Gump-A Front-End Generator for Oz

Leif Kornstaedt

December 1. 2001 m o 1¢ d I't

Abstract

This manual describes Gump, the front-end generator for Oz. It reads Oz files with embed-
ded scanner and/or parser definitions and produces Oz code as output in which these have
been replaced by classes implementing scanners and/or parsers. The semantic actions in
the specifications allow the full flexibility and expressivity of Oz to be used.

Credits

Cover illustration by Andreas Schoch
Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

[l Introduction|

P The Gump Scanner Generatoi

% ple

Contents

2.1.1 Writing a Scanner Specification

2.1.2 Invoking Gumg

[2.1.3 Using the Generated Scanneff

.2 Referencd

[2.2.1 Syntax of the Scanner Specification Languagd

[2.2.2 Parameters to Scanner Generation.

[2.2.3 The Mixin Class GunpScanner . |

B The Gump Parser Generator|

B8.1.1 Writing a Parser Specification

B.1.2 Invoking Gumyg

B.1.3 Using the Generated Parsen.

B2 Referencd

B.2.1 Syntax of the Parser Specification Languagg

B.2.2 Parameters to Parser Generation

83.2.3 The Mixin Class GunpPar ser . |

A The Used Notation|
|A.1 Elements from the Oz SyntaX

W 0w O O W w W

10
11

15
15
15
19
19
20

26
27

29

Introduction

The Gump is a fictional ‘creature’ in the children’s novel ‘The Marvelous Land of Oz’fj
by L. Frank Baum, sequel to “The Wonderful Wizard of Oz’ [[l]. It is a living flying
machine assembled by the main characters from individually selected materials. The
Tin Woodman fastens a gump’s head to one end of the machine, explaining that it ‘will
show which is the front end of the Thing.’

Gump is also the name of the specification language and tool described in this hand-
book from the user’s point of view. Like the gump’s head in the novel, the language is
used to specify front-ends in Oz, in this case the lexical and phrase structure of a lan-
guage. The tool is the ‘Powder of Life’ that generates executable programs (Oz class
definitions) from such specifications.

Overview

This manual consists of two parts. Chapter P] describes the Gump Scanner Generator;
Chapter | the Gump Parser Generator. Each chapter is divided in two sections, the first
explaining the basic concepts by example and the second providing a detailed reference
for the programmer.

Acknowledgements

The specification language and the software tool have been designed and implemented
as the subject of my Master’s Thesis [B] which has been supervised by Prof. Dr. Gert
Smolka and Dipl.-Inform. Christian Schulte at the Programming Systems Lab at the
Universitat des Saarlandes, as well as by Prof. Dr. Hans-Wilm Wippermann at the
University of Kaiserslautern.

The software makes use of the GNU variants of lex and yacc, called flex [f]] and bi-
son [H] respectively.

Oz is the name of a programming language developed at the Programming Systems
Lab at the Universitat des Saarlandes. Mozart is an implementation of Oz.

The cover illustration has been drawn by Andreas Schoch.

Ihttp://al nond. srv. cs. cmu. edu/ af s/ cs. cnu. edu/ user / r gs/ nosai ¢/ ozl and-
ftitle. htm

Chapter 1. Introduction

The Gump Scanner Generator

This chapter describes the Gump Scanner Generator. Its input consists of an Oz source
with embedded scanner specifications; the output implements each scanner by an Oz
class.

Definitions A scanner is a program that performs lexical analysis, which means that
it transforms a stream of characters into a stream of tokens. The text is read from left to
right. During this process, sequences of characters are grouped into lexemes according
to user-defined rules, specified by so-called regular expressions and associated seman-
tic actions. An action computes tokens from a lexeme, each consisting of a token class
and an optional token value, which are appended to the token stream. The process is
iterated until the end of the character stream is reached.

This chapter first describes the basic principles of the Gump Scanner Generator by
means of an example in Section .. A more detailed reference is then given in Sec-

tion P.2.

2.1 Example

As a running example we will specify, throughout the manual, a front-end for a com-
piler or an interpreter for a small functional language Lambda. In this section we will
define the scanner for this language, in Section 8.7 we build a parser on top of this
scanner.

2.1.1 Writing a Scanner Specification

Figure P.7 shows the specification of the sample scanner we will consider in this sec-
tion. In the following we will examine this example line by line.

Class Descriptors At the first glance the scanner specification closely resembles a
class definition with some extra elements, introduced by the keyword scanner instead
of cl ass. This is intentional, since it will ultimately be replaced by a class. This is
why all descriptors allowed in a class definition are also allowed at the beginning of
a scanner specification. Consider the from attr and net h constructs used in lines 2
to 10.

4 Chapter 2. The Gump Scanner Generator

Figure 2.1: The LanmbdaScanner scanner specification.

decl are
scanner LanbdaScanner from GunpScanner
attr Li neNunber

meth init()
@QunpScanner . , init()
Li neNunber <- 1
end
met h get Li neNunber ($)
@.i neNunber
end
lex digit = end
lex letter = end
lex id = end
lex int = end
| ex
QunpScanner . , put Tokenl()
end
| ex
QunpScanner . , put Tokenl()
end
| ex Ain
GQunpScanner . , get Aton(?A)
QunpScanner . , put Token(A)
end
| ex Sin
GQunpScanner . , getString(?S)
QunpScanner . , put Token({String.tolnt S})
end
lex < | | | | >Ain
QunpScanner . , get At om(?A)
GQunpScanner . , put Tokenl(A)
end
I ex skip end
lex < .*> skip end
| ex
Li neNunber <- @i neNunber + 1
end
| ex
{Syst em show nf o #@Li neNunber # }
QunpScanner . , put Tokenl()
end
| ex
QunpScanner . , put Tokenl()
end

end

2.1. Example

Lexical Abbreviations The scanner-specific declarations begin at line 12. Two
kinds of definition can be introduced by the keyword | ex: either a lexical abbreviation,
as seen in lines 12 to 15, or a lexical rule as found from line 17 to the end of the
specification. A lexical abbreviation | ex | = <R> end associates an identifier | with
a given regular expression R. Occurrences of { I} in other regular expressions are then
replaced to (R) .

Note that regular expressions use the same syntax as regular expressions in flex [f],
with a few exceptions (detailed in Section P.2.1)). Furthermore, we must either enclose
them in angle brackets or give them as Oz strings. (The latter proves useful when the
angle-bracketed version confuses Emacs’ fontification mode, but is a bit harder to read,
since more characters must be escaped.)

The example defines four lexical abbreviations: di git stands for a decimal digit,
I etter for an uppercase or lowercase letter; i d defines the syntax of identifiers to
consist of a letter, followed by an arbitrary sequence of letters and digits; and finally,
i nt defines the syntax of positive decimal integers as a nonempty sequence of digits.

Lexical Rules Lexical rules of the form | ex <R> S end are more interesting,
since the set of these is the actual scanner specification. Upon a match of a prefix
of the input character stream with the regular expression R, the statement S is executed
as a method body (i.e., sel f may be accessed and modified). Two methods are pro-
vided by the mixin class GunpScanner . (inherited from in line 2) to append
tokens to the token stream: put Token1, which appends a token of a given class with-
out a value (uni t being used instead), and put Token, which allows a specific token
value to be provided. Token classes may be represented by arbitrary Oz values, but the
parser generator in Chapter Bexpects them to be atoms. In lines 18 and 21 you can see
how constants are used as token classes. In line 33 the token class is computed from
the lexeme.

Accessing the Lexeme The lexeme itself may be accessed in several ways. The
method get At omreturns the lexeme as an atom, which is the representation for iden-
tifier token values chosen in line 25. The method get St ri ng returns the lexeme as a
string, such as in line 28, where it is subsequently converted to an integer.

The remaining lexical rules are easily explained. Lines 36 and 37 respectively de-
scribe how whitespace and comments are to be ignored. This is done by neither calling
put Token1 nor put Token. (Note that an action can also invoke them several times to
append multiple tokens to the token stream, just as it may chose not to invoke them
at all to simply ignore the lexeme or only produce side effects.) The rule in line 38
ignores any matched newlines, but updates the line counter attribute Li neNunber as it
does so. The rule in line 41 reports any remaining unmatched characters in the input
as lexical errors and returns the token which the parser can recognize as an
erroneous token.

End-of-File Rules The final rule, in line 46, has the special syntax <<eOF>> (it
might also have been written as) and only matches the end of the character
stream. It returns the token which can be recognized by the parser as the end of
input. Note that the action might just as well open another file to read from.

6 Chapter 2. The Gump Scanner Generator

More information about acceptable sets of regular expressions in scanner specifica-
tions, conflict resolution and grouping into lexical modes is given in Section £.2.7]

2.1.2 Invoking Gump

Now that we have finished writing our specification, we want to translate it into an Oz
class definition that implements our scanner. For this, we issue the compiler directive

\'swi tch +gunp

whereupon the compiler will accept Gump specifications.

Running Gump Save the above specification in a file LamrbdaScanner. ozg.
The extension . 0zg indicates that this file contains Oz code with additional Gump
definitions, so that Emacs will fontify Gump definitions correctly. Feeding

\insert LanbdaScanner. ozg

will process this file. Switch to the Compiler buffer (via C- ¢ C- ¢) to watch Gump’s
status messages and any errors occurring during the translation.

Output Files When the translation is finished, you will notice several new files in
the current working directory. These will be named after your scanner specification.
Suppose your scanner was called s, then you will find filesS. 1, S. C,S. o and S. so.
The first three are intermediate results (respectively the input file for flex, the flex-
generated C++ file and the object code produced by the C++ compiler) and the last one
is the resulting dynamic library used by the generated scanner.

Implementation Limitation Note that due to limitations of dynamic linking, a
scanner may only be loaded once into the system. When interactively developing a
scanner, this means that you will not see changes you make to the set and order of the
regular expressions consistently. You should thus halt and restart Mozart each time you
make changes to the regular expressions.

See also Section P.2.2 for a workaround around this limitation.

2.1.3 Using the Generated Scanner

Figure P.2 shows a sample program running our generated scanner.

The generated LarbdaScanner class is instantiated as MyScanner . We have to call the
method i ni t () first to initialize the internal structures of the GunpScanner .

Requesting Tokens The procedure Get Tokens repeatedly invokes the GunpScanner .
method
get Token(?X ?Y)

which returns the next token’s token class in X and token value in Y and removes it
from the token stream. Get Tokens exits when the end of the token stream is reached,
which is recognized by the token class

2.1. Example

\'swi tch +gunp

Figure 2.2: A program making use of the generated scanner.

\insert gunp/exanpl es/ LanbdaScanner. ozg

| ocal
MyScanner

= {New LanmbdaScanner init()}

proc {Get Tokens} T V in
{MyScanner get Token(?T ?V)}

case T of t hen
{Syst em showl nfo }
el se

{Syst em show T#V}
{ Get Tokens}

end
end

{MyScanner scanFil e()}
{ Get Tokens}
{MyScanner close()}

end

Providing Inputs To actually start scanning we have to provide an input character
stream. This is done via one of the methods

scanFi | e(+Fi | eNane)
or
scanVi rtual String(+V)

Each of these pushes the currently used buffer (if any) upon an internal stack of buffers
and builds a new buffer from the given source. Each time the end of a buffer is
reached, the <<EOF>> rule is matched. This may pop a buffer and continue scanning
the next-outer buffer where it left off, using the cl oseBuf f er method described in

Section2.2.3.

Closing Scanners When a scanner is not used anymore, it should be sent the
message

cl ose()

so that it can close any open files and release any allocated buffers. (This is even
necessary when scanning virtual strings due to the underlying implementation in C++.)

The following is a sample input for the scanner. The above example expects this to be
placed in the file Lanbda. i n in the current directory:

8 Chapter 2. The Gump Scanner Generator

% sone input to test the class LanbdaScanner
define f = | anbda y. |l anbda z.(add y z);
define ¢ = 17;

f c7;

((f) c) 7

2.2 Reference

This section is intended to serve as a reference for the user of the Gump Scanner Gen-
erator. It details the syntax of the embedded scanner specification language in Sec-
tion 2.2.1), which options are supported and how they are specified in Section and
finally the runtime part of the Scanner Generator, the mixin class GunpScanner .

in Section p.2.3.
2.2.1 Syntax of the Scanner Specification Language

The notation used here for specifying the syntax of the specification language is a
variant of BNF and is defined in Appendix Al

A scanner specification is allowed anywhere as an Oz statement:
(statement) += (scanner specification)

It is similar to a class definition, except that it is introduced by the keyword scanner,
must be named by a variable (and not an arbitrary term), since this is used for assigning
file names, and allows for additional descriptors after the usual class descriptors.

(scanner specification) ::= scanner (variable)
{ (class descriptor) }
{ (method) }
{ (scanner descriptor) }+
end

A lexical abbreviation associates an identifier with a regular expression, which can then
be referenced in subsequent lexical abbreviations or any lexical rules by enclosing the
identifier in curly brackets. The regular expression is additionally parenthesized when
it is expanded.

(lexical abbreviation) := |ex (atom) ‘=’ (regex) end
| |ex (variable) ‘=’ (regex) end

The definition of a lexical rule is similar to the definition of a method. However, its
head consists of a regular expression; when this is matched, the body of the lexical rule
is executed (as a method).

(lexical rule) = | ex (regex)
(in statement)
end

2.2. Reference 9

2211

22.1.2

First-fit.

Best-fit.

Regular expressions may be annotated with lexical modes. Each lexical mode consti-
tutes an independent sub-scanner: At any time a certain mode is active; in this mode
only the regular expressions annotated with it will be matched. All lexical rules de-
fined within the scope of a lexical mode are annotated with this lexical mode. A lexical
mode may inherit from other lexical modes; all regular expressions in these modes
are then annotated with the inheriting lexical mode as well. Lexical modes implicitly
inherit from all lexical modes they are nested in. Lexical rules written at top-level are
annotated with the implicitly declared mode | NI TI AL.

(lexical mode) := node (variable) [from{ (variable) }+]
{ (mode descriptor) }
end

(mode descriptor) = (lexical rule)

| (lexical mode)

Syntax of Regular Expressions

Regular expressions (regex) correspond to the regular expressions used in flex [f]] with
a few exceptions:

e Gump regular expressions are either enclosed in angle brackets or given as Oz
strings.

e The angle-bracket annotation with lexical modes is not supported by Gump; use
scopes of lexical modes instead. Note that several distinct lexical mode defini-
tions may occur for the same lexical mode name as long as no inheritance cycles
are created.

Due to the underlying use of flex, the names of lexical abbreviations are restricted to
the syntax allowed in flex name definitions.

Ambiguities and Errors in the Rule Set

Tokenization is performed by a left-to-right scan of the input character stream. If sev-
eral rules match a prefix of the input, then the rule matching the longest prefix is pre-
ferred. If several rules match the same (longest) prefix of the input, then two rules may
be applied to disambiguate the match (see Section on how to select the rule):

The rule notated first in the scanner specification is preferred. In this case, every con-
flict can be uniquely resolved. Two errors in the rule set are possible: holes and com-
pletely covered rules (see below).

Suppose two conflicting rules are rule ry and rule r,, which are annotated by sets of
lexical modes S1 and S, respectively. Then rq is preferred over ro if and only if the
following condition holds:

S1CS A L(rl) - L(I’z)

10 Chapter 2. The Gump Scanner Generator

where L(r) is the language generated by a regular expression r, that is, the set of strings
that match r. Intuitively, this rule means that ry is ‘more specialized than’ r,. Addi-
tionally to the errors possible in the rule set in the first-fit case, here the situation may
arise that the rule set is not well-ordered wrt. the “‘more specialized than’ relation.

The following errors in the rule set may occur:

Holes in the rule set. For some input (in some mode), no true prefix is matched by any rule. Due to
the underlying implementation using flex, this will result in the warning message

If at run-time some such input is encountered, this will result in an error exception

Completely covered rules. A rule r is never matched because for every prefix in L(r) exists another
rule s which is preferred over r.

Non well-orderedness. Two rules ri and ro are in conflict in the best-fit case, but neither is r{ more
specialized than r, nor the other way round, and no rule or set of rules exists that covers

L(r1) NL(r2).
2.2.2 Parameters to Scanner Generation

The Gump Scanner Generator supports several configuration parameters, which may
be set on a per-scanner basis via the use of macro directives.

Macro Directives Due to the implementation of scanners in C++, a unique prefix
is required for each scanner to avoid symbol conflicts when several scanners reside at
the same time in the Mozart system. The following macro directive allows this prefix
to be changed (the default zy is all right if only a single scanner is used at any time):

(atom)

Switches Figure P.3 summarizes some compiler switches that control the Gump
Scanner Generator.

Figure 2.3: Compiler switches for the Gump Scanner Generator.

Switch Effect
Use best-fit instead of first-fit disambiguating
Generate a case-insensitive scanner
Suppress warnings from flex

2.2. Reference 11

2.2.3 The Mixin Class GunpScanner .

The module GunpScanner defines the runtime support needed by Gump-generated
scanners. All operations and data are encapsulated in the mixin class GunpScanner .
that scanners have to inherit from in order to be executable.

Abstract Members The mixin class expects the following features and methods
to be defined by derivate classes. (It is a good idea not to define any class members
whose name begins with | ex. . . since these may be used for internals of the Scanner
Generator.)

feat |exer
This feature must contain the scanner-specific loaded foreign functions, which includes
the generated scanner tables.

nmet h | exExecut eAction(+1)

This method is called each time a regular expression is matched. Regular expressions
are assigned unique integers; | indicates which rule’s associated action is to be run.

Provided Members The GunpScanner. class defines some user function-
ality that is to be used either by users of the generated scanner or by the semantic
actions in the scanner itself.

meth init()
This initializes the internal structures of the GunpScanner . . This must be
called before any other method of this class.

nmet h set Mode(+1)
The operation mode of the scanner is set to the lexical mode | . Lexical modes are
represented internally as integers. Since modes are identified by variables, the class
generation phase wraps a | ocal ... end around the class equating the mode vari-
ables to the assigned unigue integers.

meth current Mode(?l)
This returns the integer | identifying the lexical mode the scanner currently operates
in.

met h get At om(?A)
This method is used to access the lexeme last matched. It is returned as an atom in the
variable A. Note that if the lexeme contains a NUL character (ISO 0) then only the text
up to the first NUL but excluding it is returned.

met h get String(?S)
This method returns the lexeme as a string in the variable S. The restrictions concerning
get At omdo not apply for get St ri ng.

met h get Lengt h(?l)
This method returns the length of the lexeme (number of characters matched).

12

Chapter 2. The Gump Scanner Generator

met h

met h

met h

met h

put Token(+X Y)

This method may be used to append a token with token class X and value Y to the
token stream. (Actually, the token class may be an arbitrary Oz value, but atoms and
the integers between 0 and 255 are the only representations understood by Gump-
generated parsers.)

put Token1(+X)
This method may be used to append a token with token class X and value uni t to the
token stream.

get Token(?X)

The next token is removed from the token stream and returned. The token class is
returned in X and its value in Y.

i nput (70
The next (unmatched) character is removed from the character stream and returned
in C.

scanFi | e(+V)

This method causes the currently scanned buffer (if any) to be pushed on a stack of
active buffers. A new buffer is created from the file with name V and scanned. If the
file does not exist, the error exception gunp(fi | eNot Found V) with the filename in V
is raised; the default treatment is the invocation of a custom error printer.

scanVirtual String(+V)
Like scanfFi | e, but scans a virtual string V. If V contains NUL characters (1SO 0) then
the virtual string is only scanned up to and excluding the first NUL character.
setlnteractive(+B)

Each buffer may be either interactive or non-interactive. An interactive buffer only
reads as many characters as are needed to be considered to decide about a match; a
non-interactive buffer may read ahead. This method allows the topmost buffer on the
stack to be set to interactive (if B is t r ue) or non-interactive (if B is f al se). New
buffers are always created as non-interactive buffers.

getlinteractive(?B)
Whether the topmost buffer on the buffer stack is interactive is returned.

set BOL(+B)

The beginning-of-line (BOL) flag indicates whether the beginning-of-line regular ex-
pression ~ will currently match the input. This flag is true at the beginning of a buffer or
after a newline has been scanned. The flag’s value may be set at will with this method.

get BOL(?B)
Returns the current state of the beginning-of-line flag. See the set BOL method.

cl oseBuffer()

Closes the topmost buffer on the buffer stack and resumes scanning from the buffer

on the new stack top (if any). If the buffer stack is or becomes empty through this
operation, only tokens with class and value uni t are returned subsequently
(until a new buffer is created).

2.2. Reference 13

met h cl ose()

Closes all buffers on the buffer stack. Before calling any other methods, you should
callini t () again.

14

Chapter 2. The Gump Scanner Generator

The Gump Parser Generator

This chapter describes the Gump Parser Generator. As for the Gump Scanner Gen-
erator described in the last chapter, its input consists of an Oz source with embedded
parser specifications and the output are Oz class definitions.

Definitions A parser is a program that performs syntax analysis. This means that a
stream of tokens is analyzed and a (unique) tree structure on the tokens in this stream is
computed. The token classes are called terminal symbols; additionally, new nontermi-
nal symbols are introduced in the specification. For each nonterminal, a set of rules is
given which indicates sequences of symbols that may be replaced by this nonterminal.
The token sequence is read from left to right and subsequences of symbols are replaced
by nonterminal symbols according to the rules (which is called a reduction). Either the
result is a special nonterminal, a start symbol, or the input is erroneous and rejected.
A result is constructed during the parse by executing user-specified semantic actions
each reduction.

This chapter first describes the basic concepts of the Gump Parser Generator by ex-
ample in Section B.J. Section B.3 presents the more advanced concepts and a detailed
definition of the specification language.

3.1 Example

This section presents the parser for the functional language Lambda for which a scan-
ner was specified in the last chapter.

3.1.1 Writing a Parser Specification

Figure B.1 shows the parser specification which will serve as an example to demon-
strate the basic concepts of the Gump Parser Generator. This example will be examined
in detail in the following.

Class Descriptors Again, a Gump specification resembles a class definition in-
troduced by a special keyword, parser, and augmented by additional declarations.
The usual class descriptors f r omand net h are also used in this specification in lines 2
to 8. The switches and simply

16 Chapter 3. The Gump Parser Generator

Figure 3.1: The LanbdaPar ser parser specification.
\'swi tch +gunppar serout putsinplified +gunpparserverbose

decl are
par ser LanbdaParser from GunpPar ser.
neth error(VS) Scanner in
QunpPar ser . , get Scanner (?Scanner)
{Syst em show nf o #{ Scanner get Li neNunber ($) }# #VS}
end

t oken

| eft Assoc(1)
| ef t Assoc(2)
| ef t Assoc(2)
| ef t Assoc(2)
| ef t Assoc(2)
| ef t Assoc(2)

syn program(?Definitions ?Termns)
IDefinitions={ Definition($) }*

I Terms={ Term($) // }+
end
syn Definition($)
(1) Term(T) => definition(l T)
end
syn Ternm($)
(1) Term(T) => | anbda(l T)
[T Term(T1l) Term(T2) prec() => apply(T1 T2)
[] Term(T) =T
[1 (1) Line(L) =>id(l L)
[1 (1) =>int(l)
end
syn Line($)
skip => {QunpPar ser. , getScanner ($) getLineNunber($)}
end

end

3.1. Example

17

cause additional information to be output at parser generation time; we will see this in
the next section.

The error method will be called upon detection of parse errors. Its parameter is a
virtual string describing the error. We redefine this method (which has a default imple-
mentation in the super class GunpPar ser .) since we want to provide the user
with the line number information we maintain in the scanner.

Token Declarations In line 10 begin the token declarations. All token classes
(which must be atoms) that the scanner can produce are listed after the t oken key-
word. Additionally, some tokens are assigned an associativity (here: | ef t Assoc) and
a precedence value (a nonzero positive integer) after a colon. These are used to resolve
ambiguities in the syntax rules. The reason for the assignments in our example are
explained below. (You may notice that one of the listed tokens cannot be produced by
the scanner, the token. This is called a pseudo-token and is solely defined for
its associativity and precedence information.)

Syntax Rules Line 19 marks the start of the syntax rules themselves. For each non-
terminal, a syntax rule (introduced by the keyword syn) must be given. Nonterminals
may be named by atoms or variables.

Start Symbols An atom means that this nonterminal is a start symbol. Several
start symbols may be defined — the one to reduce to is selected when a concrete parse
is initiated.

Formal Parameter Lists Following the nonterminal is its parameter list, consist-
ing of zero or more variables in parentheses. The start symbol pr ogr amhas two pa-
rameters: a list of definitions and a list of terms. These are both output parameters, as
is indicated by the commentary 2.

EBNF Phrases The body of each syntax rule is an EBNF phrase (EBNF is an
abbreviation of Extended Backus-Naur-Formalism). As in Oz, we distinguish between
statements and expressions: Some EBNF phrases carry values and may thus only stand
at expression position, others don’t and must be used at statement position.

The basic building blocks of EBNF expressions are grammar symbol applications,
denoted by the name of a terminal or nonterminal followed by the actual parameter
list in parentheses. An example of this is the Definition($) in line 20, which is
an application of the nonterminal Def i ni ti on with a single actual parameter. Since
this is the nesting marker, the application is an expression (as opposed to a statement)
with the value of the corresponding actual parameter as its value. This application is
written inside the repetition symbols{ ... }*, which means that the application is to
be repeated 0 to n times. The repetition construct builds a list of its argument’s values
at each iteration, since it is used in expression position. This list is assigned to the
formal parameter Defi ni ti ons.

The next line, line 21, is similar: Here, a nonempty list (note the +) of Ter ns is ex-
pected, seperated by semicolons. The values computed by each Ter mare collected in
a list, which is assigned to the formal parameter Ter ns.

18

Chapter 3. The Gump Parser Generator

Local Variables The next syntax rule introduces a new feature: local variables.
All variables in pattern position in syntax rules are implicitly declared local. EBNF
pattern positions are the left side of an assignment (such as in line 20) and the actual
parameters of grammar symbol applications. If in any of these places a single non-
escaped variable (i.e., written without !) is used, it is implicitly declared local to the
EBNF construct it is used in. Such is the case for the variables | and T in line 24. The
formal parameter variables assigned to in lines 20 and 21 had to be escaped to avoid
their implicit (re-)declaration.

The syntax rule for Definition in line 23 has a single parameter. Since this is the
nesting marker, an EBNF expression is expected as body of this rule. The value of a
sequence of EBNF expressions is the value of the last expression (as in Oz, where the
value of a sequential composition is the value of the composition’s second argument).

Semantic Actions The last EBNF expression in line 23 is the semantic action,
introduced by the arrow =>. This action constructs an abstract syntax tree node (repre-
sented as a tuple).

Alternatives Lines 26 to 32 show the rule for Ter m This rule has several alterna-
tives, separated by the choice operator []. These alternatives also imply the need for
the given token precedences and associativities mentioned above: Not all inputs have
a unique parse tree. If, for example, we wrote

| anbda x.y z

this could be parsed as either
(lambda x.y) z

or
| anbda x. (y z)

We want to enforce the second meaning (that is, the application has a higher prece-
dence than the abstraction); furthermore, the application should be left-associative (i.e.,
X y zmeans (x y) z).

Resolving Conflicts This is why the pseudo-token was introduced. Each
alternative may also have, like the tokens, a precedence and an associativity. If the alter-
native contains a terminal, than the values of the last terminal are used. Alternatively, a
special precedence token may be specified via pr ec(terminal) ; then the values of this
are used instead. Thus, the application Ter m Ter mis left-associative. Higher prece-
dence values mean tighter binding of operators. Thus, the application (token

of precedence 2) has precedence over the abstraction (token of precedence 1).

However, one anomaly remains because the application has no (visible) operator — to
resolve conflicts, the precedence/associativity values of the lookahead token are com-
pared to the values of the (potentially) applicable rules. So if the lookahead is one of
the tokens with which a Ter mcan begin, it is in fact an application we have to parse.
This is why all these tokens are assigned the same precedence as the application. (For
a more detailed description of how operator precedence information is used to resolve
conflicts, consult the bison manual [E].

3.1. Example 19

Epsilon Productions The last nonterminal, Li ne in line 33, is actually only intro-
duced for the semantic value it computes. The empty sequence of grammar symbols is
denoted by ski p.

3.1.2 Invoking Gump

Parser specifications are processed in the same way scanner specifications are. First
we prepare the Gump Parser Generator by feeding:

\'swi tch +gunp

Then the file to translate is simply fed into the compiler. Suppose you saved the exam-
ple specification in the file LanmbdaPar ser . 0zg; feed:

\insert LanmbdaParser. ozg

The extension . 0zg indicating, as before, an Oz file with embedded Gump specifica-
tions.

Output Files Two files are generated from the par ser definition: LanmbdaPar ser . si npl i fi ed
contains a simplified version of the syntax rules where the EBNF constructs have

been expanded to equivalent BNF forms (because the gurnppar ser out put si npli fi ed

switch was set), whereas the file LambdaPar ser . out put contains the output from

the bison parse table generator (because the gunppar serverbose switch was set).

These names are generated from the parser specification’s name.

3.1.3 Using the Generated Parser

Figure B.9 shows an example Oz program that uses both the generated scanner from
the last chapter and the generated parser from above.

Initialization First, the scanner and parser classes are loaded. After instantiating
and initializing the scanner, a parser object is created. This needs as initializer a single
parameter, a scanner. This is, technically speaking, a unary procedure that understands
the messages put Token and get Token described in Section B.2.3,

Initiating a Parse The most interesting message sent to the parser is the par se
message. The first argument has to be a tuple. The label specifies the start symbol to
use, the features correspond to the actual parameters of the start symbol. In this case,
the actual parameter variables Def i ni t i ons and Ter ns are bound to lists of definitions
and terms, respectively. The second argument to the par se message is the result status.
This is either unified with t r ue if parsing was successful or with f al se otherwise.

20 Chapter 3. The Gump Parser Generator

Figure 3.2: A program making use of the generated parser.

\'swi tch +gunp
\insert gunp/exanpl es/ LanbdaScanner. ozg
\'insert gunp/exanpl es/ LanbdaPar ser. ozg

| ocal
MyScanner = {New LanbdaScanner init()}
MyParser = {New LanbdaParser init(M/Scanner)}
Definitions Terms Status

{MyScanner scanFil e()}
{MyPar ser parse(progran(?Definitions ?Terns) ?Status)}
{MyScanner cl ose()}
if Status then
{Browse Definitions}
{Browse Ter ns}

{Syst em show nf o }
el se

{Syst em show nf o }
end

end

3.2 Reference

This section is the reference manual for the Gump Parser Generator. It is divided into
three parts: First, the syntax of the Gump parser specification language is given in
Section B.2.1. Then, the options to parser generation supported by the Gump Parser
Generator are detailed in Section B.2.3. Finally, the runtime support for generated
parsers, the mixin class GunpPar ser . , Is presented in Section .

3.2.1 Syntax of the Parser Specification Language

The meta-notation used for describing the syntax of the specification language is ex-
plained in Appendix A (Note: This is not the language used in Gump to specify
parsers. This is intentional.)

Gump specifications are allowed anywhere as a statement.
(statement) += (parser specification)

A parser specification is introduced by the keyword par ser, followed by the usual
components of an Oz class. After these come additional parser-specific descriptors.
Parser specifications must be named by variables, since the names of these variables
will be used to generate auxiliary file names during parser generation.

3.2. Reference 21

(parser specification) = parser (variable)
{ (class descriptor) }
{ (method) }
[(token clause)]
{ (parser descriptor) }+
end

3.2.1.1 Token Declarations

The first extra parser descriptor is the t oken clause. This defines the names of the
terminals used in the specification as well as (optionally) their associativity and prece-
dence. Several tokens are predefined: Atoms of length 1 are always considered to be
tokens. Furthermore, token stands for an erroneous token (sequence) and is
used for error recovery, and token signalizes the end of input and is always
expected before reduction to the start symbol can take place.

(token clause) = token { (token declaration) }+
(token declaration) = (atom)[*:’ (expression)]

The optional expression following the colon in a token declaration must be a tuple with
arity 1 and one of the labels | ef t Assoc, ri ght Assoc or nonAssoc, depending on the
desired associativity. The feature must always be a nonzero positive integer. Only the
relative values matter; they are used to derive an ordering on the tokens. Larger values
imply a greater binding strength of the operator. For the algorithm used to resolve
conflicts using operator precedence information, refer to the bison manual [].

3.2.1.2 Syntax Rules

Syntax rules are parser descriptors. They are composed of a head and a body. The
head specifies the name of the defined nonterminal, where atoms are considered start
symbols, as well as the formal parameters of the nonterminal. Only one syntax rule
per nonterminal name is allowed.

(parser descriptor) = (syn clause)
(syn clause) = syn (syn head) (syn alt) end
(syn head) := (atom)

| (atom label) (syn formals)

| (variable)

| (variable label) (syn formals)

(synformals) := ‘(" {(synformal)}*)’

22

Chapter 3. The Gump Parser Generator

The body of a syntax rule is an EBNF phrase. It is distinguished between EBNF
statements and EBNF expressions: EBNF expressions carry an additional value. In the
following, it is always specified where EBNF statements or expressions are expected
and which constructs yield a value.

Formal parameters are denoted by variables. At most one parameter may be the nesting
marker; in this case the body of the syntax rule must be an EBNF expression. Its value
is unified with the corresponding actual parameter upon application of the nonterminal.

(syn formal) (variable)

‘$’

An alternation specifies several sequences (called alternatives), separated by the choice
operator [] . Either all sequences must be EBNF expressions or all sequences must be
EBNF statements. If all alternatives are expressions, the alternation is an expression
and yields at runtime the value of the selected sequence at runtime.

(synalty = (synseq){ ‘(1" (synseq)}

At the beginning of an sequence, local variables may be declared. These are visible
only inside the sequence. The sequence itself is composed of n > 0 EBNF factors,
optionally followed by a semantic action. If an EBNF expression is expected at the
place the sequence stands, then a semantic action must either be an expression or be
omitted. In the latter case, the last EBNF phrase must be an EBNF expression, the
value of the sequence then is the value of this EBNF expression. All other EBNF
factors must be statements. If n = 0, then the sequence may be written as ski p.

(synseq) := [{ (variable) }+in]{ (syn factor) } [(syn action)]
| skip[(synaction)]

(syn action) = ‘=>"((in statement) | (in expression))

An EBNF factor is either an application or an assignment. An application is denoted
by the name of either a terminal or a nonterminal, optionally followed by the actual
parameters in parentheses. Terminals may either have a single (variable) parameter or
no parameter at all; if a parameter is specified then it is unified with the actual token
value at runtime. In the application of a nonterminal, the number of actual parameters
must correspond to the number of formal parameters in the nonterminal’s definition.
Non-escaped variables as actual parameters are implicitly declared local to the inner-
most sequence that contains the application. At most one actual parameter may be the
nesting marker. In this case, the application is an expression yielding the value of the
corresponding actual parameter; else it is a statement.

(syn factor) = (syn application)
| (syn assignment)

(syn application) atom)

atom label) (syn actuals)

variable)

variable label) (syn actuals)

o~ o~~~

3.2. Reference 23

(A)

(synactuals) == *(’{ (expression)}*)’

Two grammar symbols are predefined which receive a special treatment:

By inserting an application of pr ec into a sequence, the latter is assigned an associa-
tivity and a precedence. These are taken from the token A. Sequences that contain no
application of pr ec inherit the values of the last token used in the sequence if there is
one, and have no associated associativity and precedence otherwise.

The application of the predefined terminal defines a restart point for error
recovery. Consult the bison manual [B] for additional information.

An assignment equates a variable with the value of an EBNF expression. Unless the
variable is escaped, it is implicitly declared local to the sequence the assignment ap-
pears in, else it must have been declared local within the current syntax rule (or be a
formal parameter). An assignment is always a statement.

(syn assignment) = [’] (variable) ‘=" (syn factor)

3.2.1.3 Definition of Production Templates

This section and the next augment the syntax rules defined above by the concept of
production templates. These provide for, e.g., the repetition constructs used in the
example in Section B.1]

The definition of a production template is another parser descriptor. Production tem-
plates are local to the parser specification they are defined in, and may be used only
textually after their definition. (This is to avoid cyclic production template expansions.)
Production templates may be redefined.

(parser descriptor) += (prod clause)

A production template definition consists of a head and a body. The body specifies the
EBNF phrase the production template is to be replaced with when instantiated. The
body may introduce optional local syntax rules which are always newly created when
instantiated. These must be denoted by variables.

(prod clause) := prod (prod head)
[(local rules) i n] (syn alt)
end

(local rules) := {(syn clause) }+

The head of a production template provides — aside from the list of its formal param-
eters — the unique identification of the production template. This is composed of the
following parts:

24

Chapter 3. The Gump Parser Generator

1. whether the production template is an expression or a statement when it is in-

stantiated (expressions being denoted by v=. .. or $=. .. ; in the head);
2. the optional identification name of the template, written before a colon;
3. the used parentheses, brackets or braces, if any;
4. the number of arguments, all being separated by // ; and
5. the used postfix operator, if any.

For example, you could define the commonly used notation [X] asan EBNF option,
oruse{ X // Y }+foraseparated list with at least one element. This construct could
yield a value, such as a list of the Oz values produced by the expression X, which
would be denoted by the production template Z={ X // Y }+. (Compare this to the
template’s instantiation in Figure B3] in line 21.)

(prod head) := (template definition)
| (variable) ‘=" (template definition)
’ 1

$’ *=" (template definition)

(template definition) = (prod formal list)
| (atom) *:’ (prod formal list)

‘(" (prod formals))’ [
‘[’ (prod formals) ‘1’ [
‘(" (prod formals) ‘}’ [
(variable) (prod postfix

prod postfix)

(prod formal list) (]
(prod postfix)]
;]

prod postfix)

(prod formals) ::= (variable) { ‘//’ (variable) }

<pr0d pOSthX> = Epr el

£/1

3.2.1.4 Expansion of Production Templates

Production templates may be instantiated as EBNF factors.
(syn factor) += (template instantiation)

The instantiation of a production template is very similar to its definition, since it must
specify the same unique identification. The difference is that instead of the formal
parameter variables actual EBNF phrases are allowed.

(template instantiation) = (prod actual list)
| (atom) “:’ (prod actual list)

(prod actual list) (* (prod actuals) *) " [(prod postfix)]
‘[” {prod actuals) ‘] * [(prod postfix)]
‘{” (prod actuals) ‘}’ [(prod postfix)]
S

}
(syn application) (prod postfix)

3.2. Reference

25

(prod actuals) = (synalt) { ‘//’ (synalt) }

When a production template is expanded, name clashes must be avoided. This is why
the expansion proceeds in several steps:

The local variables of the template are uniquely renamed, both in the body’s
EBNF phrase as well as in the local rules.

The local rules are uniquely renamed to avoid confusion with other rules in the
parser specification.

The actual EBNF phrases are substituted for the parameter variables of the pro-
duction template. The formal parameter variables may only occur as applications
of grammar symbols and may either be applied with a single actual parameter or
none at all. If the parameter is given, then the actual EBNF phrase must be an
expression whose value is unified with the application’s actual parameter.

The local rules are quantified over the local variables used in actual EBNF
phrases of the instantiation by adding these as parameters.

The local rules are aded to the table of grammar symbols.

The template instantiation is replaced by the body’s EBNF phrase from the pro-
duction template’s definition.

3.2.1.5 Predefined Production Templates

Figure B3 shows the predefined production templates. For many operators several
equivalent notations exist. All operators also have a form that yields a value: The
grouping construct yields the value of its argument, as do options (or ni | if they are
not chosen at runtime); the repetition constructs yield Oz lists of their first argument.

Figure 3.3: Predefined production templates.

Grouping (A)
Option [Al
Mandatory Repetition At (A)+{ A+
Optional Repetition A (A { A}

Mandatory Separated Repetition (A// B)+(A// B)Y{ A/l B}+{ A/l B}
Optional Separated Repetition (A/l B)Y~{ A/l B}*

3.2.1.6 Assignment of Attribute Types

Due to the underlying LR(1) algorithm used, two different attribute types must be dis-
tinguished concerning parameters to nonterminals, namely synthesized and inherited
attributes. This is in contrary to Oz, where input and output arguments need not be
distinguished due to the concept of logical variables and unification. However, things
are simplified by an algorithm determining the attribute types automatically.

Before this algorithm is explained in the following, we need to introduce a definition.

26

Chapter 3. The Gump Parser Generator

Definition Let S be an expanded sequence (i.e., template instantiations and assign-
ments have been expanded) with EBNF factors 0,...,n. Let i be the index of the first
EBNF factor (application or semantic action) in which a local Variable V (which is not
a formal parameter) of the sequence occurs. Then we say that V is initialized in all
EBNF factors with indices j, j > i, and uninitialized in all others.

The following rules describe how attribute types are derived from their uses in appli-
cations of grammar symbols:

e The (optional) parameter of a terminal always is a synthesized attribute (since
the scanner always produces the token value).

o Letthe ith actual parameter of an application of a grammar symbol B be either an
uninitialized local variable V or a nesting marker. Then the ith formal parameter
of B is a synthesized attribute. Furthermore, V may not occur in any other actual
parameter of the application.

e Let the ith actual parameter of an application of a grammar symbol B be either
an initialized local variable V or a complex Oz expression (i.e., neither a vari-
able nor a nesting marker). Then the ith formal parameter of B is an inherited
attribute. Furthermore, no uninitialized variable may occur in said actual param-
eter.

o |f a formal parameter of the syntax rule for a nonterminal A is used as actual
parameter of an application of a nonterminal B, then the corresponding formal
parameters of A and B are attributes of the same type, i.e., either both synthesized
or both inherited.

Note that nothing can be concluded from the use of a formal parameter variable in a
semantic action, since Oz does not distinguish between access of and assignment to a
variable: both are realized by unification.

If contradicting attribute types are derived for any formal parameter variable of a non-
terminal, then this is an error. If no attribute type can be derived for a formal parameter
variable, then it is realized as a synthesized attribute.

3.2.2 Parameters to Parser Generation

Macro Directives The following macro directive tells the bison parse table gener-
ator to expect a certain number of shift/reduce conflicts:

(int)

Switches Figure B.4 summarizes the options that the Gump Parser Generator un-
derstands. They may be given as compiler switches before a parser specification.

3.2. Reference 27

Figure 3.4: Compiler switches for the Gump Parser Generator.

Switch Effect
gunppar serout putsi nplified createthe. sinpli fi ed file with the BNF version of the grammar
gunppar ser ver bose create the . out put file with the Bison verbose output

3.2.3 The Mixin Class GunpPar ser .

The mixin class GunpPar ser . , defined in the module GunpPar ser, is re-
quired to make Gump parser specifications executable. It requires some features to
be present in derived classes; these are automatically inserted by the Gump Parser
Generator and contain the generated parse tables. They all begin with syn. . . ; thus it
is a good idea not to define any such named class components in order to avoid con-
flicts with Gump internals. Likewise, you should not define any variables beginning
with Syn. . ., since such variable names are generated by the tool.

Abstract Members Furthermore, the following method must be defined:

nmet h synExecut eAction(+1)

This method is invoked each time a reduction takes place. The parameter | is the
number of the rule reduced.

Provided Members GunpPar ser . defines several attributes and methods
that may be called by users of the generated parser or from inside semantic actions:

attr | ookaheadSynbol
This contains the token class of the current lookahead symbol.

attr | ookaheadVal ue

This contains the token value of the current lookahead symbol.

feat noLookahead
This is the value | ookaheadSynbol should be set to if you want to skip a token from
inside a semantic action.

meth init(+P)

This initializes the internal structures of the GunpPar ser . and connects it
to a scanner P. P must at least understand the messages put Token and get Token as

described in Section p.2.3,

met h parse(+T ?B)

This methods initates a parse. The label of tuple T denotes the start symbol to use
(which must be a declared nonterminal named by an atom); its features correspond
to the parameters of the corresponding syntax rule. Values of inherited attributes are

28 Chapter 3. The Gump Parser Generator
extracted from this tuple, values of synthesized attributes are unified with the corre-
sponding features after the parse is finished (successfully). The parameter B is unified
with t r ue if the parse was successful and with f al se otherwise.

met h accept ()

By calling this method the parse is interrupted and success reported. (Note that the
values of synthesized attributes of the start symbol given to par se are not influenced
by this.)

met h abort ()

By calling this method the parse is interrupted and failure reported. (Note that the
error method is not called.)

met h rai seError()

This method places the parser in the same state as if a syntax error had been found in
the input. Normal error recovery is attempted. The method er r or is not called.

meth error OK()

When a production with a restart point (token er r or) is reduced, this method may be
called to tell the parser that the error recovery process is finished and normal parsing
may be resumed.

nmet h cl ear Lookahead()

When a production with a restart point (token er r or) is reduced, this method may be
called to clear the lookahead token (if, for example, it was used to synchronize to the
restart point and is not legal thereafter).

meth error(+V)

This method is always invoked when (during normal parsing) an error in the input is
recognized. It is handed a diagnostic message in V. This method may be overridden in
derived classes.

met h get Scanner (?P)

Returns the scanner object or procedure P currently used as the token source.

A

The Used Notation

This appendix describes the notation used to specify the syntax of the Gump specifi-
cation language as an extension of the Oz language. It is an extended Backus-Naur-
Formalism built from the following parts:

o terminals and nonterminals are enclosed in angle brackets <...>;

o the left side is separated from the right side by either ::= or +=, where += adds
productions to an existing nonterminal;

o the vertical bar separates alternatives;

e square brackets denote optional phrases;

e curly braces enclose phrases that may be repeated 0 to n times;

e curly braces with a suffixed + enclose phrases that may be repeated 1 to n times;

o literal strings are typeset int hi s way.

A.1 Elements from the Oz Syntax

Lexical Conventions Since the tool’s specification language is embedded into Oz,
the same lexical conventions apply as for Oz. The only additional terminal type is
(regex), described in Section P.2.1]

Terminals The following named terminals from the Oz syntax are used:

(atom) stands for an Oz atom (quoted or not).

(variable) denotes an Oz variable (backquoted or not).

(atom label) isan Oz atom that is immediately followed by a left parenthesis.
(variable label) is an Oz variable that is immediately followed by a left parenthesis.

See “The Oz Notation” for the exact definitions.

30 Appendix A. The Used Notation

Nonterminals Furthermore, the following nonterminals from the Oz syntax are
used:

(statement) is an Oz statement.

(expression) is an Oz expression.

(in statement) is an Oz statement with optional preceding variable declaration.

(in expression) is an Oz expression with optional preceding variable declaration.
(class descriptor) stands for a class descriptor, i.e., one of f r om prop, attr orf eat .

(method) stands foranmeth ... end definition.

See “The Oz Notation” for the exact definitions.

Bibliography

[1] Lyman Frank Baum. The Wonderful Wizard of Oz. G. M. Hill, 1900.

[2] Charles Donelly and Richard Stallman. Bison: The YACC-Compatible Parser
Generator (Reference Manual). Free Software Foundation, Version 1.25 edition,
November 1995. On-Line Info File.

[3] Leif Kornstaedt. Definition und Implementierung eines Front-End-Generators flr
Oz. Diplomarbeit, Fachbereich Informatik, Universitit Kaiserslautern und Pro-
gramming Systems Lab, Universitat des Saarlandes, September 1996.

[4] Vern Paxson. flex — Fast Lexical Analyzer Generator, Version 2.5.2 edition, April
1995. Unix On-Line Manual Page.

BB 112 p1

B3
BT
B3

<<EOF>>, E, |Z|

alternatives,
ambiguities
ambiguities, in a parserspecification,
7
ambiguities, in a scanner specifi-
cation, f
attributes
attributes, inherited, P5
attributes, synthesized, g

Baum, L. Frank, [l
beginning-of-line, [[2]
best-fit matching, f,
pison,], [9, 21, 23
buffer stack, [, 12

c++ B0
comments,
compiler
compiler, parser specifications, [[9
compiler, scanner specifications,
switch
compiler, switch, gunp, B, L9

compiler, switch, gunppar ser expect,

°us

Index

dynamic library,
EBNF, [7, 4

Emacs, f, B

empty sequence,

end-of-file, B, P

error
error, in a scanner’s rule set, [0
error, in parser attribute types,
error, lexical, f
error, recovery, P1], B3,
error, syntax, L7, B3
error, token, f, 1|

file
file, created by Gump, B, B, fi9,
file, extension . ozg, B, [[9
file, not foundexception, [[3
file, scanning from, [, .2
file, scanningfrom, B
first-fit matching, f
flex, 1, B, B,
fontification, f, B
foreign library, f

Cet Tokens, E

Gump,

GumpParser.’class’
GumpParser.’class’, abort,
GumpParser.’class’, accept,

GumpParser.’class’, clearLookahead,

compiler, switch, gunppar ser out put si npl i fi e@§

5 L9, 7 GumpParser.’class’, error, [L7,
compiler, switch, gunppar ser ver bose, GumpParser.’class’, errorOK,

f5, fid, 7 GumpParser.’class’, getScanner,
compiler, switch, gunpscannerbestfit, GumpParser.’class’, init, @

10 GumpParser.’class’, lookaheadSym-
compiler, switch, gunpscanner casel ess, bol, @

10 GumpParser.’class’, lookaheadValue,
compiler, switch, gunpscanner nowar n, @

10 GumpParser.’class’, noLookahead,
compiler, switch, gunpscanner prefi x, R

10 GumpParser.’class’, parse, [[9, 7]

compiler, warnings, GumpParser.’class’, raiseError,

32

33

GumpParser.’class’, synExecuteAc-

tion, P1
QunpPar ser . ,Ej
GumpScanner.’class’

GumpScanner.’class’, close, [
GumpScanner.’class’, closeBuffer,

A2

GumpsScanner.’class’, currentMode,

[T

GumpsScanner.’class’, getAtom, E,
g

GumpScanner.’class’, getBOL, [L2

GumpScanner.’class’, getinteractive,

i

GumpScanner.’class’, getString, B}

i

GumpScanner.’class’, getToken, b,
2, 19, P4
GumpScanner.’class’, init, L]
GumpScanner.’class’, input, @
GumpScanner.’class’, lexer, L]
GumpScanner.’class’, lexExecute-
Action, 1]
GumpScanner.’class’, putToken, f,
[2 9, 24
GumpScanner.’class’, putTokenl, f,

i

GumpScanner.’class’, scanFile, [7]

i

GumpScanner.’class’, scanVirtual-
String, 1, [

GumpScanner.’class’, setBOL, [L

GumpScanner.’class’, setinteractive,

il

GumpScanner.’class’, setMode, [L]
GunpScanner . ,E,E,Eﬂ

inheriting

inheriting, from lexical modes,
I'NITIAL,
interactive scanning, [[J

Lambda
Lambda, language used as exam-
ple, B, 5
IeftAssoc,E]
lex,
lexical modes, [1]]
lexicalmodes,
lexicalerrors, B

limitations
limitations, of the scanner genera-
tor, g
line numbers,
linenumbers, [L7
local variables, P2
localvariables,

LR(1), @
macro directives, [Ld,

native functor, f
nesting marker, [L7]
newline, L3
nonAssoc, P
nonterminal

nonterminal, start, [

NUL, 1), 17
option, P4
parse errors, [L7, B3

parser
parser, generator, [[§

precedence,

production templates
production templates, predefined,

production templates, P3
pseudo-token,

regular expressions

regular expressions, syntax, f, i
repetition

repetition, predefined operators, P§
repetition, [L7,
rightAssoc,Eﬂ

scanner
scanner, generator, f§

semantic actions, [[§, 2

side effects, f§

skip, B2

start conditions, f, [[1

start symbols, [5, L7, B7

syntax errors, [L7, B3

syntax rules, {7, 1
synthesized attributes, p5]

Tin Woodman,
token

34

INDEX

token, class,

token, declaration, f[7, P1]
token, end-of-file, f, 1]
token, error, B, B

token, stream, §, [L§
token, value, B, P2

unmatched characters, f

virtual string
virtual string, scanning from, i, .3

warnings
warnings, suppressing,
whitespace, f

yacc, il

