For correct programs, both these steps are transparent to the user, but due to them
the transformation has actually more parameters and output than the general evaluator
illustrated above.

The Manual’s Structure The remainder of this chapter will describe what the state
of the Mozart Compiler consists of, and what additional parameters compilation takes
into account. Chapter 2 describes what programs the compiler accepts as input. Chap-
ter 3 describes two applications of the compiler, namely the batch compiler, which is
invoked from the command line, and the compiler panel, which is a graphical interface
to the compiler’s state. Both of these are implemented using the compiler’s Application
Programmer’s Interface, which is described in detail in Chapter 4.

Note that there is another widely used application of the compiler, namely the Oz Pro-
gramming Interface. See Section Seeing the OPI from Mozart, (The Oz Programming
Interface) for a description.

The Compiler’s State

This section describes the components of the compiler’s internal state as well as their
initial values.

2 Chapter 1. Introduction

Macro Definitions The compiler stores a set of so-called macro names, used to
control conditional compilation via macro directives such as \ifdef (see Section 2.2).

Initially, the set of macro names consists of entries describing the system’s version
number, for instance, when running Mozart 1.1.0, all of Mozart_1, Mozart_1_1, and
Mozart_1_1_0 are macro names.

Switches and Options The compiler’s behaviour is influenced by a number of
boolean switches and non-boolean options. While the switch settings can conveniently
be changed by several methods as described later, the options are only accessible to
users of the application programmer’s interface.

The active switch settings are given by a mapping from switch names to boolean values.
The compiler manages a stack of switch states, the top element of which is taken as
the active state. This allows to temporarily escape into a different mode of compiler
operation.

The available switches, their initial settings and their effects on the compilation process
are described in detail in Appendix A.

The Environment The Oz compiler does not take the environment as input for
each evaluation as was illustrated above, but stores its active environment. This may
be extended as a side-effect of the compilation, and it may be replaced by other envi-
ronments at will.

An environment is a mapping from variable print names to arbitrary Oz values. Ini-
tially, the environment consists of the variables defined by the Oz Base Environment “The
Oz Base Environment” .

The Query Queue Since the Oz compiler has internal state, it is not implemented
as a function as described above, but as an active object that sequentializes all requests
made to it via a query queue.

2

Directives

Directive Syntax The Mozart compiler understands the full syntax of Oz pro-
grams. Additionally, it also accepts directives in its input. A directive can start any-
where on a line and is introduced by a backslash; it always extends until the end of the
line.

Directives come in two flavors. So-called compiler directives provide a way to change
the compiler’s switches, whereas macro directives can be used for inserting files or
performing compilation conditionally. While macro directives may appear between
any two tokens in the input, the use of compiler directives underlies restrictions as
described below.

Compilation Units A single input file is split into a number of compilation units
as follows:

• Each compiler directive forms a compilation unit.

• Each declare statement starts a compilation unit, which includes all following
non-declare statements.

• A sequence of statements without declare forms a compilation unit.

Note that this implies that compiler directives can only appear between top-level Oz
statements.

All compilation units in a file are processed sequentially.

2.1 Compiler Directives

\switch (‘+’ 〈switchname〉 | ‘-’ 〈switchname〉)*

Set (‘+’) resp. reset (‘-’) the specified switches. The values for 〈switchname〉 the
compiler understands are described in Appendix A. Case matters.

\pushSwitches

Save the current settings of all switches onto the internal switch state stack.

\popSwitches

Restore all switch settings from the topmost element of the internal switch state stack,
provided it is not empty, else do nothing.

4 Chapter 2. Directives

\localSwitches

Save the current settings of all switches as well as the internal switch state stack if
no \localSwitches has occurred in the current input before, else do nothing. They
are automatically restored after the last compilation unit of the current input has been
processed.

2.2 Macro Directives

\line 〈filename〉
\line 〈int〉 〈filename〉

sets the internal file name (and the line number of the subsequent line) to the given
values. This data will appear in the error messages and debug information generated
by the compiler.

\insert 〈filename〉

is substituted by the contents of the referenced file. The ~user syntax is supported
under Unix for absolute file names. If the file name is relative, it is first resolved
against the directory in which the file containing the \insert resides, then against
all directories named in the OZPATH environment variable (which has standard PATH
syntax).

Macro Names Note that although macro names have the same syntax as Oz vari-
ables, there is absolutely no connection between macro names and Oz variables.

\define 〈variable〉

adjoins 〈variable〉 to the set of macro names.

\undef 〈variable〉

removes 〈variable〉 from the set of macro names.

\ifdef 〈variable〉

causes the text until the next balanced \else or \endif only to be compiled if 〈variable〉
is a macro name.

\ifndef 〈variable〉

caused the text until the next balanced \else or \endif to be ignored if 〈variable〉 is
a macro name.

\else

causes the text until the next balanced \endif to be

• ignored, if the \else occurs after a text region that was being compiled;

• compiled, if the \else occurs after a text region that was being ignored.

\endif

terminates the active \ifdef or \ifndef. Every \ifdef and every \ifndef must be
terminated by a corresponding \endif.

3

Standard Applications

This chapter defines the standard applications of the compiler available with the Mozart
system: the batch compiler, the compiler panel, and its relation to the OPI.

3.1 The Batch Compiler

The batch compiler ozc provides a command line interface to the compiler for batch
compilation. Batch compilation means that expressions (typically functor definitions)
are compiled and evaluated, and the resulting value is pickled.

Parameterization The command line options of ozc allow to customize the state
of the compiler to use for compilation. Options allow for configuration of the set
of defined macro names, to set all compiler switches, and to configure the compilation
environment. Pickling can be parameterized to using compression or headers that make
the resulting pickle executable. Further options influence the compilation mode: The
default, evaluating an expression and pickling the result, can be replaced by evaluation
of a statement, or intermediate results of compilation can be dumped. Finally, a special
mode allows to compute dependencies (in the form of included source files).

Reference The exact specification of command line options can be found in Chap-
ter The Oz Compiler: ozc, (Oz Shell Utilities) .

3.2 The Compiler Panel

The Compiler Panel is another application of the compiler. The compiler defines the
notion of a compiler interface to communicate with the outside world. The compiler
panel is one such interface.

Interfaces A compiler interface received notification about the state of the compiler.
This includes its compilation state, but also its state of execution (how it manages its
query queue, what errors it reports, and whether a compilation succeeds). Chapter 4
describes how the API allows to define interfaces.

6 Chapter 3. Standard Applications

The Panel The compiler panel is a compiler interface that provides a graphical dis-
play of the compiler’s state. Its toplevel window has a menu that allows to enqueue
further compilation tasks and to configure how the the compiler’s state is displayed.
Furthermore, it features a set of notebook tabs for the different parts of its state.

Tabs The Messages tab provides access to a text display of compilation phase
tracking, and the warnings and errors reported. The Environment tab displays all
variables in the compilation environment. Each identifier can be clicked to execute an
action on its value; for instance, values can be shown or inspected. The set of actions
is configurable. The Switches tab displays the settings of every compiler switch
and option. Finally, the Query Queue tab displays the list of queries the compiler
currently executes.

The Compiler Panel API

Like all tools, the compiler panel has an API to enable applications to control it. The
module CompilerPanel, located at x-oz://system/CompilerPanel, exports
a class CompilerPanel.’class’ implementing the Listener interface, with the fol-
lowing methods.

init

init(+CompilerObject +IconifiedB <= false)

initializes a new instance of a compiler panel, associated with the compiler Com-
pilerObject. If IconifiedB is true, it is started with its toplevel window re-
tracted.

close

close()

closes a compiler panel instance, also closing its window.

enqueue

enqueue(+Message)

enqueues a query to the compiler associated with the compiler panel instance. See
Chapter 4 for a specification of the values Message can take.

addAction

addAction(+NameV +ActionP)

adds an action to the menu of actions that can be performed on values in the environ-
ment. NameV is the name of the action as displayed in the menu while ActionP is a
unary procedure which will be passed the value when invoked.

3.3 The Oz Programming Interface

The OPI (see “The Oz Programming Interface”) runs a dedicated compiler instance
which receives all queries generated by feeding code in the OPI by default. It is avail-
able as OPI.compiler.

4

Application Programmer’s Interface

The compiler is available to Mozart applications through the module Compiler. This
chapter describes the functionality provided by that module and its classes.

First, a number of additional secondary type names used in this description is intro-
duced in Section 4.1, then the Compiler module is described in Section 4.2. The
material in that section should prove sufficient for most cases. The remainder of the
chapter is intended for advanced uses.

An arbitrary number of compilers may be instantiated, each with its own internal state,
and used concurrently. We distinguish between compiler engines, described in Sec-
tion 4.3, which store the state of a compiler and perform the compilation proper, and
compiler interfaces, described in Section 4.4, which allow to observe the activities of
compiler engines and to react to them. Both of these use the narrator/listener mecha-
nism described in Appendix B; familiarity with this is assumed.

Finally, serving the purpose of examples, the provided abstractions are explained in
terms of compiler engines and interfaces in Section 4.5.

4.1 Additional Secondary Types

This section describes additional secondary types used in the descriptions in this chap-
ter. The conventions defined in Section Description Format, (The Oz Base Environ-
ment) will be respected.

Coord stands for information about source coordinates. This is either unit if no information
is known or a tuple pos(FileName Line Column), where FileName is repre-
sented as an atom (” meaning ‘unknown’) and Line and Column are integers. Line
numbering begins at 1 and column numbering at 0; a column number of ~1 means
‘unknown’.

SwitchName is an atom which must be a valid switch name (see Appendix A).

PrintName is an atom which must be a valid variable print name.

Env represents an environment, represented as a record whose features are valid print names.

8 Chapter 4. Application Programmer’s Interface

4.2 The Compiler Module

evalExpression

{Compiler.evalExpression +V +Env ?KillP X}

evaluates an expression, given as a virtual string V, in a base environment enriched by
the bindings given by Env, either returning the result X of the evaluation or raising an
exception. Furthermore, the variable KillP is bound to a nullary procedure which,
when applied, interrupts compilation.

virtualStringToValue

{Compiler.virtualStringToValue +V X}

is a replacement for System.virtualStringToValue, which was available in Mozart’s
predecessor DFKI Oz.

Note that you are discouraged from using this for large data structures: Because it
is much more powerful than System.virtualStringToValue, it can also be much
less efficient. Rather, you should use pickling and unpickling of data structures (see
Chapter Persistent Values: Pickle, (System Modules)).

engine

Compiler.engine

is the final class from which compiler engines can be instantiated. This is described in
detail in Section 4.3.

interface

Compiler.interface

is a class providing a simple mechanism to create compiler interfaces. It is described
in detail in Section 4.4.

parseOzFile

{Compiler.parseOzFile +V +O +P +Dictionary ?T}

parses the Oz source file named V, returning an abstract syntax tree as defined in
Appendix C in T. O is an instance of the PrivateNarrator class described in Ap-
pendix B; its methods are invoked for example to report compilation errors. P is a
unary procedure expecting a switch name as described in Appendix A and returning a
boolean value indicating the switch’s state; in the current implementation, only the set-
tings of gump, allowdeprecated and showinsert are requested. Finally, Dictio-
nary is the set of macro names: The keys are defined macro names; its items should
always be true. As a side-effect, Dictionary is modified according to \define

and \undef macro directives.

parseOzVirtualString

{Compiler.parseOzVirtualString +V +O +P +Dictionary ?T}

is similar to parseOzFile, except that V denotes the source text itself instead of a
source file name.

assemble

{Compiler.assemble +Ts +Xs +SwitchR ?P}

4.3. Compiler Engines 9

takes a list of bytecode instructions Ts for the Mozart virtual machine (see Appendix D),
assembles them and returns the result in P, a nullary procedure which causes the code
to be executed when applied. Xs is a list of global variables (the closure of P), the
first element corresponding to register g(0). SwitchR is a record whose features
are switch names and whose values are booleans. In the current implementation, the
switches profile, controlflowinfo, verify, and peephole are used. All features
of SwitchR are optional (default values are substituted).

4.3 Compiler Engines

Instances of the Compiler.engine class are active objects called compiler engines.
Each object’s thread processes all queries inside its query queue sequentially.

The final class Compiler.engine inherits from Narrator.’class’, described in Ap-
pendix B.

4.3.1 Methods of the Compiler.engine Class

enqueue

enqueue(+T ?I <= _)

enqueue(+Ts ?Is <= _)

appends a new query T to the query queue. If T is an unknown query, an exception
is raised immediately. All of the query’s input arguments (the subtrees of T) are type-
checked before it is enqueued.

Internally, each enqueued query is assigned a unique identification number I. This
may be used later to remove the query from the queue (unless its execution has already
begun or terminated).

The argument to enqueue may also be a list of queries: These are guaranteed to be
executed in sequence without other queries interleaving. The second argument then
returns a list of identification numbers.

dequeue

dequeue(+I)

dequeues the query with identification number I, if that query is still waiting in the
query queue for execution, else does nothing.

interrupt

interrupt()

interrupts execution of the current query. Does not affect the remaining queue.

clearQueue

clearQueue()

flushes the whole remaining queue. Does not affect the currently processed query (if
any).

10 Chapter 4. Application Programmer’s Interface

4.3.2 Queries

This chapter documents the queries understood by the Mozart Compiler.

Some queries request state information from the compiler engine. The following de-
scription annotates the corresponding output variables with a question mark, although
they only become bound when the query is actually executed. If binding an output
variable raises an exception, an error is reported through the registered listeners (see
Appendix B).

Macro Definitions

macroDefine(+V)

Add V to the set of defined macro names.

macroUndef(+V)

Remove V from the set of defined macro names.

getDefines(?PrintNames)

Return all currently defined macro names as a list, in no particular order.

Compiler Switches

setSwitch(+SwitchName +B)

Set the state of the given switch to either ‘on’, if B == true, or to ‘off’, if B == false.

getSwitch(+SwitchName ?B)

Return the state of the given switch.

pushSwitches()

Save the current settings of all switches onto the internal switch state stack.

popSwitches()

Restore all switch settings from the topmost element of the internal switch state stack,
provided it is not empty, else do nothing.

Compiler Options

setMaxNumberOfErrors(+I)

Set the maximal number of errors to report for any one compilation before aborting it
to I. A negative value means never to abort.

getMaxNumberOfErrors(?I)

Return the maximal number of errors to report for any one compilation before aborting
it.

4.3. Compiler Engines 11

setBaseURL(+VU)

Set the base URL relative to which the require clause of computed functors is re-
solved. A value of unit means to resolve the imports relative to the location of the file
in which the functor keyword appeared.

getBaseURL(?AU)

Return the base URL relative to which the require clause of computed functors is
resolved.

setGumpDirectory(+VU)

Set the directory in which Gump output files are created. Can be relative. unit means
the current working directory.

getGumpDirectory(?VU)

Return the directory in which Gump output files are created.

The Environment

addToEnv(+PrintName X)

Add a binding for a variable with the given print name, and bound to X, to the environ-
ment.

lookupInEnv(+PrintName X)

Look up the binding for the variable with the given print name in the environment and
bind X to its value. If it does not exist, report an error.

removeFromEnv(+PrintName)

Remove the binding for the variable with the given print name from the environment if
it exists.

putEnv(+Env)

Replace the current environment by the one given by Env.

mergeEnv(+Env)

Adjoin Env to the current environment, overwriting already existing bindings.

getEnv(?Env)

Return the current environment.

Feeding Source Text

feedVirtualString(+V)

Evaluate the Oz source code given by the virtual string V.

feedVirtualString(+V +R)

Evaluate the Oz source code given by the virtual string V, returning the resulting value
in R.result (if the expression switch is set and R has the feature result).

12 Chapter 4. Application Programmer’s Interface

feedFile(+V)

Evaluate the Oz source code contained in the file with name V.

feedFile(+V +R)

Evaluate the Oz source code contained in the file with name V, returning the resulting
value in R.result (if the expression switch is set and R has the feature result).

Synchronization

ping(?U)

Bind the variable U to unit on execution of this query. This allows to synchronize on
the work of the compiler, e.g., to be informed when a compilation is finished.

ping(?U X)

Works like the ping(_) query, except gives a value which will reappear in the response
notification sent to interfaces. This allows to identify the ping query with its pong

notification.

Custom Front-Ends

setFrontEnd(+ParseFileP +ParseVirtualStringP)

Replace the front-end used by the compiler by a custom front-end implemented by pro-
cedures ParseFileP and ParseVirtualStringP. These procedures have the
same signature as Compiler.parseOzFile and Compiler.parseOzVirtualString,
documented above. Indeed, these procedures implement the default Oz front-end.

4.4 Compiler Interfaces

As said above, compiler engines are narrators. The term ‘compiler interface’ simply
denotes a standard listener attached to a compiler engine. This section presents what is
required to implement a compiler interface.

First the notifications sent by compiler engines are documented. These include nor-
mal compiler output and information about compiler state changes. Then a specific
compiler interface is described that makes many compilation tasks easy to control.

4.4.1 Sent Notifications

Query Queue

newQuery(I T)

A new query T with identification I has been enqueued.

runQuery(I T)

The query T with identification I is now being executed.

removeQuery(I)

The query with identification I has been removed from the query queue, either because
it finished executing or because it was dequeued by a user program.

4.4. Compiler Interfaces 13

Compiler Activity

busy()

The compiler is currently busy (i.e., executing a query).

idle()

The compiler is currently idle (i.e., waiting for a query to be enqueued).

State Change

switch(SwitchName B)

The given switch has been set to B.

switches(R)

The settings of all switches is transmitted as a record mapping each switch name to its
setting.

maxNumberOfErrors(I)

The maximum number of errors after which to abort compilation has been set to I.

baseURL(AU)

The base URL relative to which the require clause of computed functors is resolved
has been set to AU.

env(Env)

The environment has been set to Env.

Output

info(V)

An information message V is to be printed out.

info(V Coord)

An information message V, related to the source coordinates Coord, is to be printed
out.

message(R Coord)

An error or warning message R, related to the source coordinates Coord, is to be
printed out. R has the standard error message format, described in Chapter Error For-
matting: Error, (System Modules) .

insert(V Coord)

During parsing, the file named V has been read. The corresponding \insert directive
(if any) was at source coordinates Coord.

displaySource(TitleV ExtV V)

A source text V with title TitleV is to be displayed; its format is the one for which
the file extension ExtV is typically used (such as oz or ozm).

14 Chapter 4. Application Programmer’s Interface

attention()

The error output buffer should be raised with the cursor at the current output coordi-
nates (an error message should follow).

Synchronization

pong(X)

This is sent in response to a ping(_) or ping(_ X) query (see Section 4.3). In the
first case, unit is returned in X.

4.4.2 The Compiler.interface Class

The Compiler.interface class is a subclass of the error listener class described in
Appendix B. Its purpose is to provide a standard listener powerful enough to server
many purposes, to spare the user of defining an own listener.

Methods In addition to the standard error listener interface, it supports the following
methods.

init(+EngineO +VerboseL <= false)

initializes a new compiler interface, attaching it to the compiler engine EngineO.
VerboseL can be one of true, false, or auto: If true, all messages, including the
compiler’s banner, will be output. If false, no messages will be output. If auto, the
interface will remain silent unless an error of warning message arrives, in which case
it will become verbose.

sync()

waits until the compiler engine becomes idle.

getInsertedFiles(?Vs)

returns a list of the file names that compilation has caused the inclusion of so far, in
order of appearance.

getSource(?V)

returns the source that has last been displayed by the compiler (typically some inter-
mediate representation), or the empty string if none.

reset()

clears the internal lists of inserted files and the displayed source.

clear()

is the same as reset.

4.5. A Look into the Provided Abstractions 15

4.5 A Look into the Provided Abstractions

The implementation of the Compiler.evalExpression procedure is a good example
of how to use compiler engines and interfaces. evalExpression causes compilation
of an expression within a speciied environment. It is synchronous, i.e., only returns
after the compilation has finished. Compiler error messages are raised as exceptions,
and the compilation may be interrupted using the nullary procedure returned in Kill.

Startup Since we both want to control a compilation (done by a new compiler en-
gine) and to observe the compilation process (to synchronize and to determine whether
it produced errors), we first instantiate both an engine and an interface which we reg-
ister with the engine. A number of queries are enqueued to the engine: We need to set
the environment and appropriate compiler switches for compilation of an expression
and to cause synchronous execution of the compiled program. When we’re done con-
figuring the compiler, we can start compilation of the source proper, expecting a result
to be returned in variable Result.

Killing We then define the Kill procedure. The rest of the observation is performed
in a new thread, because we want to kill the observation as well when Kill is invoked.
Kill will clear any non-processed queries from the queue and interrupt the current
one, then kill the observation thread (unless it had been already dead).

Observing Next we’ll observe the running compiler, and for this we need to make
use of the interface we created earlier. When the compiler becomes idle, we check
whether it has output any error messages, in which case we record the faulty condition,
else we report success. The main thread waits until the condition becomes known and
reacts upon it.

proc {Compiler.evalExpression VS Env ?Kill ?Result} E I S in

E = {New Compiler.engine init()}

I = {New Compiler.interface init(E)}

{E enqueue(mergeEnv(Env))}

{E enqueue(setSwitch(expression true))}

{E enqueue(setSwitch(threadedqueries false))}

{E enqueue(feedVirtualString(VS return(result: ?Result)))}

thread T in

T = {Thread.this}

proc {Kill}

{E clearQueue()}

{E interrupt()}

try

{Thread.terminate T}

S = killed

catch _ then skip % already dead

end

end

{I sync()}

16 Chapter 4. Application Programmer’s Interface

if {I hasErrors($)} then Ms in

{I getMessages(?Ms)}

S = error(compiler(evalExpression VS Ms))

else

S = success

end

end

case S of error(M) then

{Exception.raiseError M}

[] success then skip

[] killed then skip

end

end

virtualStringToValue The Compiler.virtualStringToValue is trivial to imple-
ment on top of the functionality provided by evalExpression.

fun {Compiler.virtualStringToValue VS}

{Compiler.evalExpression VS env() _}

end

A

Compiler Switches

This appendix describes the available boolean switches, giving their name, their default
setting, and their effects on the compilation process if they are set.

Global Configuration

compilerpasses (default: false)

Output tracing information about the different phases the execution of each query pro-
ceeds through.

showinsert (default: false)

Show the names of files as they get inserted by the \insert macro directive, after
their name has been resolved by means of the environment variable OZPATH (see Sec-
tion 2.2).

echoqueries (default: true)

Output each (compilation) query verbatim.

showdeclares (default: true)

Summarize the variables declared by each query and thus added to the environment
(provided the compilation succeeds and the compiled code is actually executed).

watchdog (default: true)

Terminate the current compilation if one of the compiler’s threads blocks unexpectedly.
This is useful for debugging the compiler.

Warnings

warnredecl (default: false)

Output warnings about redeclarations of top-level variables, either by declare or lo-
cally.

warnunused (default: true)

Output warnings about local variables never used or used only once (that is, initialized
but never used again).

18 Appendix A. Compiler Switches

warnunusedformals (default: false)

Output the above warnings also for formal parameters. If warnunused is not set, this
switch is ignored.

warnforward (default: false)

Warn about uses of features, attributes, or methods which are not known to be declared
in the enclosing class.

warnopt (default: false)

Warn if a case conditional cannot be translated into optimized code. Also warn if a
cond or disjunction’s guard is translated with an explicit thread creation.

I. Parsing and Expanding

unnest (default: true)

Enable unnesting. If unnesting is disabled, none of the following passes are executed
either.

expression (default: false)

Compile expressions, not statements. The result of an evaluated expression can be
obtained through an output argument of the enqueued query (see Section 4.3) or the
variable ‘result‘.

allowdeprecated (default: true)

Allow the use of deprecated syntax, i.e., allow to use case for boolean conditionals
and to mix if with elsecase and case with elseif.

gump (default: false)

Allow Gump definitions. If this switch is off, Gump keywords are parsed as ordinary
atoms.

The remaining Gump-related switches are described in “Gump–A Front-End Generator
for Oz” .

II. Static Analysis

staticanalysis (default: true)

Perform static analysis. Switching this off has severe impacts on optimization and error
reporting.

III. Core Output

core (default: false)

Output the result of the core expansion of a query.

19

realcore (default: false)

Output the core expansion as it really is (and not beautified by, e.g., the use of operator
symbols).

debugvalue (default: false)

Include annotations about the values propagated by static analysis.

debugtype (default: false)

Include annotations about the types inferred by static analysis.

IV. Code Generation

codegen (default: true)

Generate code.

outputcode (default: false)

Output the generated code as human-readable assembly code.

recordhoist (default: true)

Perform the record hoisting optimization.

V. Feeding to the Emulator

feedtoemulator (default: true)

Load the generated code into the emulator and execute it.

threadedqueries (default: true)

Execute each piece of generated code in a separate thread without waiting for it to
terminate before proceeding to the next query.

profile (default: false)

Include profiling information in the generated code.

VI. Debugging

Most of these switches are used by the source level debugger, described in “The Mozart
Debugger” .

runwithdebugger (default: false)

Place a static breakpoint on the first statement of each compiled query.

Note that the following switches severely impact code size and run-time efficiency of
the generated code.

controlflowinfo (default: false)

Include program flow information in the generated code.

20 Appendix A. Compiler Switches

staticvarnames (default: false)

Include environment information in the generated code.

dynamicvarnames (default: false)

All created local variables are annotated with their print name at run time, such that
System.printName applied to the variable’s value returns this name.

B

Narrators and Listeners

B.1 The Narrator Module

The Narrator module, located at x-oz://system/Narrator, exports the class
Narrator.’class’ with the following methods.

Methods

init(?PrivateNarratorO)

register(+Port)

newListener(+Port)

unregister(+Port)

tell(X)

The PrivateNarrator Class

Methods

setLogPhases(+B)

setMaxNumberOfErrors(+I)

tell(X)

startBatch()

startPhase(+V)

startSubPhase(+V)

endBatch(+A)

error(coord: +Coord <= unit kind: +KindV <= unit msg: +MsgV <= unit items: +Ts <= unit abort: +B <= true)

warn(coord: +Coord <= unit kind: +KindV <= unit msg: +MsgV <= unit items: +Ts <= unit)

hasSeenError(?B)

22 Appendix B. Narrators and Listeners

B.2 The Listener Module

The Listener module, located at x-oz://system/Listener, exports the class
Listener.’class’ with the following methods.

Methods

init(+NarratorO +ServeL)

initializes a listener with a narrator and the label of a unary method. The listener creates
a port, registers this with NarratorO, and creates a thread in which the ServeL
method is applied to the port’s stream.

close()

undoes all effects of the init method: The server thread is terminated and the listener’s
port is unregistered.

getNarrator(?NarratorO)

returns the narrator with which the listener’s port is currently registered.

getPort(?Port)

returns the associated port.

B.3 The ErrorListener Module

The ErrorListener module, located at x-oz://system/ErrorListener, ex-
ports the class ErrorListener.’class’ with the following methods.

Methods

init(+NarratorO +ServeOneL <= unit ?VerboseL <= false)

reset()

setVerbosity(+L)

hasErrors(?B)

isActive(?B)

getVS(?B)

getMessages(?Xs)

formatMessages(+Xs ?V)

C

Syntax Tree Format

This appendix documents the syntax tree data structure used by the compiler. This
information is only needed by implementors of custom front-ends. Most nodes are
self-explanatory; if in doubt, it is recommended that you refer to the Gump sample
implementing an Oz parser (installed at examples/gump/OzParser.ozg).

Input

〈input〉 ::= parseError

| [〈compilation unit〉]

Compilation Units

〈compilation unit〉 ::= 〈phrase〉
| 〈directive〉
| fDeclare(〈phrase〉 〈phrase〉 〈coord〉)

〈directive〉 ::= dirSwitch([〈switch〉])
| dirPushSwitches

| dirPopSwitches

| dirLocalSwitches

〈switch〉 ::= on(〈switch name〉 〈coord〉)
| off(〈switch name〉 〈coord〉)

〈switch name〉 ::= 〈atom〉

C.1 The Base Language

Phrases At the syntactical level, statements are not distinguished from expressions.
Both are subsumed by 〈phrase〉. In a top-down analysis of the tree, it can be deter-
mined which phrases need to be statements and which need to be expressions. The
fStepPoint form is only required if you want to provide support for source-level de-
bugging: It wraps the contained phrase into a step point (see “The Mozart Debugger”);
the atom can be freely chosen to indicate its kind (call, conditional, etc.).

24 Appendix C. Syntax Tree Format

〈phrase〉 ::= fStepPoint(〈phrase〉 〈atom〉 〈coord〉)
| fAnd(〈phrase〉 〈phrase〉)
| fEq(〈phrase〉 〈phrase〉 〈coord〉)
| fAssign(〈phrase〉 〈phrase〉 〈coord〉)
| fOrElse(〈phrase〉 〈phrase〉 〈coord〉)
| fAndThen(〈phrase〉 〈phrase〉 〈coord〉)
| fOpApply(〈atom〉 [〈phrase〉] 〈coord〉)
| fOpApplyStatement(〈atom〉 [〈phrase〉]

〈coord〉)
| fDotAssign(〈phrase〉 〈phrase〉 〈coord〉)
| fObjApply(〈phrase〉 〈phrase〉 〈coord〉)
| fAt(〈phrase〉 〈coord〉)
| 〈atom literal〉
| 〈escapable variable〉
| 〈wildcard〉
| fSelf(〈coord〉)
| fDollar(〈coord〉)
| 〈int literal〉
| fFloat(〈float〉 〈coord〉)
| fRecord(〈label〉 [〈record argument〉])
| fOpenRecord(〈label〉 [〈record argument〉])
| fApply(〈phrase〉 [〈phrase〉] 〈coord〉)
| fProc(〈phrase〉 [〈phrase〉] 〈phrase〉

[〈proc flag〉] 〈coord〉)
| fFun(〈phrase〉 [〈phrase〉] 〈phrase〉

[〈proc flag〉] 〈coord〉)
| fFunctor(〈phrase〉 [〈functor descriptor〉] 〈coord〉)
| fClass(〈phrase〉 [〈class descriptor〉]

[〈meth〉] 〈coord〉)
| fLocal(〈phrase〉 〈phrase〉 〈coord〉)
| fBoolCase(〈phrase〉 〈phrase〉 〈opt else〉 〈coord〉)
| fCase(〈phrase〉 [〈case clause〉]

〈opt else〉 〈coord〉)
| fFOR([〈for decl〉] 〈phrase〉 〈coord〉)
| fLockThen(〈phrase〉 〈phrase〉 〈coord〉)
| fLock(〈phrase〉 〈coord〉)
| fThread(〈phrase〉 〈coord〉)
| fTry(〈phrase〉 〈catch〉 〈finally〉 〈coord〉)
| fRaise(〈phrase〉 〈coord〉)
| fSkip(〈coord〉)

〈label〉 ::= 〈atom literal〉
| 〈variable〉

〈atom literal〉 ::= fAtom(〈literal〉 〈coord〉)

〈variable〉 ::= fVar(〈atom〉 〈coord〉)

C.1. The Base Language 25

〈escapable variable〉 ::= 〈variable〉
| fEscape(〈variable〉 〈coord〉)

〈wildcard〉 ::= fWildcard(〈coord〉)

〈int literal〉 ::= fInt(〈int〉 〈coord〉)

〈record argument〉 ::= 〈phrase〉
| fColon(〈feature〉 〈phrase〉)

Procedures can carry flags (atoms following the proc or fun keyword). For the mo-
ment, the only recognized flags are instantiate (the body’s code is copied upon
application), lazy (the body has by-need semantics), dynamic (disable static-call op-
timization of this procedure), and sited (cannot be pickled). Other atoms are silently
ignored.

〈proc flag〉 ::= 〈atom〉

Functors

〈functor descriptor〉 ::= fRequire([〈import decl〉] 〈coord〉)
| fPrepare(〈phrase〉 〈phrase〉 〈coord〉)
| fImport([〈import decl〉] 〈coord〉)
| fExport([〈export decl〉] 〈coord〉)
| fDefine(〈phrase〉 〈phrase〉 〈coord〉)

〈import decl〉 ::= fImportItem(〈variable〉 [〈aliased feature〉]
〈opt import at〉)

〈aliased feature〉 ::= 〈feature no var〉
| 〈variable〉#〈feature no var〉

〈opt import at〉 ::= fNoImportAt

| fImportAt(〈atom literal〉)

〈export decl〉 ::= fExportItem(〈export item〉)

〈export item〉 ::= 〈variable〉
| fColon(〈feature no var〉 〈variable〉)

26 Appendix C. Syntax Tree Format

Classes

〈class descriptor〉 ::= fFrom([〈phrase〉] 〈coord〉)
| fProp([〈phrase〉] 〈coord〉)
| fAttr([〈attr or feat〉] 〈coord〉)
| fFeat([〈attr or feat〉] 〈coord〉)

〈attr or feat〉 ::= 〈escaped feature〉
| 〈escaped feature〉#〈phrase〉

〈meth〉 ::= fMeth(〈meth head〉 〈phrase〉 〈coord〉)

〈meth head〉 ::= 〈meth head 1〉
| fEq(〈meth head 1〉 〈variable〉 〈coord〉)

〈meth head 1〉 ::= 〈atom literal〉
| 〈escapable variable〉
| fRecord(〈meth head label〉 [〈meth argument〉])
| fOpenRecord(〈meth head label〉 [〈meth argument〉])

〈meth head label〉 ::= 〈atom literal〉
| 〈escapable variable〉

〈meth argument〉 ::= fMethArg(〈meth arg term〉 〈default〉)
| fMethColonArg(〈feature〉 〈meth arg term〉 〈default〉)

〈meth arg term〉 ::= 〈variable〉
| 〈wildcard〉
| fDollar(〈coord〉)

〈default〉 ::= fNoDefault

| fDefault(〈phrase〉 〈coord〉)

Features

〈feature no var〉 ::= 〈atom literal〉
| 〈int literal〉

〈feature〉 ::= 〈feature no var〉
| 〈variable〉

〈escaped feature〉 ::= 〈feature no var〉
| 〈escapable variable〉

C.1. The Base Language 27

Other

〈case clause〉 ::= fCaseClause(〈pattern〉 〈phrase〉)

〈pattern〉 ::= 〈phrase〉
| fSideCondition(〈phrase〉 〈phrase〉 〈phrase〉 〈coord〉)

〈catch〉 ::= fNoCatch

| fCatch([〈case clause〉] 〈coord〉)

〈finally〉 ::= fNoFinally

| 〈phrase〉

〈opt else〉 ::= fNoElse(〈coord〉)
| 〈phrase〉

〈for decl〉 ::= forFeature(〈atom literal〉 〈phrase〉)
| forPattern(〈phrase〉 〈for gen〉)

〈for gen〉 ::= forGeneratorList(〈phrase〉)
| forGeneratorInt(〈phrase〉 〈phrase〉 〈opt phrase〉)
| forGeneratorC(〈phrase〉 〈phrase〉 〈opt phrase〉)

〈opt phrase〉 ::= 〈phrase〉
| unit

Coordinates Each triple consisting of an 〈atom〉 and two 〈int〉s denotes a file name
(” if none known), a line number (starting at 1; required) and a column number (start-
ing at 0; ~1 if none known). If two triples are given, then they denote the starting
and ending coordinates of a construct. A pos may be turned into a fineStep or a
coarseStep, denoting a step point for debugging. unit is an unknown coordinate.

〈coord〉 ::= pos(〈atom〉 〈int〉 〈int〉)
| pos(〈atom〉 〈int〉 〈int〉 〈atom〉 〈int〉 〈int〉)
| fineStep(〈atom〉 〈int〉 〈int〉)
| fineStep(〈atom〉 〈int〉 〈int〉 〈atom〉 〈int〉 〈int〉)
| coarseStep(〈atom〉 〈int〉 〈int〉)
| coarseStep(〈atom〉 〈int〉 〈int〉 〈atom〉 〈int〉 〈int〉)
| unit

28 Appendix C. Syntax Tree Format

C.2 Finite Domain Extensions and Combinators

〈phrase〉 += 〈fd expression〉
| fFail(〈coord〉)
| fNot(〈phrase〉 〈coord〉)
| fCond([〈clause〉] 〈opt else〉 〈coord〉)
| fOr([〈clause opt then〉] 〈coord〉)
| fDis([〈clause opt then〉] 〈coord〉)
| fChoice([〈phrase〉] 〈coord〉)

〈fd expression〉 ::= fFdCompare(〈atom〉 〈phrase〉 〈phrase〉 〈coord〉)
| fFdIn(〈atom〉 〈phrase〉 〈phrase〉 〈coord〉)

〈clause〉 ::= fClause(〈phrase〉 〈phrase〉 〈phrase〉)

〈clause opt then〉 ::= fClause(〈phrase〉 〈phrase〉 〈opt then〉)

〈opt then〉 ::= fNoThen(〈coord〉)
| 〈phrase〉

C.3 Gump Extensions

〈compilation unit〉 += fSynTopLevelProductionTemplates([〈prod clause〉])

〈phrase〉 += fScanner(〈variable〉
[〈class descriptor〉] [〈meth〉]
[〈scanner rule〉] 〈atom〉 〈coord〉)

| fParser(〈variable〉
[〈class descriptor〉] [〈meth〉]
〈token clause〉 [〈parser descriptor〉] 〈int〉
〈coord〉)

〈grammar symbol〉 ::= 〈atom literal〉
| 〈variable〉

Scanners

〈scanner rule〉 ::= fMode(〈variable〉 [〈mode descriptor〉])
| 〈lex clause〉

〈mode descriptor〉 ::= fInheritedModes([〈variable〉])
| 〈lex clause〉

〈lex clause〉 ::= fLexicalAbbreviation(〈grammar symbol〉 〈regex〉)
| fLexicalRule(〈regex〉 〈phrase〉)

〈regex〉 ::= 〈string〉

C.3. Gump Extensions 29

Parsers

〈token clause〉 ::= fToken([〈token decl〉])

〈token decl〉 ::= 〈atom literal〉
| 〈atom literal〉#〈phrase〉

〈parser descriptor〉 ::= 〈prod clause〉
| 〈syntax rule〉

〈prod clause〉 ::= fProductionTemplate(〈prod key〉 [〈prod param〉]
[〈syntax rule〉] [〈syn expression〉]
[〈prod ret〉])

〈prod param〉 ::= 〈variable〉
| 〈wildcard〉

〈prod key〉 ::= none#〈string〉
| 〈atom〉#〈string〉

〈prod ret〉 ::= none

| 〈variable〉
| fDollar(〈coord〉)

〈syntax rule〉 ::= fSyntaxRule(〈grammar symbol〉 [〈syn formal〉]
〈syn expression〉)

〈syn formal〉 ::= 〈variable〉
| 〈wildcard〉
| fDollar(〈coord〉)

〈syn expression〉 ::= fSynApplication(〈grammar symbol〉 [〈phrase〉])
| fSynAction(〈phrase〉)
| fSynSequence([〈variable〉] [〈syn expression〉])
| fSynAlternative([〈syn expression〉])
| fSynAssignment(〈escapable variable〉 〈syn expression〉)
| fSynTemplateInstantiation(〈prod key〉 [〈syn expression〉]

〈coord〉)

30 Appendix C. Syntax Tree Format

D

Mozart Virtual Machine Bytecode

Index

CompilerPanel
’class’

CompilerPanel, ’class’, addAc-
tion, 6

CompilerPanel, ’class’, close, 6
CompilerPanel, ’class’, enqueue,

6
CompilerPanel, ’class’, init, 6

32

