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Abstract

This tutorial provides the knowledge to go beyond the built-in constraint capabilities of
Mozart Oz 3. This tutorial is complemented by “The Mozart Constraint Extensions Ref-
erence”.

Motivation A major design goal of Oz is to provide for a wide range of applications the
right level of programming abstractions. Though Mozart Oz 3 features a full-fledged finite
domain and finite set constraint solver providing for the functionality required to solve
combinatorial problems efficiently, it is often desirable to implement constraints in C++.
There may be several reasons to do so, as for example, that a given algorithm requires
destructively updateable data structures or an already existing C++ library shall be used.
Consequently, we opened the constraint solver of Mozart Oz 3 by adding a C/C++ inter-
face for implementing so-called constraint propagators. Hereby, a constraint propagator
is the implementation of a constraint. Further, it may be desirable to have a constraint
system available that is not provided by Mozart Oz 3 and one wants to implement it from
scratch. Even such cases can be handled by the C/C++ interface. Finally, the integration of
linear (integer) programming solvers is explained which are standard means in Operations
Research to tackle certain combinatorial problem classes.

Structure of the Manual The user manual consists of three parts:

1. The first part explains how to implement various propagators. It starts with a prop-
agator for the constraint x + y = z over finite domains and introduces the tools and
techniques needed. This propagator will be refined such that it is able to detect equal
variables and reduces to a more specialised propagator. Then a functionally nestable
version of the addition propagator will be derived. We go on with a propagator that
can deal with vectors of variables. As example serves the so-called element constraint.
The implementation of a propagator using finite set and finite domain constraints is
explained next. Finally more advanced topics, like the implementation of reified con-
straints, are discussed.
Note that it is not the intention of this manual to provide sophisticated algorithms.

2. The second part explains the implementation of constraint systems from scratch, i.e.,
not only the propagators of a certain constraint system but also the basic constraints.
As example, constraints over real intervals are implemented.

3. The third part explains the integration and usage of linear programming solvers like
CPLEX [6] and LP_SOLVE [4] from within Mozart Oz 3. To demonstrate the benefits
of jointly using propagation-based and linear programming-based solvers knapsack
problems are tackled.

Prerequisites The reader is supposed to have a working knowledge in the C/C++ pro-
gramming language and to be familiar with constraint-based problem solving techniques
in Oz. An excellent supplementary text book on C++ is [9]. Constraint-based problem
solving techniques in Oz are explained in “Finite Domain Constraint Programming in Oz.
A Tutorial.” resp. “Problem Solving with Finite Set Constraints in Oz. A Tutorial.” . The
CPI uses the native functor interface of Mozart Oz 3. Have a look at Part Native C/C++
Extensions, (Application Programming) resp. “Interfacing to C and C++” for details.
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1

Implementing Propagators

1.1 Basic Concepts

This chapter explains the basic concepts of computation with finite domain constraints
in Oz. Further, it explains the implementation of constraints by propagators. For more
details see “Finite Domain Constraint Programming in Oz. A Tutorial.” .

1.1.1 Computation with Constraints in Oz

Basic Constraint A Basic Constraint takes the form x = n,x = y or x ∈ D, where
x and y are variables, n is a non-negative integer and D is a finite domain.

Constraint Store The basic constraints reside in the Constraint Store. Oz provides
efficient algorithms to decide satisfiability and entailment for basic constraints.

Propagators For more expressive constraints, like x+y = z, deciding their satisfia-
bility is not computationally tractable. Such non-basic constraints are not contained in
the constraint store but are imposed by propagators. A propagator is a computational
agent which is imposed on the variables occurring in the corresponding constraint.
These variables are called the propagator’s parameters. The propagator tries to nar-
row the domains of the variables it is imposed on by amplifying the store with basic
constraints.

Constraint Propagation This narrowing is called constraint propagation. A prop-
agator P amplifies the store S by writing a basic constraint φ to it, if P∧S entails φ but
S on its own does not. If P ceases to exist, it is either entailed by the store S, or
P∧S is unsatisfiable. Note that the amount of propagation depends on the operational
semantics of the propagator.

As an example, assume a store containing x,y,z ∈ {1, . . . ,10}. The propagator for
x + y < z narrows the domains to x,y ∈ {1, . . . ,8} and z ∈ {3, . . . ,10} (since the other
values cannot satisfy the constraint). Adding the constraint z = 5 causes the propagator
to strengthen the store to x,y∈ {1, . . . ,3} and z = 5. Imposing x = 3 lets the propagator
narrow the domain of y to 1. We say that the propagator x + y < z constrains the
variables x,y and z.
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Computation Space Computation in Oz takes place in so-called computation spaces.
For the purpose of the tutorial it is sufficient to consider a computation space as con-
sisting of the constraint store and propagators connected to the store.

1.1.2 Implementation of Propagators

The computational model sketched in Section 1.1.1 is realised by the Oz runtime sys-
tem, which is implemented by an abstract machine [7], called the emulator. In this
section, the internal structure of propagators and their interaction with the emulator is
explained.

A propagator exists in different execution states and has to be provided with resources
like computation time and heap memory by the emulator. A propagator synchronises
on the constraint store and may amplify it with basic constraints.

A propagator reads the basic constraints of its parameters. In the process of constraint
propagation it writes basic constraints to the store.

The emulator resumes a propagator when the store has been amplified in a way the
propagator is waiting for. For example, many propagators will be resumed only in case
the bounds of a domain have been narrowed.

Handling Propagators A propagator is created by the execution of an Oz pro-
gram. To resume a propagator if one of its parameters is further constrained, one has
to attach the propagator somehow to the parameters. To this end, a reference to the
propagator is added to so-called suspension lists of the propagator’s parameters; we
say, a propagator is suspending on its parameters.

A resumed propagator returns a value of the predefined type OZ_Return:

enum OZ_Return {OZ_ENTAILED, OZ_FAILED, OZ_SLEEP}

In order to schedule propagators, the emulator maintains for each propagator an ex-
ecution state, namely running, runnable, sleeping, entailed, and failed. The
emulator’s scheduler switches a propagator between the execution states as shown in
Figure 1.1.

When a propagator is created, its state is immediately set running and the scheduler
allocates a time slice for its first run. After every run, when the constraint propaga-
tion was performed, the emulator evaluates the propagator’s return value. The value
OZ_FAILED is returned if the propagator (according to its operational semantics) de-
tects its inconsistency with the store. The emulator sets the propagator’s execution
state to failed and the computation is aborted. The propagator will be ignored by the
emulator until it is eventually disposed by the next garbage collection.

The return value OZ_ENTAILED indicates that the propagator has detected its entailment
by the constrained store, i.e. it cannot further amplify the constraint store. The emulator
sets the propagator’s execution state to entailed. It happens the same as for a failed
propagator: it will be ignored until it is disposed by garbage collection.

If the propagator can neither detect inconsistency nor entailment, it returns OZ_SLEEP.
Because the propagator may amplify the store in the future, it remains in the suspension
lists. Its execution state is set to sleeping.
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Figure 1.1: Propagator states and the transitions between them

A propagator is resumed when the domain of at least one of its parameters is further
narrowed. In this case, the emulator scans the suspension list of that variable and ei-
ther deletes entries where the propagator’s execution state is failed resp. entailed
or switches the execution state of the corresponding propagator to runnable. This is
indicated by transition (1) in Figure 1.1. Now, the scheduler takes care of the prop-
agator and will schedule it later on (the transition (2) from runnable to running is
subject to the scheduler’s policy and will be not discussed here).

The parameters of a propagator are stored in its state. Hence, reading and writing of
basic constraints is done by the propagator itself. If a propagator constrains a variable
according to its operational semantics, it informs the emulator that the corresponding
suspension lists have to be scanned.

1.2 Getting Started

This section makes the reader familiar with the CPI by implementing a propagator for
the constraint x+ y = z and explains the steps to be taken to get it running.

1.2.1 Prerequisites

The implementation of new propagators via the CPI requires a correctly installed Oz
system. The following points should be obeyed.

Include File. To obtain the functionality provided by the CPI include the file mozart_cpi.hh in the
appropriate C/C++ source files.

Platform-independent compilation and linkage of native functors. Use oztool to compile C/C++
source programs (oztool c++) and to link object files (oztool ld). It has the right
options resp. search paths set depending on your current platform and environment.
See Section Compilation, (Application Programming) for details on oztool.

Naming Conventions. Identifiers starting with OZ_ are provided by the CPI and must not be defined
by the programmer.
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1.2.2 Building a Propagator

This section explains by means of an example the constraint propagator interface of
Oz. We implement the propagator for the constraint x + y = z. For the sake of clarity
we use a rather straightforward algorithm here. The operational semantics will provide
as much pruning/propagation as possible. This is in contrast to the constraint x+y = z
supplied by the finite domain library (see Section Miscellaneous Propagators, (System
Modules) ), which reasons only over bounds of domains.

1.2.2.1 A Propagator’s Class Definition

CPI class OZ_Propagator The emulator requires a uniform way to refer to all in-
stances of propagators. This is realised by providing the class OZ_Propagator, which
is the class all propagators have to be inherited from. Therefore, the emulator can refer
to any propagator by a pointer of type (OZ_Propagator *) The class OZ_Propagator
is in terms of C++ a so-called abstract base class, i.e. no object of such a class can
be created (since for at least one member function intentionally no implementation is
provided, indicated by an appended =0. Instead, it defines the minimal functionality
required of all classes inherited from it. The following code depicts a fragment of the
definition of the class OZ_Propagator defined by the CPI (in the file mozart_cpi.hh).
It shows all member functions which have to be defined in a derived class.

class OZ_Propagator {

public:

OZ_Propagator(void);

virtual OZ_Term getParameters(void) const = 0;

virtual size_t sizeOf(void) = 0;

virtual void gCollect(void) = 0;

virtual void sClone(void) = 0;

virtual OZ_Return propagate(void) = 0;

virtual OZ_PropagatorProfile * getProfile(void) const = 0;

}

There are basically three groups of member functions dealing with reflection, memory
management, and constraint propagation. Member functions concerned with reflection
allow to obtain information about a certain instance of a propagator. For example, this
is used to generate a message in case of a top-level failure.

getProfile() For each propagator class, one instance of class OZ_PropagatorProfile
is allocated. This class is intended to give the Oz Profiler access to some information
about this class, for instance a count of the number of invocations of propagators be-
longing to this class. This function must return a pointer to this instance, but otherwise
the programmer needs not to be concerned about it. Note that for the profile function
to be shared for all instances, it has to be declared static.

getParameters() The arguments of a propagator are returned by getParameters()
as a list represented as an Oz heap data structure. This is denoted by the return type
OZ_Term.
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sizeOf() Memory management of Oz requires to know the size of a propagator. The
member function sizeOf() implements this functionality. Its return type is defined in
the standard header <stddef.h>.

gCollect() and sClone() Further, on garbage collection and space cloning refer-
ences into heap which are held in the state of the propagator (or somehow reachable
by a propagator) have to be updated, since items stored on the heap are occasionally
moved to a new location. The member functions gcollect() and sClone are provided
for that purpose. The definition of these functions is identical for most propagators. For
an example where the difference of both functions matters see Section 1.7.2.

propagate() The most important member function is propagate(). It is responsi-
ble for the actual constraint propagation and is called by the emulator when the prop-
agator’s execution state is switched to running. The returned value of type OZ_Return
indicates the runtime system the outcome of the propagation performed by propagate().

The implementation of the addition propagator starts with the definition of the class
AddProp. The definition of the member function propagate() is explained in Sec-
tion 1.2.2.2.

#ifndef NDEBUG

#include <stdio.h>

#endif

#include "mozart_cpi.hh"

class AddProp : public OZ_Propagator {

friend OZ_C_proc_interface *oz_init_module(void);

private:

static OZ_PropagatorProfile profile;

OZ_Term _x, _y, _z;

public:

AddProp(OZ_Term a, OZ_Term b, OZ_Term c)

: _x(a), _y(b), _z(c) {}

virtual OZ_Return propagate(void);

virtual size_t sizeOf(void) {

return sizeof(AddProp);

}

virtual void gCollect(void) {

OZ_gCollectTerm(_x);

OZ_gCollectTerm(_y);

OZ_gCollectTerm(_z);

}

virtual void sClone(void) {

OZ_sCloneTerm(_x);

OZ_sCloneTerm(_y);

OZ_sCloneTerm(_z);
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}

virtual OZ_Term getParameters(void) const {

return OZ_cons(_x,

OZ_cons(_y,

OZ_cons(_z,

OZ_nil())));

}

virtual OZ_PropagatorProfile *getProfile(void) const {

return &profile;

}

};

OZ_PropagatorProfile AddProp::profile;

The propagator stores in its state, i.e. in its data members, references to the vari-
ables it is imposed on (namely _x, _y and _z of type OZ_Term. The constructor
of the class AddProp, which is invoked by the header function, initialises the data
members with the arguments of the corresponding Oz application. The member func-
tion sizeOf() returns the number of bytes occupied by the addition propagator using
C/C++’s sizeof operator. The CPI provides for the functions OZ_gCollectTerm()

and OZ_sCloneTerm(), which are used for the implemention of the member functions
gcollect() and sClone(), which apply gCollectTerm() resp. sCloneTerm() to
all data members of type OZ_Term. The construction of lists is supported by the inter-
face abstractions OZ_cons() and OZ_nil() (see Section Term access and construction,
(Interfacing to C and C++)). The function getParameters() straightforwardly com-
poses a list containing the references to the arguments hold in the propagator’s state.
The reason for the friend declaration will become clear in Section 1.2.2.3.

1.2.2.2 The Propagation Part of a Propagator

The member function propagate() implements the algorithm which defines the oper-
ational semantics of the propagator, i.e. the amount of constraint propagation achieved
at each invocation.

The algorithm used here rebuilds the domains of the variables always from scratch.
Therefore, auxiliary domains for each variable are introduced which are initially empty.
For all values of the domains of x and y it is checked if there is a consistent value in
the domain of z. If so, the values are added to the corresponding auxiliary domains.
Finally, the domains of the variables are constrained,i.e. intersected, with the corre-
sponding auxiliary domains. Consequently, the core of the program code consists of
two nested loops iterating over all values of the domains of x and y.

#define FailOnEmpty(X) if((X) == 0) goto failure;

OZ_Return AddProp::propagate(void)

{

OZ_FDIntVar x(_x), y(_y), z(_z);
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OZ_FiniteDomain x_aux(fd_empty),

y_aux(fd_empty),

z_aux(fd_empty);

for (int i = x->getMinElem(); i != -1;

i = x->getNextLargerElem(i))

for (int j = y->getMinElem(); j != -1;

j = y->getNextLargerElem(j))

if (z->isIn(i + j)) {

x_aux += i;

y_aux += j;

z_aux += (i + j);

}

FailOnEmpty(*x &= x_aux);

FailOnEmpty(*y &= y_aux);

FailOnEmpty(*z &= z_aux);

return (x.leave() | y.leave() | z.leave())

? OZ_SLEEP : OZ_ENTAILED;

failure:

x.fail();

y.fail();

z.fail();

return OZ_FAILED;

}

CPI class OZ_FDIntVar A propagator needs direct access to the variables it is im-
posed on. The interface class OZ_FDIntVar provides member functions to access vari-
ables in the constraint store. The constructor dereferences a variable in the store and
stores the dereferenced information in the state of the newly created object. The oper-
ators * and -> are overloaded to provide direct access to the finite domain of a variable
in the store or to invoke member functions of the class OZ_FiniteDomain (see below).

CPI class OZ_FiniteDomain The finite domain of a variable is represented by an
instance of the class OZ_FiniteDomain, modifying their value is immediately visible
in the constraint store. Calling the constructor with the value fd_empty creates an
empty finite domain, as used for the auxiliary variables here. The operator += adds a
value to a domain. The operator &= intersects two domains, modifies the domain on
the left hand side and returns the size of the intersected domain. The member function
getMinElem() returns the smallest value of the domain and getNextLargerElem(i)

returns the smallest value of the domain larger than i (both return -1 when they reach
their respective end of the domain). Testing whether a value is contained in a domain
or not can be done by the member function isIn().
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The implementation The implementation of the constraint x + y = z proceeds as
follows. First the variables in the store are retrieved and stored in the local C/C++
variables x, y and z. The corresponding auxiliary domains are held in the variables
x_aux, y_aux and z_aux, which are initialised to empty domains. Two nested for-
loops enumerate all possible pairs (vx,vy) of values of the domains of x and y. Each
loop starts from the smallest value of the domain and proceeds until −1 is returned,
indicating that there is no larger value. If there is a value vz in the domain of z satisfying
the relation vx + vy = vz, these values are added to the appropriate auxiliary domains.
After completing the nested loops, the domains of the variables are constrained by
intersecting them with the auxiliary domains.

FailOnEmpty() The macro FailOnEmpty() branches to the label failure if its ar-
gument results in the value 0. Thereby, constraining the domain of a variable to an
empty domain causes the execution to branch to label failure and eventually to re-
turn OZ_FAILED to the emulator. The return value of the member function leave()

of class OZ_FDIntVar is used to decide whether the propagator returns OZ_SLEEP or
OZ_ENTAILED. The return value OZ_ENTAILED indicates entailment and is returned if
all variable’s domains are singletons. Otherwise, OZ_SLEEP is returned and the propa-
gator is resumed when at least one of its variables is constrained again.

Before leaving propagate(), the member function leave() has to be called. If the
variable’s domain has been constrained by the propagator, it causes the scheduler
to switch all propagators waiting for further constraints on that variable to become
runnable. The return value of leave is 0 if the domain became a singleton, otherwise
1. This information is used to decide whether a propagator is entailed or not. In case
the propagator encounters an empty domain or any other inconsistency, the member
function fail() has to be called to do some cleanups before propagate() is left.

1.2.2.3 Creating a Propagator

The header function Before a propagator can be created and introduced to the
emulator, its variables must be sufficiently constrained, e.g. the variables must be con-
strained to finite domains. In case, only a subset of variables is sufficiently constrained,
the computation will suspend and resume again when more constraints become avail-
able. This is checked by the header function, which is called by the runtime system,
when an appropriately connected Oz abstraction is applied. For our example, this func-
tion is called fd_add.

Determining when to resume a propagator Further, when a propagator is im-
posed on a variable, it has to be determined which changes to the domain resume the
propagator again. The alternatives are to resume a propagator if the variable’s domain
becomes a singleton, the bounds are narrowed or some value is removed from the do-
main.

The macros OZ_C_proc_begin and OZ_C_proc_end are provided to allow the imple-
mentation of C/C++ functions which are compliant with the calling conventions of
Oz’s emulator.

The first argument of the macro OZ_C_proc_begin defines the name of the func-
tion and the second argument the number of arguments of type OZ_Term. The macro
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OZ_args provides access to the actual argument. The name of the function has to obey
certain rules to be compatible with the module Foreign which enables linking object
files to a running Oz runtime system. The definition of the macro OZ_EXPECTED_TYPE

is explained in Section Macros, (The Mozart Constraint Extensions Reference) .

OZ_BI_define(fd_add, 3, 0)

{

OZ_EXPECTED_TYPE(OZ_EM_FD","OZ_EM_FD","OZ_EM_FD);

OZ_Expect pe;

OZ_EXPECT(pe, 0, expectIntVar);

OZ_EXPECT(pe, 1, expectIntVar);

OZ_EXPECT(pe, 2, expectIntVar);

return pe.impose(new AddProp(OZ_in(0),

OZ_in(1),

OZ_in(2)));

}

OZ_BI_end

Using OZ_EXPECT The macro OZ_EXPECT ensures that incompatible constraints on
the propagator’s parameters lead to failure and insufficient constraints cause the ex-
ecution to be suspended until more constraints become known. An object of class
OZ_Expect collects in its state all variables the propagator is to be imposed on. Such
an object is at the first argument position of OZ_EXPECT. The second argument of
OZ_EXPECT determines which argument of fd_add shall be checked. The member
function expectIntVar() of class OZ_Expect expects a variable to be already con-
strained to a finite domain. If a variable is sufficiently constrained, it is stored in the
state of the object pe. The second argument of expectIntVar is used to determine
what kind of domain pruning causes a propagator to be resumed. Its default value is
fd_prop_any, i.e. a propagator is resumed on any pruning of the domain. For further
details see Section 1.4.

Creation of a propagator Finally, the actual propagator is created by calling its
constructor via the application of the new operator. The reference to the newly cre-
ated propagator is passed as argument to impose(), a member function of OZ_Expect,
which executes the propagate() method and introduces the propagator to the emula-
tor.

Connecting Propagators and Oz Code Propagators are connected with Mozart
Oz 3 as native functors according to Section Deployment, (Application Programming) .
To enable that one has to define a function oz_init_module.

OZ_BI_proto(fd_add);

OZ_C_proc_interface *oz_init_module(void)
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{

static OZ_C_proc_interface i_table[] = {

{"add", 3, 0, fd_add},

{0,0,0,0}

};

AddProp::profile = "addition/3";

printf("addition propagator loaded\n");

return i_table;

}

The line AddProp::profile = "addition/3"; assigns explixitly the name "addition/3"
to the propagator. The default name is "<anonymous propagator>".

Before a native functor can be loaded it be compiled according to Section Compilation,
(Application Programming) . Supposing the C/C++ code is stored in the file ex_a.cc,
then the following lines create the object file.

oztool c++ -c ex_a.cc -o ex_a.o

oztool ld -o ex_a.so-linux-i486 ex_a.o

The Oz code below loads the object file ex_a.so-linux-i486 and makes the Oz
abstraction FD_PROP.add available. The procedure FD_PROP.add takes 3 arguments
and imposes the addition propagator implemented in the sections before.

declare FD_PROP

local

FD_PROP_O = {{New Module.manager init}

link(url: ’ex_a.so{native}’ $)}

in

FD_PROP = fd(add: FD_PROP_O.add)

{Browse FD_PROP}

end

After feeding in the above Oz code the addition propagator is available and can be
used. To do so feed the following code in line by line. The results are shown in the Oz
browser (shown in comments appended to lines).

declare X Y Z in

{Browse [X Y Z]} % [X Y Z]

[X Y Z] ::: 0#10 % [X{0#10} Y{0#10} Z{0#10}]

{FD_PROP.add X Y Z} % [X{0#10} Y{0#10} Z{0#10}]

X :: [1 3 5 7 9] % [X{1 3 5 7 9} Y{0#9} Z{1#10}]

Y :: [1 3 5 7 9] % [X{1 3 5 7 9} Y{1 3 5 7 9}
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% Z{2 4 6 8 10}]

Y <: 5 % [X{1 3 5 7 9} Y{1 3}

% Z{2 4 6 8 10}]

Y \=: 3 % [X{1 3 5 7 9} 1 Z{2 4 6 8 10}]

Troubleshooting Debugging a propagator is usually done by gdb [10] in conjunc-
tion with emacs [11]. The Oz Programming Interface provides adequate means to
support debugging based on these two tools. We refer the reader to Section Running
under gdb, (The Oz Programming Interface) for details.

1.3 Replacing a Propagator

There are situations when a propagator should be replaced by another one. The replac-
ing propagator must have the same declarative semantics, but should provide a more
efficient implementation for a particular situation.

Consider the following situation: First a propagator x + y = z was imposed. At a later
point in time the constraint x = y is told to the constraint store. The equality constraint
allows to replace x + y = z by 2x = z. The rules below show how x + y = z can be
replaced by another (equality) constraint, if two variables are set equal.

Rule 1: x+ y = z ∧ x = y → z = 2x

Rule 2: x+ y = z ∧ x = z → y = 0

Rule 3: x+ y = z ∧ y = z → x = 0

Such simplifications can be implemented by replacing a propagator by another one.
The CPI provides for that purpose in OZ_Propagator a group of member functions
replaceBy. This section demonstrates how to realise the above simplifications using
the example of the previous section.

1.3.1 A Twice Propagator

The implementation of the simplification rule x + y = z∧ x = y → 2x = z requires a
propagator for the constraint 2x = z. The following code defines the class TwiceProp.

class TwiceProp : public OZ_Propagator {

private:

static OZ_PropagatorProfile profile;

OZ_Term _x, _z;

public:

TwiceProp(OZ_Term a, OZ_Term b)

: _x(a), _z(b) {}

virtual OZ_Return propagate(void);

virtual size_t sizeOf(void) {
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return sizeof(TwiceProp);

}

virtual void gCollect(void) {

OZ_gCollectTerm(_x);

OZ_gCollectTerm(_z);

}

virtual void sClone(void) {

OZ_sCloneTerm(_x);

OZ_sCloneTerm(_z);

}

virtual OZ_Term getParameters(void) const {

return OZ_cons(_x,

OZ_cons(_z,

OZ_nil()));

}

virtual OZ_PropagatorProfile *getProfile(void) const {

return &profile;

}

};

OZ_PropagatorProfile TwiceProp::profile;

The member function propagate() mainly consists of a for-loop collecting in auxil-
iary variables the values vx and vz satisfying the relation 2vx = vz.

OZ_Return TwiceProp::propagate(void)

{

OZ_FDIntVar x(_x), z(_z);

OZ_FiniteDomain x_aux(fd_empty), z_aux(fd_empty);

for (int i = x->getMinElem(); i != -1;

i = x->getNextLargerElem(i)) {

int i2 = 2 * i;

if (z->isIn(i2)) {

x_aux += i; z_aux += i2;

}

}

FailOnEmpty(*x &= x_aux);

FailOnEmpty(*z &= z_aux);

return (x.leave() | z.leave())

? OZ_SLEEP : OZ_ENTAILED;

failure:

x.fail(); z.fail();

return OZ_FAILED;

}
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1.3.2 Equality Detection and Replacement

Imposing equality on variables is done by unification. A propagator is always resumed
if at least one variable of its parameters is unified with another variable. The class
OZ_Propagator provides for a member function mayBeEqualVars(), which returns
1 in case the propagator is resumed because at least one of its parameters was involved
in a unification. Otherwise it returns 0.

To detect if the addition propagator is resumed because of a unification the following
macro is defined. First, it checks if the propagator’s parameters were involved in some
unification. If that is the case, all possible combinations of equated variables are tested.
The CPI function OZ_isEqualVars() is provided for that purpose. It takes two heap
references and returns 1 if they refer to the same variable. In case equal variables
are detected the execution branches to a return statement, which returns the value
produced by executing the function passed as argument of the macro.

#define ReplaceOnUnify(EQ01, EQ02, EQ12) \

if (mayBeEqualVars()) { \

if (OZ_isEqualVars(_x, _y)) { \

return (EQ01); \

} \

if (OZ_isEqualVars(_x, _z)) { \

return (EQ02); \

} \

if (OZ_isEqualVars(_y, _z)) { \

return (EQ12); \

} \

}

The macro is inserted as first statement in the code of the addition propagator. The
member functions replaceBy() and replaceByInt() provided by OZ_Propagator

replace the addition propagator according to their arguments by another propagator or
a basic constraint.

OZ_Return AddProp::propagate(void)

{

ReplaceOnUnify(replaceBy(new TwiceProp(_x, _z)),

replaceByInt(_y, 0),

replaceByInt(_x, 0));

The first argument of the macro causes the addition propagator to be replaced by the
twice propagator, which implements reduction rule 1 (page 11). The member function
replaceBy() expects a pointer to a propagator which is generated by applying the
new operator to the constructor of the class TwiceProp. The second and third macro
argument realize the simplification rules 2 (page 11) and 3 (page 11) by imposing the
constraint y = 0 resp. x = 0.
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1.3.3 Benefits of Replacing Propagators

In most of the cases when propagators are replaced the execution becomes faster with-
out obtaining a stronger propagation simply by the fact that redundant computation is
avoided. The example of this section provides for even better propagation by imposing
a stronger constraint. This can be observed when running the following Oz code. Of
course, the updated module has to be loaded before.

declare X Y Z in

{Browse [X Y Z]} % [X Y Z]

X :: [1 3 5 7 9] % [X{1 3 5 7 9}

Y :: [1 3 5 7 9] % Y{1 3 5 7 9}

Z :: 0#10 % Z{0#10}]

{FD_PROP.add X Y Z} % [X{1 3 5 7 9} Y{1 3 5 7 9}

% Z{2 4 6 8 10}]

X = Y % [Y{1 3 5} Y{1 3 5} Z{2 6 10}]

Note that the constraint x = y causes x + y = z to be replaced by 2x = z, so that the
domain of x and y is further constrained to {1,3,5}, which is not the case for the
propagator implemented in Section 1.2.

1.4 Imposing Propagators

The CPI provides a generic way to implement different schemes for imposing propa-
gators. This section discusses the following issues:

• How to implement a nestable propagator.

It is explained how to make the addition propagator of Section 1.2 nestable.

• How to extend the class OZ_Expect to cope with structured parameters.

The answers to these questions will be used in later sections, for example, when we
come to implement propagators imposed on not only on single variables.

1.4.1 Basic Concepts

A propagator is imposed by a C/C++ function, a so-called header function, that is
connected to an Oz abstraction. The application of such an abstraction results in calling
the corresponding header function and finally in imposing the propagator.
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CPI class OZ_Expect The class OZ_Expect provides the functionality to fulfill the
tasks mentioned above. It provides member functions to control the imposition of
a propagator and to determine the constraints which have to be present in the store
before a propagator is imposed.

The class OZ_Expect provides a group of member functions to examine the con-
straints of a propagator’s parameters. The names of these member functions begin
with expect. The basic idea is to define for each parameter a constraint φ (expected to
be present in the store) in terms of expect member functions and to decide whether φ
is entailed resp. disentailed by the store (by evaluating the return value of the expect

function expressing the constraint φ). If entailment of φ for a parameter cannot be
decided yet then the constraint in the store for this parameter is insufficient.

The type of the return value allows to handle even structured parameters. The definition
of the return type is as follows.

struct OZ_expect_t { int size, accepted; }

The meaning of the fields size and accepted is explained by the following examples.

Example 1. Assume a parameter is expected to be an integer, then the field size of the returned
value is 1. In case this parameter is currently a variable then the field accepted is 0.
An inconsistent constraint, like for instance a literal, would be indicated by −1. The
value 1 in the field accepted for our example means that the examined parameter is
an integer.

Example 2. Let us suppose we expect a parameter to be a vector with n fields of integers, whereby
a vector is either a closed record, a tuple or a list. First the parameter is expected to
be a vector (which is one constraint expected to be found in the store) and then all its
n elements are to be integers, which determines the field size of the return value to
n+1. If the field accepted is n+1 too, all expected constraints are present. Otherwise
appropriate action has to be taken, as for example suspending the execution of the
header function. The implementation to check for a vector of finite domain variable is
discussed in Section 1.4.1.

An instance of the class OZ_Expect maintains two sets, namely A and B. In the course
of checking parameters expect member functions collect variables in either of these
two sets. Variables which are constrained according to the corresponding expect func-
tion are added to set A. All the other variables are added to set B. The expect function
for finite domain variables has an extra argument to determine the event which re-
sumes the propagator, as for example only narrowing the bounds of the domain. This
information is maintained in the sets too.

Leaving a header function by calling the member function suspend (see Section Mem-
ber Functions for Control Purposes, (The Mozart Constraint Extensions Reference) )
causes the header function to be resumed if variables collected in set B are further
constrained.

Calling OZ_Expect::impose() introduces the propagator which is passed as argument
to the runtime system and makes the propagator resume if at least one variable of both
sets is constrained in a way defined by the according expect function. Additionally,
variables in set B are constrained to finite domain variables. This will be used for the
implementation of nestable propagators.
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1.4.2 Imposing Nestable Propagators

In Section 1.2.2.3 not too much attention was paid to propagator imposition. Now
more details will be given by the example of a nestable propagator. Let us consider the
following Oz code.

{FD.times {FD.plus U V} {FD.plus X Y} Z}

The propagator FD.plus is required to be nestable, since one of its parameters is syn-
tactically not accessible and cannot be constrained to a finite domain variable by ex-
plicit Oz code. The expansion of the above code makes it clear.

local A1 A2 in

{FD.plus U V A1}

{FD.plus X Y A2}

{FD.times A1 A2 Z}

end

Due to lexical scoping the implicit variables A1 and A2 are inaccessible to outside code.
Therefore the two FD.plus propagators must constrain A1 and A2 to finite domain
variables before they are imposed. To simplify the implementation of header functions
for propagators, the CPI provides three macros.

OZ_EXPECTED_TYPE(S)

defines a C/C++ string S typically consisting of a number of substrings separated by
commas which describe the constraint expected at the corresponding argument po-
sition. The first substring corresponds to first argument with index 0, the second
one to the second argument with index 1 and so on. The substrings are used to
generate meaningful messages in case an inconsistent constraint is detected. There
are predefined macros (starting with OZ_EM_ defining strings for the possible con-
straints to be expected. For details see Section Macros, (The Mozart Constraint Ex-
tensions Reference) . The macro OZ_EXPECTED_TYPE is required by OZ_EXPECT and
OZ_EXPECT_SUSPEND.

OZ_EXPECT(O, P, F)

checks if the argument at position P (P is an C integer with a value starting from 0) is
constrained according to semantics of F (which is an expect member function of class
O). The type of F has to be OZ_Expect_t O::F(OZ_Term). The value of O has to be
an instance of the class OZ_Expect or a class inheriting from it. In case an inconsistent
or insufficient constraint is detected, the appropriate action is taken 1 and the C/C++
function is left by a return statement. Otherwise, the execution proceeds to the next
statement in the header function.

OZ_EXPECT_SUSPEND(O, P, F, SC)

is similar to OZ_EXPECT except for the case that the constraint defined by F is currently
not yet entailed. Then it increments the value of SC which is expect to be of type int

and proceeds to the next statement in the header function.
1For example, in case of a detected inconsistency an error message is emitted and the header function

returns OZ_FAILED to the runtime system.
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In Section 1.2.2.3 the macro OZ_EXPECT was already used for the non-nestable addition
propagator. The macro OZ_EXPECT_SUSPEND is provided to implement nestable prop-
agators. Insufficient constraints for a parameter cause it to increment its argument SC.
Allowing exactly one argument to be insufficiently constrained implements a nestable
propagator.

Therefore the header function has to suspend in case more than one parameter is in-
sufficiently constrained. The class OZ_Expect therefore provides the member function
suspend() which expects a value of type OZ_Thread. Details on how to create a
thread for a C/C++ function can be found in Section Threads, (Interfacing to C and
C++) .

OZ_BI_define(fd_add_nestable, 3, 0)

{

OZ_EXPECTED_TYPE(OZ_EM_FD","OZ_EM_FD","OZ_EM_FD);

OZ_Expect pe;

int susp_count = 0;

OZ_EXPECT_SUSPEND(pe,0,expectIntVar,susp_count);

OZ_EXPECT_SUSPEND(pe,1,expectIntVar,susp_count);

OZ_EXPECT_SUSPEND(pe,2,expectIntVar,susp_count);

if (susp_count > 1)

return pe.suspend();

return pe.impose(new AddProp(OZ_in(0),

OZ_in(1),

OZ_in(2)));

}

OZ_BI_end

The variable susp_count is passed to the OZ_EXPECT_SUSPEND macros and if it is
greater than 1 the function fd_add_nestable() is suspended. Otherwise the propa-
gator is imposed.

1.4.3 Customizing OZ_Expect

The propagators implemented so far are imposed on single finite domain variables.
The propagators will be resumed whenever an arbitrary element of a domain of its
parameters is removed. But more elaborate propagators may have more demanding
requirements concerning their resumption resp. parameter structure. Therefore the fol-
lowing frequently occurring requirements will be discussed in this section.

• Often it is not desirable to resume a propagator as soon as any arbitrary element
is removed from the domain of one of its parameters. For instance, one might
want to suspend resumption until a domain becomes a singleton domain.
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• One wants to pass structured parameters to a propagator. In Section 1.5 a prop-
agator will be implemented that expects a vector of finite domain variables.

The expect member functions are used to define new expect functions which specify
the constraints for each parameter of a propagator which have to be entailed by the store
to enable the imposition of the propagator. To be conform with the macros OZ_EXPECT
and OZ_EXPECT_SUSPEND the type of the return value of the resulting expect function
has to be OZ_expect_t (O::*)(OZ_Term), where O is either OZ_Expect or a class
inheriting from it.

The new member function expectIntVarSingl() is implemented as member func-
tion of class ExtendedExpect inheriting from OZ_Expect. The definition of the mem-
ber function expectIntVarSingl() which causes a propagator to be resumed when a
variable is constrained to an integer, uses

OZ_Expect::expectIntVar(OZ_Term t,

OZ_FDPropState ps);

provided by the CPI . The second argument ps determines the event for resuming the
propagator. For details on the values determining the resumption event see Section
Types, (The Mozart Constraint Extensions Reference) .

The following code defines the class ExtendedExpect with the member function
expectIntVarSingl().

class ExtendedExpect : public OZ_Expect {

public:

OZ_expect_t expectIntVarSingl(OZ_Term t) {

return expectIntVar(t, fd_prop_singl);

}

The definition of an expect function for vectors is similar. The CPI provides for the
function

typedef OZ_expect_t (O::*OZ_ExpectMeth)(OZ_Term);

OZ_expect_t OZ_Expect::expectVector(OZ_Term v,

OZ_ExpectMeth f);

which can be used to define a new instance of expectVector with the required signa-
ture OZ_expect_t (O::*)(OZ_Term). The semantics of expectVector defines that
v is a vector and all elements of the vector are constrained according to f, which is an
expect function too.

Note that for a member function passed to expectVector, defined in a class inherit-
ing from OZ_Expect, the cast OZ_ExpectMeth is necessary, since the type system of
C/C++ cannot figure out by itself that the type of the function passed is admissible.

The following code is part of the definition of class ExtendedExpect.
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private:

OZ_expect_t _expectIntVarAny(OZ_Term t) {

return expectIntVar(t, fd_prop_any);

}

public:

OZ_expect_t expectVectorIntVarAny(OZ_Term t) {

return expectVector(t,

(OZ_ExpectMeth) &_expectIntVarAny);

}

OZ_expect_t expectVectorIntVarSingl(OZ_Term t) {

return expectVector(t,

(OZ_ExpectMeth) &expectIntVarSingl);

}

The implementation of the propagators discussed in the next sections assumes the ex-
istence of the class ExtendedExpect.

1.5 Using Vectors in Propagators

This section explains how propagators with vectors as parameters can be implemented
by the CPI .

1.5.1 The element Constraint

The previous section explained techniques of how to handle propagator parameters
which are vectors. This section implements the constraint element(n, [d1, . . . ,dm],v),
whose declarative semantics is defined by dn = v.

All parameters of the element propagator are allowed to be finite domain variables resp.
a vector of finite domain variables. We have the following propagation rules, which
determine the operational semantics of the propagator for the constraint element.

Rule 1: n := dom(n)∩{i | ∃ j ∈ dom(v) : j ∈ dom(di)}

Rule 2: v := dom(v)∩
(

⋃

i∈(dom(n)∩{1,...,m}) dom(di)
)

Rule 3: if dom(n) = {o} then do := dom(v)

Note that dom(x) denotes the current domain of x and x := d denotes the update of
dom(x) with d.

The first rule states that the domain of n can only contain values i such that dom(d i) and
dom(v) share at least one value. The propagation rule (Rule 2) states that the domain
of v cannot contain any value which does not occur in at least one d i indexed by the
values i of the domain of n, i.e. i ∈ dom(n). The third rule says that as soon as n is a
singleton containing o, the oth element of d is equal to v. The implementation of these
rules is given in Section 1.5.5.
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1.5.2 The Class Definition of ElementProp

The state of an instance of the class ElementProp contains a pointer to an array of
OZ_Terms, namely _d. This is necessary, since it is not known beforehand how many
elements are contained in the vector d. The size of the vector is stored in _d_size.
Using a dynamic array in the state has some significant implications to the implemen-
tation of the member functions. The first function concerned is the constructor which
has to allocate sufficient heap memory for the vector. The CPI provides the function
OZ_vectorSize(), which computes the size of a vector passed as OZ_Term. This size
is used to allocate an appropriately sized chunk of memory using the CPI function
OZ_hallocOzTerms(). Finally, the vector as Oz data structure has to be converted to a
C/C++ array. For convenience, the CPI provides the function OZ_getOzTermVector()

which does this conversion. The following code gives the class definition described so
far.

class ElementProp : public OZ_Propagator {

private:

static OZ_PropagatorProfile profile;

OZ_Term _n, _v, * _d;

int _d_size;

public:

ElementProp(OZ_Term n, OZ_Term d, OZ_Term v)

: _n(n), _v(v), _d_size (OZ_vectorSize(d))

{

_d = OZ_hallocOzTerms(_d_size);

OZ_getOzTermVector(d, _d);

}

virtual OZ_Return propagate(void);

virtual size_t sizeOf(void) {

return sizeof(ElementProp);

}

virtual OZ_PropagatorProfile *getProfile(void) const {

return &profile;

}

virtual OZ_Term getParameters(void) const;

virtual void gCollect(void);

virtual void sClone(void);

};

OZ_PropagatorProfile ElementProp::profile;

The function getParameters() returns the arguments of the propagator in a list.
Thereby, the vector d is represented in a sublist. The local C/C++ variable list is
used to build up the list from the end of the vector. Therefore it is initialised as empty
list and extended element-wise.

OZ_Term ElementProp::getParameters(void) const {
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OZ_Term list = OZ_nil();

for (int i = _d_size; i--; )

list = OZ_cons(_d[i], list);

return OZ_cons(_n,

OZ_cons(list,

OZ_cons(_v, OZ_nil())));

}

The member functions gCollect() and sClone() update the propagator’s references
to the heap after the propagator has been copied by garbage collection or space cloning.
Updating the data members _n and _v is done by applying OZ_gCollectTerm() resp.
OZ_sCloneTerm to them. Updating the array _d requires to duplicate the array and then
to update all elements. This funtionality is provided by OZ_gCollectAllocBlock()

(OZ_sCloneAllocBlock()) for garbage collection (space cloning). Here comes the
code of that member function.

void ElementProp::gCollect(void) {

OZ_gCollectTerm(_n);

OZ_gCollectTerm(_v);

_d = OZ_gCollectAllocBlock(_d_size, _d);

}

void ElementProp::sClone(void) {

OZ_sCloneTerm(_n);

OZ_sCloneTerm(_v);

_d = OZ_sCloneAllocBlock(_d_size, _d);

}

1.5.3 The Header Function

The implementation of the C/C++ function to impose the element propagator is straight-
forward with the techniques presented in Section 1.4. Note that this C/C++ function
treats empty vectors separately, since an empty list (resp. literal) is a valid vector, but
the element constraint is not defined on empty vectors. Therefore, the header function
is left via the member function fail() in case a vector of length 0 is detected.

OZ_BI_define(fd_element, 3, 0)

{

OZ_EXPECTED_TYPE(OZ_EM_FD

","OZ_EM_VECT OZ_EM_FD

","OZ_EM_FD);

ExtendedExpect pe;

OZ_EXPECT(pe, 0, expectIntVar);
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OZ_EXPECT(pe, 1, expectVectorIntVarAny);

OZ_EXPECT(pe, 2, expectIntVar);

if (OZ_vectorSize(OZ_in(1)) == 0)

return pe.fail();

return pe.impose(new ElementProp(OZ_in(0),

OZ_in(1),

OZ_in(2)));

}

OZ_BI_end

The implementation uses the class ExtendedExpect (as explained in Section 1.4.3
since the imposition of this propagator requires to check if the second argument is a
vector of finite domain variables and this functionality is not directly provided by the
CPI class OZ_Expect.

1.5.4 Iterators Make Life Easier

The propagator for the element constraint operates on a vector, which is represented
by an array in the state of the propagator. The member function propagate() has to
apply certain functions, like leave() and fail(), to all elements of the array at once
and not to an individual elements. Therefore, it makes sense to define an iterator for
such data structures.

The following code presents an iterator class for an OZ_FDIntVar array, which will be
used by the member function propagate() of the element propagator.

class Iterator_OZ_FDIntVar {

private:

int _l_size;

OZ_FDIntVar * _l;

public:

Iterator_OZ_FDIntVar(int s, OZ_FDIntVar * l)

: _l_size(s), _l(l) { }

OZ_Boolean leave(void) {

OZ_Boolean vars_left = OZ_FALSE;

for (int i = _l_size; i--; )

vars_left |= _l[i].leave();

return vars_left;

}

void fail(void) {

for (int i = _l_size; i--; _l[i].fail());

}

};

The iterator class provides the member functions leave() and fail() which call in
turn the corresponding member functions of all elements of the array l. The function
leave() returns 1 if there is at least one non-singleton domain left.
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1.5.5 Implementing the Propagation Rules

The propagate() member function implements the propagation rules presented in
Section 1.5.1 for the constraint element(n, [d1, . . . ,dm],v).

The function propagate() defines local variables of type OZ_FDIntVar. Then it ini-
tializes the iterator object D. That avoids to apply a member function to every individual
element of d by hand if all elements have to be considered. The following for-loop
initializes the elements of d.

The code coming after the implementation of the propagation rules (see below) checks
if there is a non-singleton domain left, and if so it returns OZ_SLEEP. Otherwise the
propagator is entailed and consequently returns OZ_ENTAILED. The label failure is
provided because of the use of the macro FailOnEmpty (see Section 1.2.2.2) and cor-
responding code applies fail to all variables of type OZ_FDIntVar.

OZ_Return ElementProp::propagate(void)

{

OZ_FDIntVar n(_n), v(_v), d[_d_size];

Iterator_OZ_FDIntVar D(_d_size, d);

for (int i = _d_size; i--; )

d[i].read(_d[i]);

{ /* propagation rule for n */

OZ_FiniteDomain aux_n(fd_empty);

for (int i = _d_size; i --; )

if ((*(d[i]) & *v) != fd_empty)

aux_n += (i + 1);

FailOnEmpty(*n &= aux_n);

}

{ /* propagation rule for v */

OZ_FiniteDomain aux_v(fd_empty);

for (int i = n->getMinElem();

i != -1;

i = n->getNextLargerElem(i))

aux_v = aux_v | *(d[i - 1]);

FailOnEmpty(*v &= aux_v);

}

{ /* propagation rule for d[n] */

if (n->getSize() == 1) {

int o = n->getSingleElem();

D.leave(); n.leave(); v.leave();

return replaceBy(_v, _d[o - 1]);

}

}
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return (D.leave() | n.leave() | v.leave())

? OZ_SLEEP : OZ_ENTAILED;

failure:

D.fail(); n.fail(); v.fail();

return OZ_FAILED;

}

The propagation rules are implemented in the same order as they are presented in
Section 1.5.1. That ensures that the values for i in rule 2 (page 19) are always in the
index range of the vector d, since rule 1 (page 19) makes sure that only valid indices
are contained in the domain of n. Note that the indices of vectors in Oz range over
1 . . .n and the corresponding indices of C/C++ arrays over 0 . . .n−1.

Implementation of propagation rules The implementation of the propagation
rule 1 (page 19) starts with an initially empty auxiliary domain aux_n. It collects all
integers i in the auxiliary domain, where the intersection of d i and v is not empty. That
is equivalent to finding at least one j being contained in d i and v. The domain of n, i.e.
n, is constrained by aux_n.

The second rule 2 (page 19) states that the domain of v cannot contain more values
than occurring in all yet possible elements of the vector d. The implementation uses
again an initially empty auxiliary domain aux_v and collects in a loop all elements of
di in aux_v by iterating over all i being contained in n. The implementation of this rule
closes with constraining v by aux_v.

The last rule, rule 3 (page 19), is only applied if n is determined, i.e. n->getSize()
returns 1. Then it retrieves the value o, applies leave() to all variables of type
OZ_FDIntVar and replaces the element propagator by the equality v = do using the
member function replaceBy() of class OZ_Propagator (see Section 1.3).

1.6 Connecting Finite Domain and Finite Set Constraints

The propagator in this section involves apart from finite domain constraints also finite
set constraints. Its semantics is straightforward: it connects a domain variable D and a
set variable S by projecting the changes of the constraints in both directions. Hereby,
the finite domain variable designates an integer i (as usual) and the set variable desig-
nates a singleton set {e} where i = e.

Propagation Rules There are three propagation rules:

1. #S = 1

2. D ⊆ S

3. S ⊆ D

The last two rules propagate the changes of the upper bound of the set constraint to the
domain constraint and the other way around.
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1.6.1 The Class Definition

The class definition does not have any particularities. It follows the scheme known
from previous sections.

class ConnectProp : public OZ_Propagator {

private:

static OZ_PropagatorProfile profile;

protected:

OZ_Term _fs;

OZ_Term _fd;

public:

ConnectProp(OZ_Term fsvar, OZ_Term fdvar)

: _fs(fsvar), _fd(fdvar) {}

virtual void gCollect(void) {

OZ_gCollectTerm(_fd);

OZ_gCollectTerm(_fs);

}

virtual void sClone(void) {

OZ_sCloneTerm(_fd);

OZ_sCloneTerm(_fs);

}

virtual size_t sizeOf(void) {

return sizeof(ConnectProp);

}

virtual OZ_Term getParameters(void) const {

return OZ_cons(_fs, (OZ_cons(_fd, OZ_nil())));

}

virtual OZ_PropagatorProfile *getProfile(void) const {

return &profile;

}

virtual OZ_Return propagate();

};

Note that set variables are handled the same way as domain variables.

1.6.2 The Propagation Function

The implementation of the propagation function starts with retrieving the constrained
variables from the constraint store using the constructors of the classes OZ_FDIntVar
and OZ_FSetVar. The class OZ_FSetVar provides for the same member functions as
OZ_FDIntVar such that handling set variables does not differ from handling domain
variables.
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Propagation The propagation starts with the first rule. it uses the member func-
tion OZ_FSetConstraint::putcard(int, int) to impose the cardinality constraint
upon S. The second rule implemented by removing all elements from D that are defi-
nitely not in S (see Section Reflection Member Functions, (The Mozart Constraint Ex-
tensions Reference) for details on OZ_FSetConstraint::getNotInSet()). The last
propagation rule uses the operator OZ_FSetConstraint::operator <= for S ⊆ D.
The constructor OZ_FSetConstraint is used to convert the OZ_Finite Domain ap-
propriately. Note that imposing constraints on D resp. S are guarded by FailOnEmpty

resp. FailOnInvalid to catch failures.

OZ_Return ConnectProp::propagate() {

printf("ConnectProp::propagate\n");

OZ_FDIntVar fd(_fd);

OZ_FSetVar fs(_fs);

// 1st propagation rule

fs->putCard(1, 1);

// 2nd propagation rule

FailOnEmpty(*fd -= fs->getNotInSet());

// 3rd propagation rule

FailOnInvalid(*fs <= OZ_FSetConstraint(*fd));

return (fd.leave() | fs.leave()) ? OZ_SLEEP : OZ_ENTAILED;

failure:

fd.fail(); fs.fail();

return OZ_FAILED;

}

The macro FailOnInvalid is define as

#define FailOnInvalid(X) if(!(X)) goto failure;

since finite set operator return OZ_FALSE in case an inconsistency occured.

The propagator closes with calling leave() for both variables and returning OZ_SLEEP

resp. OZ_ENTAILED depending on whether not all variables denote values or they do.

1.6.3 The Header Function and Connecting to the Native Functor Interface

The header function uses OZ_Expect::expectFSetVar to check for a set variable.

OZ_BI_define(connect, 2, 0)

{

OZ_EXPECTED_TYPE(OZ_EM_FSET","OZ_EM_FD);
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OZ_Expect pe;

OZ_EXPECT(pe, 0, expectFSetVar);

OZ_EXPECT(pe, 1, expectIntVar);

return pe.impose(new ConnectProp(OZ_in(0), OZ_in(1)));

}

OZ_BI_end

OZ_PropagatorProfile ConnectProp::profile;

The predefined macro OZ_EM_FSET is used to produce an appropriate error message in
case an type exception has to be risen.

The C part of the native functor interface is given below.

OZ_C_proc_interface *oz_init_module(void)

{

static OZ_C_proc_interface i_table[] = {

{"connect", 2, 0, connect},

{0, 0, 0, 0}

};

return i_table;

}

1.6.4 Testing the Propagator

To make the propagator available on Oz side feed the following code:

declare

Connect = {{New Module.manager init}

link(url: ’sync.so{native}’ $)}.connect

{Wait Connect}

{Show Connect}

The variable Connect refers to the propagator. By feeding the code below line by
line one can observe (e.g. using the Browser “The Oz Browser”), how the propagator
works.

declare S = {FS.var.decl}

I = {FD.decl}

% S = I =

{Connect S I} % {{}..{0#134217726}}#1 {0#134217726}

{FS.exclude 2 S} % {{}..{0#1 3#134217726}}#1 {0#1 3#34217726}

I :: 1#100 % {{}..{1 3#100}}#1 {1 3#100}

{FS.exclude 1 S} % {{}..{3#100}}#1 {3#100}

I <: 4 % {3}#1 3

The comments at the end of each line indicate the constraints after feeding that line.
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1.7 Advanced Topics

This section discusses issues of practical relevance not covered in this manual so far.
It explains implementation techniques rather than giving ready-to-use code.

1.7.1 Detecting Equal Variables in a Vector

A feature of the finite domain constraint system of Oz is that it is able to exploit equal-
ity between variables. For example, one can simplify linear equations in case equal
variables are detected. Let us regard the equation 2u+ v+7w−2x + y = 0. Imposing
the equality constraints u = x and v = y allows to simplify the equation to 7w+2y = 0.
This simplification offers the advantage that the propagator becomes computationally
less complex resulting in a better execution performance.

The CPI provides the function

OZ_findEqualVars int * OZ_findEqualVars(int sz, OZ_Term * v)

to detect equal variables in an OZ_Term array. It expects v to be an array with sz

elements. Assume the application

int * pa = OZ_findEqualVars(arr_sz, x);

where pa is called the position array. The array x is scanned with ascending index
starting from 0 to determine the values of pa. If x[i] denotes a variable and this
variable occurs the first time, the value of pa[i] is i. In case the variable occurs not
the first time, pa[i] contains the index of the first occurrence. If x[i] denotes an
integer, pa[i] contains −1.

As an example, consider the constraint 2a+3b−4c−5d +4e+8 = 0 where at runtime
the constraint c = e∧d = 2 is imposed. The result of the equal variable detection is as
follows.

i 0 1 2 3 4
x[i] a b c d e
pa[i] 0 1 2 -1 2

The state of the propagator can now be updated to represent the equivalent constraint
2a + 3b− 2 = 0. Thus, this simplification avoids tedious handling of equal variables
in the propagation algorithm and it improves memory consumption and runtime be-
haviour.

mayBeEqualVars To avoid unnecessary calls of OZ_findEqualVars(), this func-
tion is intended to be used in conjunction with the member function mayBeEqualVars()
of class OZ_Propagator (see also Section Provided Member Functions, (The Mozart
Constraint Extensions Reference) ). In case an equality constraint has been imposed
on at least one variable occurring in the propagator’s parameters, mayBeEqualVars()
returns 1.

Note that the function OZ_findEqualVars() returns a pointer to a static array, i.e.
another application of this function will override the previous values.
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1.7.2 Avoiding Redundant Copying

In Section 1.5.2 we learned that data structures referenced by the state of a propagator
have to be copied whenever the Oz runtime system calls either the member function
gCollect() or sClone(). But constant data structures, i.e. data structures which do
not change during the propagator’s lifetime, need only to be duplicated in case of a
garbage collection. Otherwise it is sufficient to have a reference to such a constant
data structure. Thus it is useful to use a reference counting technique to keep track
of the number of references to the constant data structure, so that the destructor of the
propagator can dispose the data structure when there is no reference left.

That is one reason why there are distinct member functions for garbage collection and
space cloning. Garbage collection requires a fresh copy of constant data structures
while space cloning requires only a reference and a reference counting technique is
applicable.

The code presented in this section defines the class ConstDataHdl which can be
used to avoid redundant copying of constant data structures by approptiate actions in
gCollect() and sClone(). The class ConstDataHdl implements a reference count-
ing scheme and holds in its state, apart from the actual constant data structure, the
reference counter _refCount and the forward reference _newLoc. In our example the
constant data structure is the string "Constant data".

The constructor of ConstDataHdl creates the constant data structure and initialises the
reference counting mechanism. The operator new is redefined to allocate instances of
ConstDataHdl on the heap. The operator delete decrements the reference counter
and deallocates the instance of ConstDataHdl from the heap if there is no reference
left. The member function getRef() is to be used if a new reference to an instance
of ConstDataHdl is needed (sClone()). It increments _refCount and returns the
self-reference this. The member function copy() is to be used if the constant data
structure has to be duplicated which is the case in gCollect().

class ConstDataHdl {

private:

char _constData[100];

int _refCount;

ConstDataHdl * _newLoc;

public:

ConstDataHdl(char * str)

: _refCount(1), _newLoc(NULL) {

strcpy(_constData, str);

}

static void * operator new (size_t sz) {

return OZ_hallocChars(sz);

}

static void operator delete (void * p) {

if (0 == --((ConstDataHdl *) p)->_refCount)

OZ_hfreeChars((char *) p,sizeof(ConstDataHdl));

}

ConstDataHdl * getRef(void) {
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_refCount += 1;

return this;

}

ConstDataHdl * copy (void) {

if (_newLoc)

_newLoc->getRef();

else

_newLoc = new ConstDataHdl(_constData);

return _newLoc;

}

};

At its first invocation the member function copy() duplicates the instance it is called
from, sets the forward reference newLoc to the location of the duplicate, and returns
the reference to the duplicate. All subsequent invocations only increment the reference
counter of the duplicate and return a reference to the duplicate.

To use the presented reference counting scheme in a propagator add to ...

... the class definition of the propagator:

ConstDataHdl * _constData;

... the constructor definition of the propagator:

_constData = new ConstDataHdl("Constant data");

... the destructor definition of the propagator:

delete _constData;

... the definition of the member function gCollect():

_constData = _constData->copy();

... the definition of the member function sClone()():

_constData = _constData->getRef();

The presented class definition of ConstDataHdl can be adopted by redefining the em-
bedded data structure ConstDataHdl::_constData appropriately.

1.7.3 Reified Constraints

This section sketches the implementation of reified constraints (see the section on rei-
fied constraints in Chapter Reified Constraints, (Finite Domain Constraint Program-
ming in Oz. A Tutorial.) ) and goes into more details concerning the particularities of
the class OZ_FDIntVar.
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The idea of reification is as follows: A 0/1-variable R is associated with a constraint
C. The variable R is called control variable. As long as the domain of R is not con-
strained to a singleton domain, the constraint C checks if the constraint store entails or
disentails C. If so, the variable R is constrained to 1 or 0, respectively. Otherwise, if
R is constrained to 0 or 1 then the constraint C or ¬C, respectively, is imposed to the
store.

The implementation of a reified constraint is explained for (x ≤ y) ↔ r, which will
be implemented by the class ReifiedLessEqProp. We assume that the constraints
x≤ y and x > y are implemented by the classes LessEqProp resp. GreaterProp. This
section focuses on implementing ReifiedLessEqProp::propagate().

There are basically two cases to be regarded. The first case is that the domain of the
control variable is an integer. Then (x≤ y)↔ r has to be replaced either by x≤ y or by
x > y. The technique to replace a propagator by another one is explained in Section 1.3.

Encapsulated Constraint Propagation If the control variable is still a 0/1 vari-
able, the reified propagator checks if the constraint x ≤ y is entailed resp. disentailed
by the store. For this, the propagator has to perform a constraint propagation such that
the propagation results are only locally visible inside the propagator and not written to
the store. This is called encapsulated constraint propagation. Additionally, the reified
propagator checks if the constraints produced by encapsulated propagation, so-called
encapsulated constraints, are subsumed by the constraint store. If so the control vari-
able is constrained to 1. If the encapsulated constraints are inconsistent, the control
variable is constrained to 0. Otherwise the control variable is left untouched.

The member function readEncap Instances of class OZ_FDIntVar are usually
initialised by the member function read() or the constructor OZ_FDIntVar(OZ_Term)
with the intention to make amplified constraints visible to the store. To obtain an in-
stance of OZ_FDIntVar() providing encapsulated constraint propagation, the function
readEncap() has to be used instead. Such an instance is used in the same way as in
the non-encapsulated case.

The code below implements member function propagate() of class ReifiedLessEq.
It is implemented in such a way that it utilises encapsulated propagation 2.

OZ_Return ReifiedLessEqProp::propagate()

{

OZ_FDIntVar r(_r);

if(*r == fd_singl) {

r.leave();

return replaceBy((r->getSingleElem() == 1)

? new LessEqProp(_x, _y)

: new GreaterProp(_x, _y));

}

OZ_FDIntVar x, y;

2Of course, an alternative would have been to reason over the bounds of the domains.
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x.readEncap(_x); y.readEncap(_y);

int r_val = 0;

// entailed by store?

if (x->getMaxElem() <= y->getMinElem()) {

r_val = 1;

goto quit;

}

if (0 == (*x <= y->getMaxElem())) goto quit;

if (0 == (*y >= x->getMinElem())) goto quit;

r.leave(); x.leave(); y.leave();

return OZ_SLEEP;

quit:

if(0 == (*r &= r_val)) {

r.fail(); x.fail(); y.fail();

return OZ_FAILED;

}

r.leave(); x.leave(); y.leave();

return OZ_ENTAILED;

}

The implementation checks first whether the control variable r denotes a singleton. If
so, the reified propagator is replaced by an appropriate propagator depending on the
value of r.

Otherwise the code proceeds with defining the variables x and y as instances of class
OZ_FDIntVar. Initialisation of x and y with readEncap() ensures encapsulated con-
straint propagation. Next it is checked if x≤ y is entailed by the store, which is the case
if x ≤ y is true 3. If so, r_val is set to 1 and the code branches to label quit. Then the
propagation rules are implemented. They are x≤ y and y≥ x. In case an inconsistency
is detected, the code branches to label quit and the value of r_val is left at 0. Finally,
the function propagate() returns OZ_SLEEP to the runtime system.

The code at label quit constrains r to the value of r_val and in case of an inconsis-
tency it returns OZ_FAILED. Otherwise the propagator is left by returning OZ_ENTAILED.

3Note that x (x) denotes the smallest (largest) integer of the current domain of x
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Building Constraint Systems from
Scratch

2.1 The Generic Part of the CPI

2.1.1 The Model of a Generic Constraint Solver

This section describes how to implement constraint systems from scratch. First we will
explain the underlying concepts in an informal way and try to draw a big picture of the
implementation.

Constraint propagation takes place in a computation space which consists of the con-
straint store and propagators associated with the constraint store. The constraint store
holds variables that either refer to values (i.e., are bound resp. determined) or are un-
bound. But there may already be some information about the value an unbound vari-
able will later refer to. For example, it might be already known that a variable refers
to an integer. We say the variable is constrained, here by a finite domain constraint.
This information is stored right at the variable. To provide a generic scheme to as-
sociate self-defined constraints with a variable in the constraint store, such a variable
has a pointer of type (OZ_Ct *), pointing to an constraint instance of the self-defined
constraint system. That is done by defining new constraints as subclasses of OZ_Ct.

The main part of a propagator is its propagation routine. This routine fulfills mainly
three tasks. First it retrieves the constraint from the constraint store. The class OZ_CtVar
provides a generic interface for that task. Then the propagation algorithm generates
new projections on the retrieved constraints. Finally the new constraints are written
back to the constraint store. Usually a propagator parameter is shared between more
than one propagator. Modifying a constraint in the constraint store may enable another
propagators to generate new projections, hence when writing constraints to the store,
propagators sharing parameters have to be notified. This is done by the appropriate
member functions of OZ_CtVar but to decide what propagators to notify, the propa-
gator has to memorize the constraints present in the constraint store before the propa-
gation algorithm modified the store. The class OZ_CtProfile serves that purpose by
providing a generic interface (used in OZ_CtVar) to store characteristic information of
a constraint sufficient to derive what propagator have to be notified.

The notification of propagators is realized by wake-up lists associated with the con-
strained variable. Depending on the kind of constraint system there different events
a propagator wants to be notified upon. For each event there is a wake-up list. The
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wake-up events of a constraint system are determined by an object of a subclass of
OZ_CtDefinition. Hence, upon creation of a new constrained variable a reference of
type OZ_CtDefinition * has to be passed to OZ_mkCtVariable() which takes care
of creating variables with generic constraints.

The following sections explain in detail how a constraint system can be implemented
using the provided abstractions briefly mentioned in th section.

2.1.2 Overview over Generic Part of the CPI

The CPI provides for abstractions to implement constraint systems from scratch. Five
classes provide the required functionality. They allow to implement new constraint
system at a high level of abstraction without sacrificing efficiency (e.g., it is straight-
forward to take advantage of wake-up lists for distinct wake-up events [lower bound
changed, upper bound changed etc.]).

This part of the CPI is based on the principles developed by [5].

The following classes are provided:

OZ_CtDefinition

The class OZ_CtDefinition serves as an identifier for a particular constraint system
and defines certain parameters for that constraint system, as for example the number
of wake-up lists. See Section The class OZ_CtDefinition , (The Mozart Constraint
Extensions Reference) for details.

OZ_Ct

The class OZ_Ct represents the actual constraint attached to a constrained variable. See
Section The class OZ_Ct , (The Mozart Constraint Extensions Reference) for details.

OZ_CtVar

The class OZ_CtVar provides access to a constrained variable in the constraint store.
Amongst other things, it provides the following services:

• handling of local and global variables transparently (trailing).

• Making the actual constraints in the store accessible from within a propagator to
allow to manipulate them.

• Triggering the scanning of appropriate wake-up lists (using OZ_CtProfile).

See Section The class OZ_CtVar , (The Mozart Constraint Extensions Reference) for
details.

OZ_CtProfile

The class OZ_CtProfile stores characteristic parameters of a constraint (called its
profile) to determine the wake-up list(s) to be scanned. Typically, this happens when
a propagator is left. See Section The class OZ_CtProfile , (The Mozart Constraint
Extensions Reference) for details.

OZ_CtWakeUp

An instance of the class OZ_CtWakeUp controls which wake-up lists have to be scanned
and is produced by comparing the current state of a constraint and a previously taken
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constraint profile. See Section The class OZ_CtWakeUp , (The Mozart Constraint Ex-
tensions Reference) for details.

Further, there is a function OZ_mkCtVariable() that allows to create a new con-
strained variable according to a given definition and a given constraint. Additionally,
the class OZ_Expect provides the member function OZ_Expect::expectGenCtVar()

to handle constrained variables appropriately.

To demonstrate the usage of this part of the CPI, constraints over real-intervals are
implemented in Section 2.2.

2.2 A Casestudy: Real Interval Constraints

2.2.1 An Implementation

In real-interval constraints [1] a variable denotes a real number r. The constraint ap-
proximates r by a lower bound and a upper bound, i.e. l ≤ r ≤ u. The bounds are
represented as floating point numbers. A floating point number itself is an approxima-
tion of a real number due to the limited precision of its machine representation. The
implementation of real-interval constraints has to take care to not prune valid solutions
by computing the bounds too tight. This has to be avoided by controlling the direction
of rounding of the floating point operations.

The width of a real-interval is the difference between its upper bound and its lower
bound. If the width of a real-interval constraint is less than or equal to a given precision
then the constraint is regarded a value.

The goal of this section is to give an overview of how the CPI classes interact with
each other and not to describe the implementation of a complete constraint system in
too much detail. The definition of all required classes is only sketched and additionally,
a simple propagator is implemented.

Note that floating point numbers have the type ri_float which is compatible with
float numbers used by the Oz runtime system. Such float numbers may range from
RI_FLOAT_MIN to RI_FLOAT_MAX.

2.2.1.1 A Definition Class for Real-Interval Constraints

The class RIDefinition is derived from the CPI class OZ_CtDefinition. It gath-
ers all information needed to handle real-interval constraints properly by the runtime
system. It allows the runtime system to distinguish real-interval constraint from other
constraints by calling the member function getKind(). Note that _kind is static and
to obtain a unique identifier the function OZ_getUniqueId() is recommended to be
used. For testing Oz values to be compatible with real-intervals isValidValue(), is
to be defined appropriately.

Further, RIDefinition allows the runtime system to determine the number of possible
events causing suspending computation to be woken up. There are two possible events
when suspending computation wants to be notified: the lower bound is increased or
the upper bound is decreased (or both). Therefore, two wake-up lists are used (see
getNoOfWakeUpLists()).
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class RIDefinition : public OZ_CtDefinition {

private:

static int _kind;

public:

virtual int getKind(void) { return _kind; }

virtual char * getName(void) { return "real interval"; }

virtual int getNoOfWakeUpLists(void) { return 2; }

virtual char ** getNamesOfWakeUpLists(void) {

static char * names[2] = {"lower", "upper"};

return names;

}

virtual OZ_Ct * leastConstraint(void) {

return RI::leastConstraint();

}

virtual OZ_Boolean isValidValue(OZ_Term f) {

return RI::isValidValue(f);

}

};

int RIDefinition::_kind = OZ_getUniqueId();

The function leastConstraint() is required to enable the runtime system to con-
strain a variable to a real-interval with greatest possible width, i.e., ranging from
RI_FLOAT_MIN to RI_FLOAT_MAX. For example this is necessary when nested variables
are to be constrained.

2.2.1.2 Determining Wake-up Events for Real-Interval Constraints

Instances of classes derived from OZ_CtWakeUp indicate to the runtime system which
wake-up event occurred. Therefore, member functions to initialize an RIWakeUp in-
stance according to a possible event are defined. They will be used to determine the
wake-up event of a propagator upon a certain parameter when imposing a propaga-
tor(see Section 2.2.1.5).

class RIWakeUp : public OZ_CtWakeUp {

public:

static OZ_CtWakeUp wakeupMin(void) {

OZ_CtWakeUp ri_wakeup_min;

ri_wakeup_min.init();

ri_wakeup_min.setWakeUp(0);

return ri_wakeup_min;

}

static OZ_CtWakeUp wakeupMax(void) {

OZ_CtWakeUp ri_wakeup_max;

ri_wakeup_max.init();

ri_wakeup_max.setWakeUp(1);

return ri_wakeup_max;

}
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static OZ_CtWakeUp wakeupMinMax(void) {

OZ_CtWakeUp ri_wakeup_minmax;

ri_wakeup_minmax.init();

ri_wakeup_minmax.setWakeUp(0);

ri_wakeup_minmax.setWakeUp(1);

return ri_wakeup_minmax;

}

};

An instance of RIWakeUp is computed from an instance of RI and a profile (stored
before the constraint has be modified) by

OZ_CtWakeUp RI::getWakeUpDescriptor(OZ_CtProfile * p)

(see Section 2.2.1.3). The definition of the profile class RIProfile for real-intervals is
given below.

class RIProfile : public OZ_CtProfile {

private:

ri_float _l, _u;

public:

RIProfile(void) {}

virtual void init(OZ_Ct * c) {

RI * ri = (RI *) c;

_l = ri->_l;

_u = ri->_u;

}

};

The function RIProfile::init(OZ_Ct * c) takes a snapshot of c to enable the de-
tection of the abovementioned wake-up events, i.e., modified lower/upper bound resp.
both.

2.2.1.3 The Actual Real-Interval Constraint

The actual real-interval constraint is represented by instances of the class RI. It stores
the upper and lower bound, to approximate a real number. Apart from constructors and
initialization functions a couple of general functions are defined.

class RI : public OZ_Ct {

private:

ri_float _l, _u;

public:

RI(void) {}

RI(ri_float l, ri_float u) : _l(l), _u(u) {}

void init(OZ_Term t) { _l = _u = OZ_floatToC(t); }
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ri_float getWidth(void) { return _u - _l; }

static OZ_Ct * leastConstraint(void) {

static RI ri(RI_FLOAT_MIN, RI_FLOAT_MAX);

return &ri;

}

static OZ_Boolean isValidValue(OZ_Term f) {

return OZ_isFloat(f);

}

OZ_Boolean isTouched(RIProfile rip) {

return (rip._l < _l) || (rip._u > _u);

}

...

The member functions leastConstraint() and isValidValue() are used by class
RIDefinition and their definition is self-explanatory. Note that ri_float values
have to be compatible with Oz float such that OZ_float() is used for testing compati-
bility.

Most of the definitions of virtual member functions and operators used for implement-
ing constraint propagation are self-explanatory. Note that copy() uses the new oper-
ator provided by OZ_Ct and the constructor RI(ri_float,ri_float). The function
isValue() assumes a global variable ri_float ri_precision; that holds the cur-
rent precision.

...

virtual char * toString(int);

virtual size_t sizeOf(void);

virtual OZ_Ct * copy(void) {

RI * ri = new (sizeof(ri_float)) RI(_l, _u);

return ri;

}

virtual OZ_Boolean isValue(void) {

return (getWidth() < ri_precision);

}

virtual OZ_Term toValue(void) {

double val = (_u + _l) / 2.0;

return OZ_float(val);

}

virtual OZ_Boolean isValid(void) {

return _l <= _u;

}

...
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The function getWakeUpDescriptor() computes from the current state of the con-
straint and a given constraint profile p a wake-up descriptor. Therefore, it creates an
empty one and sets the appropriate events successively. Finally it returns the descriptor.

...

virtual RIProfile * getProfile(void) {

static RIProfile rip;

rip.init(this);

return &rip;

}

virtual

OZ_CtWakeUp getWakeUpDescriptor(OZ_CtProfile * p) {

OZ_CtWakeUp d;

d.init();

RIProfile * rip = (RIProfile *) p;

if (_l > rip->_l) d.setWakeUp(0);

if (_u < rip->_u) d.setWakeUp(1);

return d;

}

...

The function isWeakerThan() simply compares the widths of two real-interval con-
straints to detect whether the constraint *this is subsumed by *r. This makes sense
since *this represents never values not represented by *r which is ensured by the
runtime system.

The unification routine for two real-interval constraints computes the intersection of
the values approximated by *this and *r. The result is stored in a static variable and
eventually a pointer to this variable is returned.

...

virtual OZ_Boolean isWeakerThan(OZ_Ct * r) {

RI * ri = (RI *) r;

return (ri->getWidth() < getWidth());

}

virtual OZ_Ct * unify(OZ_Ct * r) {

RI * x = this, * y = (RI *) r;

static RI z;

z._l = max(x->_l, y->_l);

z._u = min(x->_u, y->_u);

return &z;

}
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virtual OZ_Boolean unify(OZ_Term rvt) {

if (isValidValue(rvt)) {

double rv = OZ_floatToC(rvt);

return (_l <= rv) && (rv <= _u);

}

return 0;

}

...

The unification routine of a real-interval constraint and a value checks if the value is
compatible with float numbers and then, if the value is contained in the set of values
represented by the constraint. Note that this function indicates only if a unification is
successful and does not update the constraint.

The operators for constraint propagation are straight-forward. They return the width
of the computed constraint. In case the width is less zero, the constraint is inconsistent
and thus can be easily tested.

...

ri_float operator <= (ri_float f) {

_u = min(_u, f);

return getWidth();

}

ri_float operator >= (ri_float f) {

_l = max(_l, f);

return getWidth();

}

ri_float lowerBound(void) { return _l; }

ri_float upperBound(void) { return _u; }

...

}; // class RI

The functions lowerBound() and upperBound() provide access to the lower resp.
upper bound of the constraint.

2.2.1.4 Accessing the Constraint Store

The class RIVar is defined to provide access to a real-interval variable in the constraint
store. The class RIVar is derived from OZ_CtVar. The private and protected part of the
class definition of RIVar is the implementation of the principle described in Section
The class OZ_CtVar , (The Mozart Constraint Extensions Reference) for real-interval
constraints.

class RIVar : public OZ_CtVar {

private:
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RI * _ref;

RI _copy, _encap;

RIProfile _rip;

protected:

virtual void ctSetValue(OZ_Term t)

{

_copy.init(t);

_ref = &_copy;

}

virtual OZ_Ct * ctRefConstraint(OZ_Ct * c)

{

return _ref = (RI *) c;

}

virtual OZ_Ct * ctSaveConstraint(OZ_Ct * c)

{

_copy = *(RI *) c;

return &_copy;

}

virtual OZ_Ct * ctSaveEncapConstraint(OZ_Ct * c)

{

_encap = *(RI *) c;

return &_encap;

}

virtual void ctRestoreConstraint(void)

{

*_ref = _copy;

}

virtual void ctSetConstraintProfile(void)

{

_rip = *_ref->getProfile();

}

virtual OZ_CtProfile * ctGetConstraintProfile(void)

{

return &_rip;

}

virtual OZ_Ct * ctGetConstraint(void)

{

return _ref;

}
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public:

RIVar(void) : OZ_CtVar() { }

RIVar(OZ_Term t) : OZ_CtVar() { read(t); }

virtual OZ_Boolean isTouched(void) const

{

return _ref->isTouched(_rip);

}

RI &operator * (void) { return *_ref; }

RI * operator -> (void) { return _ref; }

};

The public part of the class definition is self-explanatory. It provides for constructors,
the function isTouched() to enable the CPI to detect if a parameter has been changed,
and operators to provide direct access to the real-interval constraints.

2.2.1.5 Extending OZ_Expect

Propagators are imposed on their parameters by foreign functions which are invoked by
the Oz runtime system. Such foreign functions use the CPI class OZ_Expect to check
that the parameters are appropriately kinded (resp. constrained) or represent compatible
values. The class OZ_Expect provides the member function

OZ_expect_t OZ_Expect::expectGenCtVar(OZ_Term t,

OZ_CtDefinition * d,

OZ_CtWakeUp w);

to define appropriate expect-functions, e.g., for real-interval constraints. The cus-
tomized class defines member functions that check for real-intervals and determine
the wake-up event. To do that, the static members functions of RIWakeUp (see Sec-
tion 2.2.1.2) are used and the global variable RIDefinition ri_definition is as-
sumed.

class RIExpect : public OZ_Expect {

public:

OZ_expect_t expectRIVarMin(OZ_Term t) {

return expectGenCtVar(t, ri_definition,

RIWakeUp::wakeupMin());

}

OZ_expect_t expectRIVarMax(OZ_Term t) {

return expectGenCtVar(t, ri_definition,

RIWakeUp::wakeupMax());

}

OZ_expect_t expectRIVarMinMax(OZ_Term t) {
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return expectGenCtVar(t, ri_definition,

RIWakeUp::wakeupMinMax());

}

...

};

The class RIEexpect can now be used to define foreign functions that impose propa-
gators on their parameters.

OZ_C_proc_begin(ri_lessEq, 2)

{

OZ_EXPECTED_TYPE("real interval, real interval");

RIExpect pe;

OZ_EXPECT(pe, 0, expectRIVarMinMax);

OZ_EXPECT(pe, 1, expectRIVarMinMax);

return pe.impose(new RILessEq(OZ_args[0],

OZ_args[1]));

}

OZ_C_proc_end

The propagator class RILessEq is partly defined next.

2.2.1.6 A Simple Propagator

The description of the implementation of real-interval constraints is closed with the
discussion of the propagation function of a simple propagator, namely a propagator for
the constraint x ≤ y. The rest of the class definition of that propagator is similar to
other propagators and therefore omitted here.

OZ_Return RILessEq::propagate(void)

{

RIVar x(_x), y(_y);

// step (1)

if (x->upperBound() <= y->lowerBound()) {

x.leave(); y.leave();

return OZ_ENTAILED;

}

// step (2)

if((*x <= y->upperBound()) < 0.0)

goto failure;

// step (3)

if((*y >= x->lowerBound()) < 0.0)

goto failure;
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return (x.leave() | y.leave())

? OZ_SLEEP : OZ_ENTAILED;

failure:

x.fail(); y.fail();

return OZ_FAILED;

}

Assume that the propagator stores in its state references to its parameters on the Oz
heap by the members OZ_Term _x, _y;. The function propagate() obtains access
to the constraint store by declaring two instances of class RIVar and passing the Oz
terms _x and _y as arguments.

The propagation proceeds in three steps.

1. Test if the constraint x ≤ y is subsumed by the constraint store, i.e., x ≤ y.

2. Constrain the upper bound of x: x ≤ y.

That is implemented by ri_float RI::operator <= (ri_float).

3. Constrain the lower bound of y: y ≥ x.

That is implemented by ri_float RI::operator >= (ri_float).

As said in Section 2.2.1.3 these operators return the width of the computed constraint.
A width less than 0 indicates that the constraint has become inconsistent and propaga-
tion branches to label failure.

The function OZ_CtVar::leave() returns OZ_True if the constraint does not denotes
a value. This is used to detect whether the propagator has to be rerun (indicated by
OZ_SLEEP) or not (indicated by OZ_ENTAILED).

The return value OZ_FAILED informs the runtime system that the constraint is incon-
sistent with the constraint store.

2.2.2 The Reference of the Implemented Real-Interval Constraint Solver

The module RI is provided as contribution (being part of the Mozart Oz 3 distribution1)
and can be accessed either by

declare [RI] = {Module.link [’x-oz://contrib/RI’]}

or by

import RI at ’x-oz://contrib/RI’

as part of a functor definition.
1The module RI is not provided on any Windows platform.
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RI.inf

An implementation-dependent float value that denotes the smallest possible float num-
ber. It is −1.79769×10308.

RI.sup

An implementation-dependent float value that denotes the smallest possible float num-
ber. It is 1.79769×10308.

{RI.setPrec +F}

Sets the precision of the real-interval constraints to F.

{RI.getLowerBound +RI ?F}

Returns the lower bound of RI in F.

{RI.getUpperBound +RI ?F}

Returns the upper bound of RI in F.

{RI.getWidth +RI ?F}

Returns the width of RI in F.

{RI.var.decl ?RI}

Constrains RI to a real-interval constraint with the lower bound to be RI.inf and the
upper bound to be RI.sup.

{RI.var.bounds +L +U ?RI}

Constrains RI to a real-interval constraint with the lower bound to be L and the upper
bound to be U.

{RI.lessEq $X $Y}

Imposes the constraint X ≤ Y.

{RI.greater $X $Y}

Imposes the constraint X > Y.

{RI.intBounds $RI $D}

Imposes the constraint dRIe= D∧bRIc= D.

{RI.times $X $Y $Z}

Imposes the constraint X × Y = Z.

{RI.plus $X $Y $Z}

Imposes the constraint X + Y = Z.

{RI.distribute ∗RI}

Creates a choice-point for RI ≤ m and RI > m where m = RI+(RI−RI)/2.
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3

Employing Linear Programming
Solvers

3.1 Introduction

The introduction of linear programming solvers in Oz is based on real-interval con-
straints introduced in Section 2.2.

The modules LP and RI are provided as contribution (being part of the Mozart Oz 3
distribution1) and can be accessed either by

declare [LP RI] = {Module.link [’x-oz://contrib/LP’

’x-oz://contrib/RI’]}

or by

import RI at ’x-oz://contrib/RI’ LP

at ’x-oz://contrib/LP’

as part of a functor definition.

The module LP uses per default LP_SOLVE 2.x as linear programming solver. A ver-
sion compatible with Mozart Oz can be downloaded via:

• ftp://ftp.mozart-oz.org/pub/extras/lp_solve_2.3_mozart.tar.gz2.

Unpack the archive and make it. You will be told what else has to be done. Please
note that we are not able to sort out any problems concerning the actual LP_SOLVE 2.x
solver and that we are not responsible for that kind of problems resp. bugs.

1The modules LP and RI are not provided on any Windows platform.
2ftp://ftp.mozart-oz.org/pub/extras/lp_solve_2.3_mozart.tar.gz
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Linear programming solver (LP solver) handle problems of the following kind [3]:

minimize resp. maximize:
c1x1 + . . . + cnxn objective function

subject to:
a1,1x1 + · · · + an,1xn � b1 constraints

...
...

...
a1,mx1 + · · · + an,mxn � bm

(� ∈ {≤,=,≥})

li ≤ xi ≤ ui (i = 1, . . . ,n) bound constraints.

The module LP provides a procedure LP.solve to call an LP solver. Further, a proce-
dure to configure the LP solver is provided (see Section The Module LP, (The Mozart
Constraint Extensions Reference) ).

A simple example. A simple example explains best how the LP solver is invoked:

declare

X1 = {RI.var.bounds 0.0 RI.sup}

X2 = {RI.var.bounds 0.0 RI.sup}

Ret Sol

in

{LP.solve

[X1 X2]

objfn(row: [8.0 5.0] opt: max)

constrs(

constr(row: [1.0 1.0] type: ’=<’ rhs:6.0)

constr(row: [9.0 5.0] type: ’=<’ rhs:45.0))

Sol

Ret}

The corresponding linear program is as follows:

maximize: 8x1 +5x2

subject to: x1 + x2 ≤ 6
9x1 +5x2 ≤ 45

x1,x2 ≥ 0

Note that the bound constraints for the LP solver are derived from the current bounds
of the real-interval variables. Further, when minimizing the objective function the
following constraint c1x1 + . . .+cnxn ≤ Sol is added. On the other hand, the constraint
c1x1 + . . .+ cnxn ≥ Sol is added when maximizing.

Before running the LP solver, the variables are constrained to

X1<real interval:[0, 1.79769e+308]>
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and

X2<real interval:[0,1.79769e+308]>.

The LP solver binds the variables to: X1=3.75, X2=2.25, Sol=41.25, and Ret=optimal.

The tutorial problem: Solving a multiknapsack problem. This tutorial uses
a multiknapsack problem to demonstrate the benefits of combining finite domain con-
straint programming and linear programming. First, we tackle the problem with fi-
nite domain constraints and linear programming separately (see Section 3.2 and Sec-
tion 3.3). One difficulty arises for linear programming: since integral solutions are
required and the LP solver returns non-integral solution, we have to implement a
branch&bound solver to obtain an integral solution. Finally, we combine both solvers.

Throughout this tutorial, we use a multi-knapsack problem (taken from [2]. The prob-
lem variables x represent the number of goods to be produced. Each good requires cer-
tain resources: man power, materials, and machines (represented by matrix A) where
a given capacity per resource (b) may not be exceeded. Each good generates a profit
according to c where the overall profit shall be maximal.

maximize: c × x
subject to: A × x ≤ b

x are integral.
where

A =





















man: 1 1 1 1 1 1 1 1 1 1 1 1 1
material 1: 0 4 5 0 0 0 0 4 5 0 0 0 0
material 2: 4 0 3 0 0 0 3 0 4 0 0 0 0
machine 1: 7 0 0 6 0 0 7 0 0 6 0 0 0
machine 2: 0 0 0 4 5 0 0 0 0 5 4 0 0
machine 3: 0 0 0 0 4 3 0 0 0 0 4 2 1
machine 4: 0 3 0 0 0 5 0 3 0 0 0 3 3





















b =





















14
17
20
34
26
16
16





















c =
[

5 7 5 11 8 10 6 8 3 12 9 8 4
]

x =
[

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
]

The problem specification as Oz term is as follows:

declare

Problem =

problem(

resources:

resource(

man: r(ta: 14 npp: [1 1 1 1 1 1 1 1 1 1 1 1 1])

material1: r(ta: 17 npp: [0 4 5 0 0 0 0 4 5 0 0 0 0])

material2: r(ta: 20 npp: [4 0 3 0 0 0 3 0 4 0 0 0 0])

machine1: r(ta: 34 npp: [7 0 0 6 0 0 7 0 0 6 0 0 0])

machine2: r(ta: 26 npp: [0 0 0 4 5 0 0 0 0 5 4 0 0])

machine3: r(ta: 16 npp: [0 0 0 0 4 3 0 0 0 0 4 2 1])
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machine4: r(ta: 16 npp: [0 3 0 0 0 5 0 3 0 0 0 3 3]))

profit: [5 7 5 11 8 10 6 8 3 12 9 8 4])

3.2 The Finite Domain Model

The finite domain model is a one-to-one translation of the LP model. Every problem
variable of x is represented by a finite domain variable. The inequalities are expressed
by appropriate finite domain constraints.

declare

fun {KnapsackFD Problem}

NumProducts = {Length Problem.profit}

Resources = Problem.resources

in

proc {$ Sol}

sol(maxprofit: MaxProfit = {FD.decl}

products: Products = {FD.list NumProducts 0#FD.sup})

= Sol

in

MaxProfit = {FD.sumC Problem.profit Products ’=:’}

{ForAll {Arity Resources}

proc {$ ResourceName}

Resource = Resources.ResourceName

in

{FD.sumC Resource.npp Products ’=<:’ Resource.ta}

end}

{FD.distribute naive Products}

end

end

The function KnapsackFD returns a procedure abstracting the script. The solution vari-
able Sol of the script is constrained to a record. The record provides access to the
individual quantities of the individual products (under feature products) to obtain a
maximum profit (under feature maxprofit).

The variable Products refers to a list of finite domain problem variables (correspond-
ing to [x1, . . . ,xn]

T in the LP model) and MaxProfit is constrained to be the scalar
product of the Product variable and the profit vector for the problem specification
(see Section 3.1).

The ForAll iterator imposes the inequality constraints a1,ix1 + · · ·+ an,ixn ≤ bi to the
problem variables. The distribution strategy is straightforwardly chosen to naive. Ex-
perimenting with first fail (ff) produced even worse results.

Solving the problem by calling
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{ExploreBest {KnapsackFD Problem}

proc {$ O N} O.maxprofit <: N.maxprofit end}

produces the following search tree.

3.3 The Linear Programming Model

Tackling a multi-knapsack problem with a LP solver amounts to implementing a branch
& bound solver to obtain integral solutions. The idea is to compute a continuous
solution and to branch over the problem variables with continuous solutions. This
is done until only integral problem variables are left. This is what the procedure
DistributeKnapSackLP does.

declare

proc {DistributeKnapSackLP Vs ObjFn Constraints MaxProfit}

choice

DupVs = {DuplicateRIs Vs}

DupMaxProfit V DupV

in

DupMaxProfit = {RI.var.bounds

{RI.getLowerBound MaxProfit}

{RI.getUpperBound MaxProfit}}

{LP.solve DupVs ObjFn Constraints DupMaxProfit optimal}

V#DupV = {SelectVar Vs#DupVs}

case {IsDet V} then

DupMaxProfit = MaxProfit

DupVs = Vs

else

choice

{RI.lessEq {Ceil DupV} V}
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[]

{RI.lessEq V {Floor DupV}}

end

{DistributeKnapSackLP Vs ObjFn Constraints MaxProfit}

end

end

end

It first duplicates the problem variables (note this is possible due to stability) and in-
vokes the LP solver on them to compute a (possibly continuous) solution. Then it
selects the first duplicated continuous problem variable DupV by SelectVar (see be-
low). If continuous variables are left (see the else branch of the case statement),
it creates two choices on the corresponding original problem variable V: dDupVe ≤
V ∨V ≤ bDupVc and calls DistributeKnapSackLP recursively. In case no continu-
ous variables are left, an integral solution is found and the original problem variables
are unified with duplicated ones.

For completeness sake the auxiliary functions SelectVar and DuplicateRIs are pre-
sented here.

declare

fun {SelectVar VsPair}

case VsPair

of nil#nil then unit#unit

[] (VH|VT)#(RVH|RVT) then

% check for integrality

case RVH == {Round RVH}

then {SelectVar VT#RVT}

else VH#RVH end

else unit

end

end

declare

fun {DuplicateRIs Vs}

{Map Vs

fun {$ V}

{RI.var.bounds

{RI.getLowerBound V}

{RI.getUpperBound V}}

end}

end

The procedure KnapsackLP return the script which creates the appropriate parameters
for the LP solver and eventually calls DistributeKnapSackLP.

declare

fun {KnapsackLP Problem}

NumProducts = {Length Problem.profit}

Resources = Problem.resources

in

proc {$ Sol}

sol(maxprofit: MaxProfit = {RI.var.decl}

products: Products = {MakeList NumProducts})

= Sol

ObjFn Constraints

in
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{ForAll Products proc {$ V}

{RI.var.bounds 0.0 RI.sup V}

end}

ObjFn = objfn(row: {Map Problem.profit IntToFloat}

opt: max)

Constraints =

{Map {Arity Resources}

fun {$ ResourceName}

Resource = Resources.ResourceName

in

constr(row: {Map Resource.npp IntToFloat}

type: ’=<’

rhs: {IntToFloat Resource.ta})

end}

{DistributeKnapSackLP Products ObjFn Constraints

MaxProfit}

end

end

Feeding

{ExploreBest {KnapsackLP Problem}

proc {$ O N}

{RI.lessEq O.maxprofit+1.0 N.maxprofit}

end}

produces the following search tree.
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3.4 Combining Both Models

Combining both models is simply done by adding the finite domain model without
distribution to the linear programming model. The propagator {RI.intBounds F I}

is used to connect real-interval constraints with finite domain constraints. It constrains
F and I to denote the same integer either as float or as integer, respectively.

declare

fun {KnapsackFDLP Problem}

NumProducts = {Length Problem.profit}

Resources = Problem.resources

in

proc {$ Sol}

sol(maxprofit: FDMaxProfit = {FD.decl}

products: FDProducts = {FD.list NumProducts 0#FD.sup})

= Sol

ObjFn Constraints

MaxProfit = {RI.var.decl}

Products = {MakeList NumProducts}

in

%

% finite domain constraints part

%

FDMaxProfit = {FD.sumC Problem.profit FDProducts ’=:’}

{ForAll {Arity Resources}

proc {$ ResourceName}

Resource = Resources.ResourceName

in

{FD.sumC Resource.npp FDProducts ’=<:’ Resource.ta}

end}

%%

%% linear programming part

%%

{ForAll Products

proc {$ V} {RI.var.bounds 0.0 RI.sup V} end}

ObjFn = objfn(row: {Map Problem.profit {IntToFloat I}}

opt: max)

Constraints =

{Map {Arity Resources}

fun {$ ResourceName}

Resource = Resources.ResourceName

in

constr(row: {Map Resource.npp IntToFloat}

type: ’=<’
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rhs: {IntToFloat Resource.ta})

end}

%%

%% connecting both constraint systems

%%

{RI.intBounds MaxProfit FDMaxProfit}

{Map Products

proc {$ R D} {RI.intBounds R D} end FDProducts}

{DistributeKnapSackLP Products ObjFn Constraints

MaxProfit}

end

end

The Oz Explorer produces the following search tree by calling

{ExploreBest {KnapsackFDLP Problem}

proc {$ O N} O.maxprofit <: N.maxprofit end}

.

3.5 Short Evalution

The following table shows impressively the benefits of combining propagation-based
and linear programming solvers for this kind of problem. We used LP_SOLVE 2.0
as LP solver. Note using a different LP solver may produce different results. By
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combining both constraint models the number of nodes in the search tree could be
reduced by two resp. one to orders of magnitudes. This results in a speed-up of one
order of magnitude and memory saving by the same amount.

Model Nodes Sols Failures Depth runtime heap
[sec] [MB]

FD Model 5270 44 5227 18 4.980 10.4
LP Model 490 12 479 26 3.390 3.3
FD+LP Model 52 8 45 12 0.390 0.6

The times were taken on a Pentium Pro 200MHz with 192 MB memory.

The described technique has been used to tackle set partitioning problems. In contrast
to [8] all problem could be solve in acceptable time (detailed benchmarks are included
as they are available).
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