
Problem Solving with Finite Set Constraints
in Oz. A Tutorial.

Tobias Müller

Version 1.2.3
December 1, 2001

Abstract

This document is an introduction to finite set constraint programming in Oz. Consequently,
it focuses on finite set constraints but uses them in conjunction with finite domain con-
straints. Further, basic concepts of constraint programming will not be explained in this
document. Hence, it is strongly recommended to read this tutorial after reading “Finite
Domain Constraint Programming in Oz. A Tutorial.” .

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 The Steiner Problem 3

3 Generating Hamming Codes 7

4 Packing Files onto Disks 9

5 A Crew Allocation Problem 13

6 Scheduling a Golf Tournament 19

1

Introduction

Set Values Oz 3 provides finite sets of non-negative integers as first-class values
and every set value is a subset of the universal set U = {0, . . . ,sup}. The value of
sup is determined by the actual implementation and in Mozart Oz 3 it is 134217726 =
227−21.

Set Constraints A basic set constraint approximates a set value S in three different
ways:

• Constraining the lower bound by set s: s ⊆ S. The lower bound contains all
elements that are at least contained in the set value.

• Constraining the upper bound by set s: S ⊆ s. The upper bound contains all
elements that are at most contained in the set value.

• Constraining the cardinality of a set by a finite domain interval {n, . . . ,m}: n ≤
#S≤m.. The cardinality constraint determines the minimal and maximal number
of elements allowed to be contained in the set.

A set constraint denotes a set value if either the lower is equal to the upper bound, the
cardinality of the lower bound is equal to the upper bound of the cardinality constraints,
or the cardinality of the upper bound is equal to the lower bound of the cardinality
constraint.

Non-basic set constraints, as intersection ∩, union ∪, disjointness ‖, and the like, are
provided as propagators. For details on the provided set propagators see Chapter Finite
Set Constraints: FS, (System Modules) .

Set Constraint Propagation To explain constraint propagation, assume the basic
set constraints: /0 ⊆ X ,Y ⊆ {1, . . . ,5} and additionally the following non-basic con-
straints: X ∪Y = {1, . . . ,5} and X‖Y . Adding the constraints 1 ∈ X and 2 /∈ Y yields
the intermediate store {1} ⊆ X ⊆ {1, . . . ,5} and /0 ⊆ Y ⊆ {1,3,4,5}. The present
non-basic constraints can add even more basic constraints: the disjointness constraint
removes 1 from the upper bound of Y since 1 was added to the lower bound of X .

1The reason for this value is as follows: efficient integers (so-called small integers in Mozart Oz 3)
occupy 28 bits. Hence the biggest positive integer is 227−1. To be able to represent the cardinality of a
set by a small integer, the biggest element of a set is determined to 227−2.

2 Chapter 1. Introduction

The union constraint adds 2 to the lower bound of X since 2 was removed form
the upper bound of Y . After that, propagation has reached a fixed-point and leads
to {1,2} ⊆ X ⊆ {1, . . . ,5} ∧ /0 ⊆ Y ⊆ {3,4,5}. Bringing the cardinality constraint
3 ≤ #Y ≤ 5 into play determines Y to {3,4,5} since the upper bound has exactly 3
elements which is the minimal number required by the cardinality constraint. The dis-
jointness constraint then removes 3, 4, 5 from X’s upper bound and that way determines
X to {1,2}.

Connecting Finite Sets and Finite Domains Set constraints on their own are
of limited use, connecting them with finite domain constraints provides much more
expressivity. The straightforward way is to connect a finite set variable via the cardi-
nality constraint to a finite domain variable. Another technique is to provide reified
versions for various set constraints as containment and the like. But there are further
possiblies if the fact that the elements of a set are integers is exploited. For example,
a finite domain can be constrained to be the minimal resp. maximal element of a set
(see Chapter Finite Set Constraints: FS, (System Modules) for details on FS.int.min

resp. FS.int.max). Another possibility is to match the elements of a set of a certain
cardinality c with a tuple of c finite domains (see Chapter Finite Set Constraints: FS,
(System Modules) for details on FS.int.match) that is used in Chapter 2.

Distribution Due to the fact that constraint propagation is incomplete, expectedly
in case of set constraints as well, solving a problem involving set constraints requires
distribution. A typical choice-point distributing a set variable is n ∈ S∨ n /∈ S. The
following figure illustrates that.

2

The Steiner Problem

Problem Specification The ternary Steiner problem of order n asks for n(n−1)/6
sets si ⊂ {1, . . . ,n} with cardinality 3 such that every two of them share at most one
element. The mathematical properties of the problem require that n mod 6 has to be
either 1 or 3 [1].

Model We create a list Ss of n(n−1)/6 set variables and constrain every set to have
a cardinality of 3 and to have an upper bound of {1, . . . ,n}. Further we require that the
cardinality of the intersection of every two distinct sets in Ss must not exceed 1.

Distribution Strategy Distribution simply takes the sets as they occur in Ss and
adds resp. removes elements from them starting from the smallest element.

Solver The solver is created by a function Steiner that takes the order of the Steiner
problem as argument and checks if it is a valid order. In case it is valid it returns the
actual solver with the list of solution sets as formal argument.

First, the list Ss is created and its elements’ upper bounds and cardinalities are appro-
priately constrained. The nested loops built with ForAllTail and ForAll impose the
constraint that every two sets share at most one element by stating that the cardinality
of the intersection of two sets is in {0,1}. Distribution is straightforward and uses the
provided library abstraction FS.distribute for naive distribution..

declare

fun {Steiner N}

case

N mod 6 == 1 orelse N mod 6 == 3

then

proc {$ Ss}

{FS.var.list.upperBound (N*(N-1)) div 6 [1#N] Ss}

{ForAll Ss proc {$ S} {FS.card S 3} end}

{ForAllTail Ss

proc {$ S1|Sr}

{ForAll Sr

proc {$ S2} S3 in

4 Chapter 2. The Steiner Problem

S3 = {FS.intersect S1 S2}

{FS.cardRange 0 1 S3}

end}

end}

{FS.distribute naive Ss}

end

else proc {$ _} fail end

end

end

Solving the Steiner problem of order 9 by invoking the Oz Explorer

{ExploreOne {Steiner 9}}

yields as solution

[{1#3}#3 {1 4#5}#3 {1 6#7}#3 {1 8#9}#3 {2 4 6}#3 {2 5 8}#3

{2 7 9}#3 {3#4 9}#3 {3 5 7}#3 {3 6 8}#3 {4 7#8}#3 {5#6 9}#3].

The search tree has depth 50, 4545 choice nodes, and 4521 failure nodes.

Improving the Model A promising way to improve the efficiency of a constraint
model (where the corresponding problem does not have a unique solution) is to break
symmetries and thus to improve constraint propagation. Breaking symmetries can be
achieved by imposing an order, in our case, an order on the set variables in Ss. We can
simply interpret every set as a number with three digits to the base (n+1). A set with
three elements {x1,x2,x3} can be mapped to an integer by (n+1)2x1 +(n+1)x2 + x3.

5

Extending the Solver The finite set library provides FS.int.match to match the
elements of a set s with a fixed number of elements to a vector of size #s of finite
domain variables. This library constraint in conjunction with Map is used to convert the
list of sets Ss to a list of finite domain lists with 3 finite domains per list. Finally the
order between adjacent sets is imposed by

N1N1*X1 + N1*X2 + X3 <: N1N1*Y1+ N1*Y2 + Y3

employing a ForAllTail loop.

local

N1 = N+1 N1N1 = N1*N1

in

{ForAllTail {Map Ss fun {$ S}

{FD.list 3 1#N} = {FS.int.match S}

end}

proc {$ T}

case T of [X1 X2 X3]|[Y1 Y2 Y3]|_ then

N1N1*X1 + N1*X2 + X3 <: N1N1*Y1 + N1*Y2 + Y3

else skip end

end}

end

This code is to be inserted right before the distribution. Solving the Steiner problem of
order 9 results in the following search tree.

We see that the number of choice nodes decreases from 4545 to 565 and the number of
failure nodes decreases from 4521 to 54. This reduction of the search space gives us a
speed-up of about 7 and reduces the memory consumption by about 5.5.

6 Chapter 2. The Steiner Problem

3

Generating Hamming Codes

Problem Specification Generate a Hamming code that fits in b-bit words to code
n symbols where the Hamming distance between every two symbol codes is at least
d. The Hamming distance between to words is the number of bit positions where they
differ.

Model A b-bit word is modeled by a set s⊆ {1, . . . ,b}where e∈ s means that the bit
at position e is set (resp. unset otherwise). The Hamming distance h(a,b) between two
words a and b represented as sets sa and sb can be computed by subtracting from the
word size b the number of elements that is contained (#(sa∩ sb)) resp. is not contained
(#({1, . . . ,b}\(sa∪ sb))) in both sets. Thus, the Hamming distance results in

h(a,b) = b−#(sa∩ sb)−#({1, . . . ,b}\(sa∪ sb)).

Solver The function Hamming returns a solver to generate a Hamming code for
NumSymbols symbols in words with Bits bits and a Hamming distance of Distance.
The procedure MinDist implements the constraint that the Hamming distance does not
exceed the value of Distance. The list Xs holds the sets representing the single codes.
The nested loop (ForAllTail and ForAll) imposes MinDist on all pairwise distinct
elements of Xs. The distribution employs straightforwardly a naive strategy.

declare

fun {Hamming Bits Distance NumSymbols}

proc {MinDist X Y}

Common1s = {FS.intersect X Y}

Common0s = {FS.complIn

{FS.union X Y}

{FS.value.make [1#Bits]}}

in

Bits-{FS.card Common1s}-{FS.card Common0s}>=:Distance

end

in

proc {$ Xs}

Xs = {FS.var.list.upperBound NumSymbols [1#Bits]}

{ForAllTail Xs proc {$ X|Y}

8 Chapter 3. Generating Hamming Codes

{ForAll Y proc {$ Z}

{MinDist X Z}

end}

end}

{FS.distribute naive Xs}

end

end

The following code generates a Hamming code for 16 symbols using 7 bit words and
ensures a Hamming distance of 2.

{Browse

{Map {SearchOne {Hamming 7 2 16}}.1

fun {$ X}

{ForThread 7 1 ~1 fun {$ Is I}

{FS.reified.isIn I X}|Is

end nil}

end}}

Further, the code is nicely formatted displayed in the Oz Browser.

4

Packing Files onto Disks

Problem Specification Suppose, you want to copy a set of files from your hard-
disk onto as few as possible diskettes of a given size, e.g. onto common 1.44 MB
diskettes. In case your files do not fit on a single diskette, it might become quite tricky
to figure out the minimal number of needed diskettes and how to partition the files.

Model A diskette is modeled by a set si. All sets si form a partition of the set of
all files sall f iles, i.e., all si are pairwise disjoint and their union is sall f iles. The sizes of
all files contained in a set is summed up and compared with the fixed capacity of the
diskette.

Distribution Strategy The distribution is two-dimensional.

• Distribute the number of diskettes starting from the minimal number possible.
The minimal number is the ceiling of dividing the sum of all file sizes by the
diskette size.

• Distribute the files over the sets representing the individual diskettes.

The distribution over the files could be refined by taking the size of the actual file into
account. This is subject to experimentation by the reader.

Solver The function SpreadFiles returns a solver configured according to the ac-
tual values of the formal arguments Files and DiskCap. The returned solver’s root
variable Disks contains the set of diskettes of size DiskCap needed to store all files in
Files and specifies what files have to be stored on which diskette.

The argument Files holds a list of individual files, where each file is represented by
a record with label file and the features name and size. The argument DiskCap is
an integer. The variable FileSizes holds a list of all files sizes and Size stores the
sum all elements in FileSizes. The lower bound of the number of diskettes is held in
LB. The finite domain NbDisks is used to distribute over the number of diskettes. Each
file in Files is represented by an integer in ascending order starting from 1. These
integers are stored in AllFiles. Finally, the sets representing the individual diskettes
are held in Ds.

First, the number of diskettes is distributed starting from LB. Then, Ds is initialized
to sets containing maximal all files. Next, the constraint that all elements of Ds are a

10 Chapter 4. Packing Files onto Disks

partition of the set of all files is imposed. Finally, the maximum capacity of all diskettes
is limited to DiskCap by imposing for all elements of Ds the constraint that the sum
of the size of all their elements is less or equal to DiskCap. The implementation uses
FS.reified.areIn to associate the containment of individual elements of sets to 0/1
variables. These 0/1 variable are passed to FD.sumC to ensure that a diskettes capacity
is not exceeded. Distribution over Ds tries to locate file onto diskettes.

Particularities The solver represents internally individual file as integers since fi-
nite set constraints in Oz can only deal with non-negative integers. To make the pro-
duced solution readable to humans, a diskette is represented as record where the fea-
tures are the files to be stored on that diskette. Such a record is constructed by imposing
a feature constraint onto each element of Disks. Then the actual features representing
the filenames are added successively by mapping the elements of the set representing
the diskettes to their names. Every feature refers to the size of the file it represents.
Finally, the feature constraint becomes a record by constraining its arity’s width to the
number of features.

declare

fun {SpreadFiles Files DiskCap}

proc {$ Disks}

FileSizes = {Map Files fun {$ F} F.size end}

Size = {FoldL FileSizes Number.’+’ 0}

LB = Size div DiskCap +

if Size mod DiskCap==0 then 0 else 1 end

NbDisks = {FD.int LB#FD.sup}

AllFiles = {List.number 1 {Length Files} 1}

Ds

in

{FD.distribute naive [NbDisks]}

{FS.var.list.upperBound NbDisks AllFiles Ds}

{FS.partition Ds {FS.value.make AllFiles}}

{ForAll Ds proc {$ D} BL in

{FS.reified.areIn AllFiles D BL}

{FD.sumC FileSizes BL ’=<:’ DiskCap}

end}

{FS.distribute naive Ds}

Disks = {Map Ds

fun {$ D}

Disk = {RecordC.tell diskette}

in

{ForAll {FS.monitorIn D}

proc {$ E}

F = {Nth Files E}

11

in

Disk^(F.name) = F.size

end}

{RecordC.width Disk} = {FS.card D}

Disk

end}

end

end

Invoking the solver by

declare Disks =

{SearchOne {SpreadFiles [file(name:a size:360)

file(name:b size:850)

file(name:c size:630)

file(name:d size:70)

file(name:e size:700)

file(name:f size:210)]

1440}}

produces the following result:

[[diskette(a:360 b:850 f:210) diskette(c:630 d:70 e:700)]]

The input data for this solver can be easily obtained from the respective operating
system by using the module OS (see Chapter Operating System Support: OS, (System
Modules) for details].

12 Chapter 4. Packing Files onto Disks

5

A Crew Allocation Problem

Problem Specification A small air-line has to assign their 20 flight attendants
to 10 flights. Each flight has to be accompanied by a certain number of cabin crew
(see Figure 5.1) that has to meet a couple of constraints. First, to serve the needs
of international clients the cabin crew has to be able to speak German, Spanish, and
French (see Figure 5.2). Further, a minimal number of stewardesses resp. stewards
have to attend a flight (see Figure 5.3). Finally, every cabin crew member has two
flights off after an attended flight.

Figure 5.1: Cabin crew per flight.

flight # # of cabin staff
1 4
2 4
3 5
4 5
5 6

flight # # of cabin staff
6 4
7 4
8 5
9 5
10 6

Figure 5.2: Cabin crew speaking foreign language per flight.

flight # French Spanish German
1 1 1 1
2 1 1 1
3 1 1 1
4 2 2 1
5 2 2 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1
10 1 1 1

14 Chapter 5. A Crew Allocation Problem

Figure 5.3: Male resp. female cabin crew per flight.

flight # male female
1 1 1
2 1 1
3 1 1
4 2 2
5 3 2

flight # male female
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1

Model The cabin crew for every flight is represented as a set. The constraints on
cabin crews of individual flights are modeled in terms of constraints on the cardinal-
ity of the intersection of the cabin crew set of that flight with the sets associated with
particular restrictions. Therefore the following subsets of the cabin crew are intro-
duced: male, female, Spanish-speaking, French-speaking, and German-speaking cabin
crew. The constraint that a crew member has two flights off after an attended flight is
expressed by the disjointness of the appropriate sets representing a crew per flight.

Solver The function AssignCrew returns a solver configured according to its argu-
ments FlightData and Crew. As previously mentioned, the constraints on the cabin
crew of a flight are expressed in terms of sets of crew members meeting these con-
straints. For that reason the following variables are defined:

• Stewards (male cabin crew members),

• Stewardesses (female cabin crew members),

• FrenchSpeaking, GermanSpeaking, and SpanishSpeaking (French-, German-
, resp. Spanish-speaking cabin crew members).

Procedure TeamConstraint imposes the abovementioned constraints on the individ-
ual flight cabin crew sets intersecting them with appropriate sets (FS.intersection),
and constrains the intersection’s cardinality according to Figure 5.1, Figure 5.2, and
Figure 5.3 (using FS.card and >=:).

The procedure SequenceDisjoint is responsible to ensure that every crew member
may enjoy a two-flight break between two flights. It is a recursive procedure imposing
FS.disjoint upon every 3 subsequent sets.

The actual solver declares the local variable Flights that contains the list of sets
representing the individual crew assignments. Then, the constraints of the procedure
TeamConstraint are imposed on Flights by the Map loop, by mapping the data pro-
vided by FlightData to Flights. The distribution is straightforward and has no par-
ticularities.

Dealing with sets of literals Often real-life applications deal with sets of names,
descriptions and the like rather than integers, which can be represented by Oz literals.
The functions SetOfLiterals, Lits2Ints, and Ints2Lits allow to model sets of
literals. The function SetOfLiterals returns an abstract data structure that enables

15

Lits2Ints and Ints2Lits to map literals to integers and vice versa. The last line of
the solver procedure converts the internal solution to a representation corresponding to
the format of AssignCrew’s argument Crew (see below).

declare

local

Lit2Int = {NewName}

Int2Lit = {NewName}

in

fun {SetOfLiterals Lits}

sol(Lit2Int:

{NewChunk

{List.toRecord l2i

{List.mapInd Lits fun {$ I L}

L#I

end}}}

Int2Lit:

{NewChunk

{List.toRecord i2l

{List.mapInd Lits fun {$ I L}

I#L

end}}})

end

fun {Lits2Ints SetOfLiterals Literals}

{Map Literals fun {$ Lit}

SetOfLiterals.Lit2Int.Lit

end}

end

fun {Ints2Lits SetOfLiterals Ints}

{Map Ints fun {$ Int}

SetOfLiterals.Int2Lit.Int

end}

end

end

fun {CrewProb FlightData Crew}

CabinStaff = {Append Crew.stewards Crew.stewardesses}

CrewSet = {SetOfLiterals CabinStaff}

Stewards = {FS.value.make

{Lits2Ints CrewSet Crew.stewards}}

Stewardesses = {FS.value.make

{Lits2Ints CrewSet Crew.stewardesses}}

FrenchSpeaking = {FS.value.make

{Lits2Ints CrewSet Crew.frenchspeaking}}

GermanSpeaking = {FS.value.make

{Lits2Ints CrewSet Crew.germanspeaking}}

16 Chapter 5. A Crew Allocation Problem

SpanishSpeaking = {FS.value.make

{Lits2Ints CrewSet Crew.spanishspeaking}}

proc {TeamConstraint Team Flight}

flight(no:_ crew:N stewards:NStew stewardesses:NHost

frenchspeaking:NFrench germanspeaking:NGerman

spanishspeaking:NSpanish) = Flight

in

{FS.card Team N}

{FS.card

{FS.intersect Team Stewards}} >=: NStew

{FS.card

{FS.intersect Team Stewardesses}} >=: NHost

{FS.card

{FS.intersect Team FrenchSpeaking}} >=: NFrench

{FS.card

{FS.intersect Team GermanSpeaking}} >=: NGerman

{FS.card

{FS.intersect Team SpanishSpeaking}} >=: NSpanish

end

proc {SequencedDisjoint L}

case L of A|B|C|T then

{FS.disjoint A B}

{FS.disjoint A C}

{SequencedDisjoint B|C|T}

elseof A|B|nil then

{FS.disjoint A B}

end

end

in

proc {$ Sol}

Flights = {FS.var.list.upperBound

{Length FlightData}

{Lits2Ints CrewSet CabinStaff}}

in

{Map FlightData proc {$ D F}

{TeamConstraint F D}

end Flights}

{SequencedDisjoint Flights}

{FS.distribute naive Flights}

Sol = {Map Flights

fun {$ F}

{Ints2Lits CrewSet {FS.monitorIn F}}

end}

end

17

end

The following sample data can be used to test the solver:

declare

Flights =

[flight(no: 1 crew:4 stewards:1 stewardesses:1

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 2 crew:5 stewards:1 stewardesses:1

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 3 crew:5 stewards:1 stewardesses:1

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 4 crew:6 stewards:2 stewardesses:2

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 5 crew:7 stewards:3 stewardesses:3

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 6 crew:4 stewards:1 stewardesses:1

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 7 crew:5 stewards:1 stewardesses:1

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 8 crew:6 stewards:1 stewardesses:1

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no: 9 crew:6 stewards:2 stewardesses:2

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)

flight(no:10 crew:7 stewards:3 stewardesses:3

frenchspeaking:1 spanishspeaking:1

germanspeaking:1)]

Crew =

crew(stewards:

[tom david jeremy ron joe bill fred bob mario ed]

stewardesses:

[carol janet tracy marilyn carolyn cathy inez

jean heather juliet]

frenchspeaking:

[inez bill jean juliet]

germanspeaking:

[tom jeremy mario cathy juliet]

spanishspeaking:

[bill fred joe mario marilyn inez heather])

18 Chapter 5. A Crew Allocation Problem

Running the solver by {ExploreOne {AssignCrew Flights Crew}}. and invoking
the Oz Browser on the solution node results in:

The flights are to be attended in the order they appear in the solution list. Each sublist
denotes the assignment for an individual flight.

6

Scheduling a Golf Tournament

Problem Specification There are 32 individually playing golfers who play in
groups of 4, so-called foursomes. For every week of the golf tournament new sets
of foursomes are to be compiled. The task is to assign foursomes for a given number
of weeks such that no player plays with another player in a foursome twice.

Maximal Number of Weeks The upper bound for the number of weeks is 10
weeks due to the following argument. There are

(32
2

)

= 496 pairing of players. Each
foursome takes 6 pairings and every week consists of 8 foursomes, hence, every week
occupies 48 pairings. Having only 496 pairings available, at most b496/48c = 10
weeks can be assigned without duplicating foursomes. Unfortunately, only assign-
ments for 9 weeks could be found so far. Fortunately again, this assignment could
only be found by solvers using set constraints. Other approaches, using linear integer
programming, failed for this problem size.

Model A foursome is modeled as a set of cardinality 4. A week is a collection of
foursomes and all foursomes of a week are pairwise disjoint and their union is the set
of all golfers. This leads to a partition constraint. Further, each foursome shares at
most one element with any other foursome, since a golfer, of course, may occur in
different foursomes but only on his own. Therefore, the cardinality of the intersection
of a foursome with any other foursome of the other weeks has to be either 0 or 1.

Distribution Strategy The distribution strategy is crucial for this problem.1 A
player is taken and assigned to all possible foursomes. Then the next player is taken
and assigned and so on. This player-wise distribution allows to solve instances of that
problems up to 9 weeks. The approach, coming usually into mind first, to distribute a
foursome completely, fails even for smaller instances of the problem.

Solver The function Golf returns a solver to find an assignment for NbOfFourSomes
foursomes per week and NbOfWeeks weeks duration. The number of players is com-
puted from NbOfFourSomes and stored in NbOfPlayers. The auxiliary function Flatten
is used to flatten a list of lists of variables. Its definition is necessary since the library
function of the same name works only on ground terms.

1The distribution strategy was proposed by Stefano Novello from IC-PARC on the newsgroup
comp.constraints.

20 Chapter 6. Scheduling a Golf Tournament

The procedure DistrPlayers implements the player-wise distribution strategy. It tries
to create for every player on every foursome a choice point by simply enumerating all
players and iterating for each player over all foursomes.

The variable Weeks holds NbOfWeeks weeks. A week is a list of foursomes. A four-
some is modeled as a set. All sets are subsets of {1, . . . ,NbOfPlayers} and have exactly
4 elements. Further, the sets modeling the foursomes of a week form a partition of the
set {1, . . . ,NbOfPlayers}. These constraints are imposed by the first ForAll loop.

The following nested loops (ForAllTail and ForAll) impose that every foursome
shares at most one element with any other foursome of other weeks. Finally, the distri-
bution procedure is called with a flattened copy of Weeks, i.e., a list of all foursomes.

declare

fun {Golf NbOfWeeks NbOfFourSomes}

NbOfPlayers = 4*NbOfFourSomes

fun {Flatten Ls}

{FoldL Ls fun {$ L R}

if R==nil then L

else {Append L R} end

end nil}

end

proc {DistrPlayers AllWeeks Player Weeks}

choice

case Weeks

of FourSome|Rest then

dis {FS.include Player FourSome} then

{DistrPlayers AllWeeks Player Rest}

[] {FS.exclude Player FourSome} then

{DistrPlayers AllWeeks Player Rest}

end

else

if Player < NbOfPlayers then

{DistrPlayers AllWeeks Player+1 AllWeeks}

else skip end

end

end

end

in

proc {$ Weeks}

FlattenedWeeks

in

Weeks = {MakeList NbOfWeeks}

{ForAll Weeks

proc {$ Week}

Week =

{FS.var.list.upperBound

21

NbOfFourSomes [1#NbOfPlayers]}

{ForAll Week proc {$ FourSome}

{FS.card FourSome 4}

end}

{FS.partition Week

{FS.value.make [1#NbOfPlayers]}}

end}

{ForAllTail Weeks

proc {$ WTails}

case WTails

of Week|RestWeeks then

{ForAll Week

proc {$ FourSome}

{ForAll {Flatten RestWeeks}

proc {$ RestFourSome}

{FS.cardRange 0 1

{FS.intersect

FourSome RestFourSome}}

end}

end}

else skip end

end}

FlattenedWeeks = {Flatten Weeks}

{DistrPlayers FlattenedWeeks 1 FlattenedWeeks}

end

end

Invoking the solver by {ExploreOne {Golf 9 8}} produces the following search
tree.

22 Chapter 6. Scheduling a Golf Tournament

The search tree has a depth of 200 which makes the problem a good candidate for
recomputation. Invoking the search engine with a computation depth of one 2 requires
64.1 MB of heap memory. On the other hand an recomputation depth of 10 3 decreases
the required heap memory to 19.3 MB.

2declare S = {Search.one.depth {Golf 9 8} 1 _}
3declare S = {Search.one.depth {Golf 9 8} 10 _}

Bibliography

[1] C.C. Lindner and A. Rosa. Topics on steiner systems. In Annals of Discrete
Mathematics, volume 7. North Holland, 1980.

[2] Tobias Müller. Solving set partitioning problems with constraint programming.
In Proceedings of the Sixth International Conference on the Practical Application
of Prolog and the Forth International Conference on the Practical Application of
Constraint Technology – PAPPACT98, pages 313–332, London, UK, March 1998.
The Practical Application Company Ltd.

[3] Tobias Müller and Martin Müller. Finite set constraints in Oz. In François
Bry, Burkhard Freitag, and Dietmar Seipel, editors, 13. Workshop Logische Pro-
grammierung, pages 104–115, Technische Universität München, 17–19 September
1997.

