The Oz Programming Interface

Leif Kornstaedt

December 1, 2001 m Y 14d rt



Abstract

The Oz Programming Interface (OPI) is the primary tool for interaction with the Mozart
development system. It offers special support for editing Oz code, running Mozart as a
sub-process, and interacting with Mozart’s development tools. This document is a refer-
ence manual for the complete functionality of the OPI.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.



Contents

Introduction| 1
Invoking the OP]| 3
2.1 Invoking the OPI In the Unix Environmen{ . . . . ... ... ... 3
2.2 Invoking the OPlI Under Windowq . . . . . .. .. .. ... .... 3
2.3 Invoking the OPI From WithinEmacy . . . . . .. ... ... ... 4
P.4 The Oz Major Moded . . . . .. . . . . . . i .. 4
2.5 Inspecting the OPI's Commands and User Optiony . . . . . . .. 5
Editing Oz Codd 7
B.1 Managing Oz Bufferg . . . . . . . ... ... ... 7
B.2 Indentation . . . . . . . . ... 7
B.3 Fontification . ... .. ... ... . ... 8
B.4 Commenty . . . . . . . 9
B.5 Expression-Level Commandy . . ... .. ... .. ........ 9
Running Mozart from the OPI 11
U1 RunningandHaltind . ... ..................... 11
.2 Mozart's Qutput Bufferd . . ... ... ... ... .. .. ..... 12
.3 Feeding CodetotheCompiled . . . . ... .. .. ... ...... 12
k.4 Running the Command-Line Toold . . .. ... .. ... ... .. 13
B.5 DealngWithErrord . . . . .. ... ... .. ... . .. .. ... . 14
#.6 Seeing the OPlfromMozarf . . . . ... ... .. .. ....... 14
Interacting With the Development Tools| 17
Using Profileg 19

Summary of Oz-Specific Emacs Key Bindingg 21




B Mozart System Development Support

B.1 Viewing Emulator Bytecodg . . . ... .. .............
B.2 TestinglLocally. ... ... .. .. ... .. . .. . . . .. .....
B.3 Runningundergdly ... .......... . . ... . ... ...,

C Application Programmer’s Interfacg

D Limitations|

23
23
23
25

27

29



Introduction

The Mozart Programming System provides a powerful environment for the develop-
ment of software systems, called the ‘Oz Programming Interface’ (OPI). The OPI is
built around the extensible Emacs editor and runs (at least) under GNU Emacs, Ver-
sion 19.24 or greater, and XEmacs, Version 19.14 or greater. Its main features are:

Features

Editing Oz code. The OPI automatically indents program lines and colorizes Oz source code to ease
reading and writing of Oz programs. Due to its awareness of the syntactical structure
of Oz, one can work with programs by applying commands to whole constructs such
as procedure or class definitions.

Running Mozart asa sub-process. The OPI handles input to and output from a Mozart sub-process,
providing a convenient interface for the interactive use of the Mozart system and for
explorative programming.

Starting Mozart’'s development tools. The OPI provides menus and shortcuts to interact with the
development system’s graphical tools, e.g., setting breakpoints for the thread debugger
or displaying the current position in the source file being debugged.

The Manual’s Structure This manual is structured as follows. Chapter [ gives
an overview of the OPI’s general integration into the standard framework provided by
Emacsenf]. Chapter B, Chapter [, and Chapter [ are dedicated to the three main features
mentioned above respectively. Chapter f describes how to manage multiple Oz mode
settings using profiles. Appendix /A summarizes all Oz-specific key bindings.

The last three appendices provide information for advanced users. Appendix B|details
how to test Mozart system components locally and how to run Mozart under gdb. Ap-
pendix [§ documents some functions of the OPI that might be useful for users who want
to write their own editing commands. Finally, Appendix D) lists the known limitations
of the OPI with workarounds.

1“Emacsen’ is the plural of ‘Emacs’. In this manual, we use the term when the feature being described
applies to both GNU Emacs and XEmacs.



2 Chapter 1. Introduction

Learning Emacs This manual assumes some familiarity with the general editing
commands of Emacsen and uses standard Emacs terminology. If you want to exploit
the full power of the OPI you should get some acquaintance with Emacs. A good place
to start is the Emacs on-line tutorial [f], available from the Emacs Help menu; this is
also the place to check if you are confused by the terminology used in this manual. You
might especially want to look up the following words in the Emacs manual’s glossary:
point, mark, region, buffer, window, frame, mode line, killing, command, user option,
prefix argument.

Acknowledgements

The Oz Programming Interface of the Mozart system is an extension and partial re-
design of the Oz Programming Interface of DFKI Oz, Versions 1.1 and 2.0. Credit has
to go to the following people:

e Michael Mehlf, for initially providing editing support (indentation, fontifica-
tion),

o Ralf Scheidhauerﬁ, for running Oz as a sub-process,
e Benjamin Lorenzf], for the interaction with the Oz debugger,

e Jochen Dorre, for initially providing Oz expression editing commands and jump-
ing to compiler error messages.

Leif Kornstaedt is the person now responsible for the entirety of Mozart’s OPI. Please
address any remarks to him.

2htt p: // www. ps. uni - sh. de/ ~nmehl /
Shtt p: // www. ps. uni - sh. de/ ~schei dhr/
4htt p: // www. ps. uni - sh. de/ ~l orenz/



Invoking the OPI

This chapter describes how to invoke the OPI, i.e., how to access its functionality.

2.1 Invoking the OPI in the Unix Environment
The easiest way to start the OPI is to type the following command at the shell prompt[}:
% oz (emacs args)

After setting up the necessary environment variables, this starts up an Emacs process,
passing to it all arguments given on the command line, creates a new buffer named Cz,
and starts a Mozart sub-process.

Which Emacs to Use The command used to invoke Emacs is determined through
the following steps:

1. If the environment variable OZEMACS is set, its contents is used.
2. Else, if acommand named enacs is found in the PATH, this is used.
3. Else, if a command named xemacs is found in the PATH, this is used.

4, Else, if acommand named | emacs is found in the PATH, this is used.

2.2 Invoking the OPI Under Windows

The installation procedure will have created a program group for the Mozart system.
The OPI is started by launching the Mozart item. This item is a shortcut to the 0z. exe
program within the bi n subfolder of the installation folder; as under Unix, any argu-
ments given to it are passed on to the invoked Emacs.

1The percent sign (%) represents the shell prompt; it is not part of the command.



4 Chapter 2. Invoking the OPI

Which Emacs to Use The command used to invoke Emacs is determined through
the following steps:

1. If the environment variable OZEMACS is set, its contents is used.
2. Else, if the registry indicates where GNU Emacs is installed, this is used.

3. Else, if the registry indicates where XEmacs is installed, this is used.

2.3 Invoking the OPI From Within Emacs

You can also configure your Emacs so that you can use all of the OPI’s functionality
without using the 0z script. Here’s what you would typically add to your Emacs startup
file (usually called ~/ . emacs under Unix and C: \_enacs under Windows 95; under
Windows NT, it is located in your home directory):

(or (getenv )
(setenv

) ; or wherever Mozart is installed
(setenv (concat (getenv ) (getenv )))
(setqg | oad-path (cons (concat (getenv ) )

| oad- pat h))
(setqg auto-node-ali st
(append "’ (( . 0z-node)
( . 0z-gunp- node))

aut o- node-al i st))

(autol oad ’'run-oz t)
(aut ol oad ' 0z- node t)
(aut ol oad ' 0z- gunp- node t)
(aut ol oad ' 0z- new buffer t)

Don’t worry if you don’t understand all of this (yet).

2.4 The Oz Major Modes

All of the OPI’s functions are accessible in the following two major modes:

command o0z-npde

This is the major mode for editing Oz code. Loading a file with extension . 0z auto-
matically puts a buffer into Oz mode. You can tell a buffer is in Oz mode by the string
Qz in its mode line.

command 0z-gunp- node

This is the major mode for editing Oz code with embedded Gump specifications (see
“Gump-A Front-End Generator for Oz”). Loading a file with extension . 0zg auto-
matically puts a buffer in Oz-Gump mode. You can tell a buffer is in Oz-Gump mode
by the string Oz - Gunp in its mode line.



2.5. Inspecting the OPI's Commands and User Options 5

Oz Mode Hook To both of these, the following hook applies.

user option 0z- node- hook

A list of functions to be run when one of the Oz modes is activated. These func-
tions are applied without arguments. Change using Emacs functions add- hook and
r enove- hook.

2.5 Inspecting the OPI's Commands and User Options

The Oz Menu The Oz major modes add a menu called Oz to the menu bar (see
Figure R.1); this menu is also accessible by pressing the right mouse button in an Oz
buffer. Many of the commands described in the next chapters are accessible through
this menu.

Figure 2.1: The Oz Menu.

Buffers Files Tools Edit Search _QEJ Help

U Feed Buffer CH-RET?

Feed Paragraph {C-c C—p>
Feed File

Find
Frint

Core Syntax
Emulator Code
Indent

Commett:

T oxovox v v

Brouse Buffer

Panel

Compiler Panel

Line

Tlebugger {C-c C—d> Paragraph
——— 0z (C-c C-F :
Mozart Compller 3.0.10 Next Oz Buffer tHer 5) playing Oz 3
Previous Oz Buffer {H-p2
Hew Oz Buffer {C-c C-n}
Fontify Buffer {C-c C-1
Show/Hide -
Start Oz {C-c C-r2
Halt. Oz {C-c C-h?

—#k  #kdz Compllers (Comint:open)--L3--C0-——-@/l]l-————————"———"—"———————
WOz started.

Emacs Conventions The Oz modes conform to the following Emacs conventions:

o Nearly all functions and variables start with oz- . . .

o If the documentation string of a variable starts with an asterisk, then its value
is meant for the user to modify at will (a so-called user option). The documen-
tation string of a variable can be inspected with M x descri be-vari abl e
(G h v).



6 Chapter 2. Invoking the OPI

e If a function has a documentation string, then it is meant for the user to use
directly if she so wishes. Inspect the documentation string of a function with
M x describe-function (Ch f);if acommand is bound to a key, you
can examine its documentation string with M x descri be- key (C-h k).

e The OPI provides the feature oz. See Emacs’ r equi r e function for more details.

Customization New Emacsen offer a feature called customization, which serves
the purpose of setting the user options pertaining to a mode in a structured way. You can
access this feature by M x cust omni ze; look at the group Pr ogr ammi ng/Languages/Qz.
You can also access this group directly via M x cust om ze-group RET oz.

Key Bindings A short description of the current major mode and its key bindings
can be obtained through Emacs’ M x descri be- node (C-h m). In this manual,
the key sequences a command is bound to by default will always be shown in paren-
thesis following the command name.

user option 0z- nmode- nmap

Keymap used in the Oz modes.

Generally, Oz-specific commands are made available both with C-. and C-c . as
prefix. This manual always lists only the first of these. However, some terminals may
not be able to generate C- . ; this is why the second one is provided.



command

command
command

user option

command

command

Editing Oz Code

The commands in this chapter assist in editing Oz code. To achieve this, many of these
are aware of the lexical or syntactical structure of Oz programs.

3.1 Managing Oz Buffers

The Oz modes offer commands for creating new interactive buffers and quickly switch-
ing between Oz buffers:

oz-newbuffer (G. n)
Create a new buffer using the Oz major mode. Note that this buffer has no associated
file name, so quitting Emacs will kill it without warning.

oz-next - buf fer (M n)

oz- previ ous- buf fer (M p)

Switch to the previous resp. next buffer in the buffer list that runs in an Oz mode. If no
such buffer exists, an error is signalled.

3.2 Indentation

The preferred indentation style can currently be customized through the following user
option:

oz-indent - char s (default: 3)
Number of columns that statements are indented wrt. the block containing them.

Several commands assist in formatting existing Oz code.

oz-indent-1ine &ptional COUNT (TAB)
Reindent the current line. If COUNT is given, reindent that many lines above and below
point as well.

0z-i ndent-region

Reindent all lines at least partly covered by the current region.



8 Chapter 3. Editing Oz Code

command o0z-i ndent -buffer

Reindent every line in the buffer.

command i ndent - oz-expr (M C- Q)
Reindent all lines at least partly covered by the Oz expression following point. For a
description of what constitutes an Oz expression, see Section B.5.
The following command assists in authoring Oz code.

command o0z-el ectric-terninate-Iine (RET)
Terminate the current line, i.e., delete all whitespace around point and break the line.
If the user option oz- aut o- i ndent is non-ni |, indent both lines.

user option 0z-aut o-i ndent (default: t)

See oz-el ectric-term nate-Iine.

Additionally, DEL is bound to the Emacs command backwar d- del et e- char - unt abi fy.

3.3 Fontification

Fontification is the term used in Emacs for displaying text in different font faces, de-
pending on its syntactical form and context, to ease reading of code. For example,
comments and strings may be displayed in different colours.

Many major modes in Emacs provide several levels of fontification with increasing use
of faces, but also increasing resource consumption. In the Oz modes, there are three
levels. You can select one using the f ont - | ock- maxi num decor at i on user option,
e.g., add the following line to your . emacs:

(setqg font-1ock-maxi mum decoration 3)

The default level depends on your version of Emacs.
The following user option controls automatic fontification in the OPI.

user option 0z-want - f ont - | ock (default: t)

If non-ni | , automatically invoke f ont - | ock- mode when any of the Oz modes is acti-
vated. If you prefer to control this via gl obal - f ont - | ock- node, you can set this to
nil.

You might like the following user option and command if you care about superfluous
(usually invisible) spaces:
user option 0z- pedanti c- spaces (default: nil)
If non-nil, highlight ill-placed whitespace. Note that this user option must be set before
the oz library is loaded.
face o0z-space-face

The face in which ill-placed whitespace is highlighted.

command 0z-renpbve-annoyi ng- spaces

Remove all ill-placed whitespace from the current buffer. This is all the whitespace
that is highlighted in oz- space- f ace.



command

command

command

command

command

command

command

command

3.4. Comments 9

3.4 Comments

oz-fill-paragraph &ptional JUSTI FY

Like the fi || - paragraph command, but handles Oz comments. If any of the cur-
rent line is a comment, fill the comment or the paragraph of it that point is in, pre-
serving the comment’s indentation and initial percent signs. The buffer-local variable
fill-paragraph-function is bound to this command, so it will also be invoked by
M x fill-paragraph (M Q).

oz-conment - regi on START END &optional ARG

Comment or uncomment each line in the region. With just C- u as prefix argument,
uncomment each line in region. A numeric prefix argument ARG means use ARG com-
ment characters. If ARG is negative, delete that many comment characters instead.
Blank lines do not get comments.

oz-unconmment - regi on START END &optional ARG

Comment or uncomment each line in the region. See the oz- corment - r egi on com-
mand for more information; note that the prefix argument is negated though.

3.5 Expression-Level Commands

In this section, we use the term Oz definition to stand for the text from a pr oc, f un,
cl ass or met h keyword up to its matching end. Also, we use the term Oz expres-
sion to stand for the text corresponding to either a bracketed Oz construct (such as
proc ... endorlocal ... end)orasingleword.

f orwar d- oz- expr &ptional COUNT (M C-f)
Move point forward by one balanced Oz expression. With COUNT, do it that many
times. Negative COUNT means backwards.
backwar d- oz- expr &optional COUNT (M C- b)
Move point backward by one balanced Oz expression. With COUNT, do it that many
times. COUNT must be positive.
mar k- oz- expr COUNT (M C- @ M C- SPC)
Set mark COUNT balanced Oz expressions from point. The place mark goes to is the
same place the f or war d- oz- expr command would move to with the same argument.
transpose- oz-exprs ARG(M C-t)
Like the t ranspose-wor ds command (M t ) but applies to balanced Oz expressions.
Caveat: This might not produce nice results in all cases.
ki ll-oz-expr COUNT (M C- k)

Kill the balanced Oz expression following point. With COUNT, kill that many Oz
expressions after point. Negative COUNT means kill - COUNT Oz expressions before
point.



command

command

command

10 Chapter 3. Editing Oz Code

backwar d- ki | | - 0z- expr COUNT (M- C- DEL[)
Kill the balanced Oz expression preceding point. With COUNT, Kill that many Oz
expressions before point. Negative COUNT means kill - COUNT Oz expressions after
point.
0z- begi nni ng- of - def un (M- C- a)
Move point to the start of the Oz definition itis in. If point is not inside an Oz definition,
move to start of buffer. Returns t unless search stops due to beginning or end of buffer.
oz-end- of - defun (M C- €)

Move point to the end of the Oz definition itis in. If point is not inside an Oz definition,
move to end of buffer.

INote that under some configurations, this key combination kills the X server.



Running Mozart from the OPI

The OPI allows to run Mozart directly from the OPI. A sub-process is started that
executes ozengi ne with a single root functor argument, by default called OPI . ozf .
In particular, { Property. get argv} will always returnni | .

Emulator and Compiler The output of the process is redirected into an Emacs
buffer called *Qz Enul ator*. For instance, all output done via Syst em show etc.
will appear in this buffer. Additionally, the OPI . ozf program instantiates an Oz
compiler and attaches its input and output to an Emacs buffer called *Qz Conpi | er *;
communication, in this case, is done via a socket. The compiler might also create a
new buffer for output of source code, called *Oz Tenp*.

When we speak of the ‘Oz Emulator’ and ‘Oz Compiler’ buffers in this manual, we
mean the buffers called *Qz Enul at or* and *Oz Conpi | er * respectively.

In order to run the Mozart system, the OPI has to know its installation path. This is
normally found through the environment variable OZHOVE; it will have been set by the
oz shell script if you started the OPI with it. If it is not set, the value of the following
variable will be used instead.

user option CZ- HOVE (default: / usr/ 1 ocal / ozf

Directory where Oz is installed. Only used as fallback when the environment variable
OZHOVE is not set.

4.1 Running and Halting

command run-oz (C-.

The following commands are used to start and halt the Mozart sub-process.

r)
Start Mozart as a sub-process if it is not already running. Handle input and output via
the Oz Emulator buffer. If the current buffer is not running in an Oz mode, create a
new buffer in Oz mode.

user option 0z-change-titl e (default: nil)

If non-ni |, change the Emacs frame’s title while a Mozart sub-process is running.

1This default is actually fixed at the time the Mozart system is configured and built, so it might vary
on your system.



user option

command

user option

command
command
command

user option

12 Chapter 4. Running Mozart from the OPI

oz-frame-title (default: o))
String to use as Emacs frame title while a Mozart sub-process is running. In the default
shown above, the old frame title will be inserted in place of the ellipsis.

oz-halt FORCE(C-. h)

Halt the Mozart sub-process. With no prefix argument, feed an /{ Appl i cation. exit 0}
statement and wait for the process to terminate. Waiting time is limited by the user op-
tion oz- hal t - t i meout ; after this delay, the process is sent a SIGHUP if still living.

With C- u as prefix argument, send the process a SIGHUP without delay. WithC-u C-u
as prefix argument, send it a SIGKILL instead.

oz-hal t-ti meout (default: 30)
Number of seconds to wait for shutdown in command oz- hal t .

4.2 Mozart’s Output Buffers
Several commands make inspecting the Oz Emulator and Oz Compiler buffers easier.

oz-toggl e-enul ator (C-. €)

oz-toggl e-conpiler (C. ¢)

oz-toggle-temp (C-. t)
Toggle visibility of the Oz Emulator, Compiler or Temporary window respectively.
If the buffer is not visible in any window, then display it. If it is, then delete the
corresponding window.

0z- ot her - buf f er - si ze (default: 35)
Percentage of screen to use for Oz Compiler, Emulator or Temp window.

4.3 Feeding Code to the Compiler

Feedable Regions The commands that send regions of the current buffer to the
Oz Compiler for compilation come in four flavors:

e Feeding the whole buffer. More specifically, the region the buffer has been nar-
rowed to is fed.

o Feeding the currently marked region, i.e., the text contained between point and
mark.

e Feeding the line point is in. If a numeric prefix argument is given, that many
lines are fed; if the prefix argument is negative, that many preceding lines as
well as the current line are fed.

e Feeding the paragraph point is in (or after, if it is not inside any paragraph). A
paragraph is a region of text delimited by empty lines, i.e., lines not even con-
taining whitespace. If a numeric prefix argument is given, that many paragraphs
are fed; if the prefix argument is negative, that many preceding paragraphs as
well as the current paragraph are fed.



command
command
command
command

command
command
command
command

command
command
command
command

command

user option

command

user option

4.4, Running the Command-Line Tools 13

oz-feed-buffer (C-. Cb)

oz-feed-regi on START END(C-. C-r)

oz-feed-1ine COUNT (C-. C-1)

oz- f eed- par agraph COUNT (C-. C-p, M C x)
The corresponding text region is fed to the compiler and processed with its currently
active switches.

oz-showbuffer (C-. s C-b)

oz-showregi on START END(C-. s Cr)

0z-show1ine COUNT (C-. s C1)

0z- show par agr aph COUNT (C-. s Cp)
Feed the corresponding text region to the Oz Compiler. Assuming it to contain an
expression, enclose it by an application of the procedure Show.

0z-to-coresynt ax- buffer
0z-to-coresynt ax-regi on START END
0z-to-coresynt ax-1ine COUNT

0z-t 0- cor esynt ax- par agr aph COUNT

The corresponding text region is prefixed by

\'l ocal Swi t ches
\switch +core -codegen

and fed to the Oz Compiler. If compilation succeeds, the resulting source file will be
displayed in the Oz Temporary buffer.

oz-send-string STRI NG &optional SYSTEM
Feed STRI NGto the Oz Compiler, restarting it if it died. If SYSTEMis non-ni |, it is
a command for the system and is prefixed by

\'l ocal Swi t ches
\'swi tch +t hreadedqueri es -verbose -expression -runw t hdebugger
oz- prepend- | i ne (default: t)

If non-ni |, prepend a\ | i ne directive to all Oz queries, specifying the file name (or
buffer name, if there’s no associated file) and the line number. This information is
used by the compiler to output meaningful error messages and to include debugging
information in the generated machine code.

4.4 Running the Command-Line Tools

oz-conpile-file

Compile an Oz program non-interactively.

oz-conpi | e- conmand (default: )

Default shell command to do a compilation. This may contain at most one occurrence
of s, which is replaced by the current buffer’s file name. Used by oz- conpi | e-fi | e.



14 Chapter 4. Running Mozart from the OPI

command o0z-debug-application

Invoke ozd.

user option 0z-appl i cati on-conmand (default: )

Default shell command to do execute an Oz application. This may contain at most one
occurrence of %s, which is replaced by the current buffer’s file name, minus the . oz
or . 0zg extension. Used by oz- debug- appl i cati on.

4.5 Dealing With Errors

Error Messages An error message is either an error or warning message issued by
the Oz Compiler or an exception displayed by the Emulator.

Error Coordinates Where available, error coordinates are associated with error
messages, consisting of the file name (or buffer name) and line number of the corre-
sponding Oz source code.

user option 0z- popup-on-error (default: t)
If non-nil, pop up Compiler resp. Emulator buffer upon an error message.

command next-error &ptional ARG(C-x ‘)
Visit next compilation error message and corresponding source code.

A prefix arg specifies how many error messages to move; negative means move back to
previous error messages. Just C- u as a prefix means reparse the error message buffer
and start at the first error.

This normally uses the most recently started compilation. To specify use of a particular
buffer for error messages, type C- x * in that buffer.

4.6 Seeing the OPI from Mozart

Startup When the OPI . ozf file is applied, a startup file is searched and loaded as
follows:

1. It is first checked whether the environment variable OZRC is set. If it is, its
contents is interpreted as a file name that is fed to the OPI compiler.

2. Else, if the file ~/ . 0z/ ozr c exists and is readable, it is fed to the compiler.

3. Else, if the file ~/ . ozr c exists and is readable, it is fed to the compiler.



4.6. Seeing the OPI from Mozart 15

Compiler Environment The environment available when running Mozart from
the OPI is an enriched base environment (see “The Oz Base Environment”). All of
Mozarts system modules and tools are available under variables named like the cor-
responding modules, e.g., the functionality of the open programming component is
available as open. Additionally, the following aliases are introduced:

Alias Long Form

Show Syst em show

Pri nt System pri nt

Br owse Br owser . br owse

| nspect | nspect or. i nspect
Load Pi ckl e. | oad

Save Pi ckl e. save

Sear chOne Sear ch. base. one
Sear chAl | Sear ch. base. al |

Sear chBest Sear ch. base. best
Expl or eOne Expl orer. one
Expl or eAl | Expl orer. all

Expl oreBest  Expl orer. best

Compiler Interface When Mozart is started from the OPI, an instance of the Mozart
compiler is created that listens for queries from the interactive development environ-
ment. This interaction is handled via a compiler interface called Emacs. i nterface
(see Section Compiler Interfaces, (The Mozart Compiler)).

System Properties It is possible to test whether Mozart is currently running under
the OPI or as a standalone system via the following system property:

{Property. get 7B}

This returns f al se when Mozart has been started from the OPI. When this is the case,
a reference to the compiler interface via which the interaction with the Emacs devel-
opment environment takes place can be obtained via

{Property. get 20



16

Chapter 4. Running Mozart from the OPI




command

command
command
command
command

command
command
command
command

command

0z-

0z-
0z-
0z-
0z-

0z-
0z-
0z-
0z-

0z-

Interacting With the Development
Tools

This section briefly documents how Mozart’s development tools are integrated into the
OPI; several of these commands are available from the Oz menu. For more details
about the tools themselves, see the individual user manuals. For a description of the
feedable regions, see Section .3,

The following command is useful for several of the tools.

bar-renove

Remove any coloured bar marking an Oz source line. Such bars are used by the Com-
piler Panel, the Debugger and the Profiler.

Browser

browse-buffer (C-. b Cb)
browse-regi on START END(C-. b Cr)
browse-1ine COUNT(C-. b C1)
browse- par agraph COUNT (C-. b C p)

Feed the corresponding text region to the Oz Compiler. Assuming it to contain an
expression, enclose it by an application of the procedure Br owse.

Inspector
i nspect-buffer (C. I Chb)
i nspect-regi on START END(C-. i Cr)
inspect-1ine COUNT (C-. i C1)
i nspect - paragraph COUNT (CG-. i G p)

Feed the corresponding text region to the Oz Compiler. Assuming it to contain an
expression, enclose it by an application of the procedure | nspect .

System Panel

open-panel (CG. GC. s)
Open the System Panel by feeding the statement { Panel . open} to the Oz Compiler.



command

command

command

command

18

Chapter 5. Interacting With the Development Tools

Compiler Panel

0z- open-conpil er-panel (C-. C. c)

Open the Compiler Panel by feeding the statement { New Conpi | er Panel . init(OPl.conpiler)
to the Oz Compiler.

Debugger

oz-debugger ARG(C-. C-. d)

Open the Oz Debugger by feeding the statement { Ozcar . open} to the Oz Compiler.
With ARG, close it instead by { Ozcar . cl ose}.

0z- breakpoi nt - at - poi nt ARG(C-x SPC)

Set a dynamic breakpoint for the Oz Debugger in any code carrying the current source
file name (or buffer name) and line number as debugging information. With ARG,
delete any breakpoints at these coordinates instead.

Profiler

oz-profiler ARG(C-. C. p)

Open the Oz Profiler by feeding the statement { Prof i | er. open} to the Oz Compiler.
With ARG, close it instead by { Profi | er. cl ose}.



Using Profiles

To make it easy to run multiple versions of Oz and also customize them through the
. emacs file, there is the notion of profiles. A profile is an alist providing values for
the Oz mode variables you want to set different from their default. Besides the ability
to have profiles for multiple versions of Mozart, you can also define profiles for build
and debug directories (with possibly different gdb setting for interactive debugging for
debug directories).

user option oz-profiles (default: nil)
An alist of profiles for different Oz mode configurations.

command oz-set-profile NAVE
Select profile NAME from those defined in oz- profi | es.

command oz-profile-undo

Undo the bindings established by the current profile.



20

Chapter 6. Using Profiles




A

Summary of Oz-Specific Emacs Key
Bindings

In this appendix, we present a summary table of all Oz-specific Emacs key bindings.
This is intended as a convenient reference; more detailed explanations are given in
previous chapters.

C-. s the short Oz-specific prefix; C-. C-. is the short Oz-specific tool prefix.
Both have equivalent long prefixes: C-¢ . and CG-¢ . C-c . ;these are useful on
terminals that cannot generate C-. (such as a VT100). The table below documents
only the short prefix.



Appendix A. Summary of Oz-Specific Emacs Key Bindings

Editing Code

M C-f (page B) forward expression

M C- b (page backward expression

M C- k (page B) kill expression

M C- DEL (page [L0) backward kill expression
M C- @(page B) mark expression

M C- SPC (page mark expression

M C- q (page B) indent expression

M C- a (page [L0) beginning of definition
M C- e (page[[0) end of definition

M C-t (page transpose expressions
Cx ‘ (page[[4) next error

Managing Buffers

M n (page [1) next Oz buffer

M p (page [A) previous Oz buffer

C . n(page[d new Oz buffer
Interacting With a Mozart Sub-Process
C . e (pagefld) toggle emulator buffer
C. c(pagefld toggle compiler buffer
C . t (pagefd) toggle temporary buffer
C. r (page[lD) start Mozart sub-process
C . h(page[d) halt Mozart sub-process

Cu C. h(pagefld) halt Mozart sub-process (forced)
Executing Code

C. C b (page[ld) feed buffer

C. C-r (pagefld) feed region

C. CI (page[d) feed line

C-. C p(pagefld) feed paragraph

M C x (page [L3) feed paragraph

Evaluating Expression and Browsing Result
C. b C b (pagefld) browse buffer

C. b Cr (pagefl7) browse region

C. b C| (pagefld) browse line

C. b Cp(pagefl7]) browse paragraph
Evaluating Expression and Showing Result
C. s C b (page[ld) show buffer

C. s Cr (pageftd) show region

C. s C| (pagefld) show line

C-. s Cp(pagefld) show paragraph
Interacting With Tools

C. C. s (pagefl]) open system panel

C. C. c(pagefld) open compiler panel

C. C. p(pagefld) start profiler

C-. C. d(pagefl§) start debugger

C x SPC (page [19) set breakpoint on current line
Mozart System Development Support

C . d (pagep9) toggle gdb
C-. o (pagep4) toggle global/local emulator
C . m(page p4) set path to local emulator

Cu C. o (pagePd) toggle global/local functors
Cu C. m(pagePq) setsearch path to local functors



command
command
command
command

command

Mozart System Development Support

The commands and user options described in this section are probably only interesting
for people developing or extending parts of Mozart and thus compiling their own sys-
tem components. They provide for testing parts of the system locally before installing
and for running them under the GNU Debugger gdb.

For completeness and as a reference for the developers themselves, they are described
here nevertheless.

B.1 Viewing Emulator Bytecode

0z-
0z-
0z-
0z-

t o-
t o-
t o-
t o-

The bytecode produced by the compiler can be displayed conveniently in an Emacs
buffer. See Section f.3 for a description of the feedable regions.

enul at or code- buf f er

enul at or code-regi on START END
enul at or code- | i ne COUNT

enul at or code- par agr aph COUNT

The corresponding text region is prefixed by

\'l ocal Swi t ches
\switch -core +codegen +outputcode -feedtoenul ator

and fed to the Oz Compiler. If compilation succeeds, the resulting source file will be
displayed in the Oz Temporary buffer.

ozm node

This is the major mode for displaying (especially fontifying) bytecode. Loading a file
with extension . ozmautomatically puts a buffer into Oz-Machine mode. You can tell
a buffer is in Oz-Machine mode by the string Oz- Machi ne in its mode line.

B.2 Testing Locally

One part of the support is concerned with testing system functors locally.



24 Appendix B. Mozart System Development Support

user option 0z-bui | d-di r (default: ~/ nozart)
Path to the build directory, i.e., the directory in which confi gur e was invoked. You
should set this before the OPI is loaded into Emacs for the following user options to be
initialized correctly.

user option 0z-enul at or (default: see below)

File name of the Oz Emulator binary. This is used when running the Emulator under
gdb, and by the oz- ot her command.

The default value of this variable is taken from the environment variable OZEMJLATOR
if it is set, else it is set to
0z-build-dir/ pl at f or mf erul at or / emul at or . exe

user option 0z- f unct or - pat h (default: see below)

Search path for the Oz system functors. This is used by the oz- ot her command. By
default, this specifies rules to look for functors in the oz-build-dir/ shar e/ | i b and
oz-build-dir/ shar e/ t ool s directories. This is useful for first testing changes before
installing the modified functors globally.

The default value of this variable is taken from the environment variable OZ_LQAD if
itis set, else it is set to

prefix=x-o0z\\://systeni =0z-build-dir/ share/lib/:
prefix=x-o0z\\://system =0z-build-dir/ share/t ool s/ :
prefix=x-o0z\\://boot/=0z-build-dir/ pl at f or nf enul at or/:
cache=~/ . oz/ cache: cache=0z-home/ cache

where oz-home stands for the value of the environment variable OZHOVE.

user option 0z-r oot - funct or (default: )
Name of the root functor to load on startup.

command o0z-set -ot her SET- FUNCTOR- PATH(C-. m
If SET- FUNCTOR- PATHisni |, call oz- set - enul at or, else call oz- set - f unct or - pat h.

command oz-set-emulator (CG-. m
Interactively set the value of the variable oz- enul at or . Also, if the environment vari-
able OZEMULATOR is set, replace its value by this one.
command oz-set-functor-path(Cu CG. m
Interactively set the value of the variable oz- f unct or - pat h. Also, if the environment
variable OZ_LQAD s set, replace its value by this one.
command o0z- ot her SET- FUNCTOR- PATH(C-. 0)
If SET- FUNCTOR- PATHisni |, call oz- ot her - enul at or , else call oz- ot her - f unct or - pat h.

command o0z-other-enulator (C-. 0)

Toggle between global and local Oz Emulator. The local emulator is given by the user
option oz- emul at or ; See oz- set - enul at or .

command o0z-other-functor-path(CGu C-. 0)

Toggle between global and local Oz functor search path. The local functors are given
by the user option oz- f unct or - pat h; see oz- set - f unct or - pat h.



B.3. Running under gdb 25

B.3 Running under gdb
The last command is for starting the Mozart Emulator under gdb.

command oz-gdb (C-. d)

Toggle debugging of the Oz Emulator with gdb. This sets some additional environment
variables since the oz script has to be bypassed, and starts gud- mode with the emulator
binary specified by the user option oz- enul at or.

user option 0z- gdb- aut ostart (default: t)
If non-ni |, start emulator immediately when in gdb mode. Else you have the possibil-
ity to first set breakpoints and only run the emulator when you issue the r un command
to gdb.



26

Appendix B. Mozart System Development Support




function

function
function

function

function

function

function

0z-

0z-
0z-

0z-

0z-

0z-

0z-

Application Programmer’s Interface

This section documents some functions that might be useful to users wanting to write
their own Oz-syntax-aware commands. All of these commands respect Oz syntax wrt.
quoted elements.

i s-quot ed

Return non-ni | iff pointis inside a string, quoted atom, backquote variable, ampersand-
denoted character or end-of-line comment. In this case, move the point to the beginning
of the corresponding token. Else point is not moved.

backwar d- keywor d

f orwar d- keywor d
Search backward resp. forward for the last resp. next keyword or parenthesis preceding
resp. following point. Return non-ni | iff such was found. Ignore quoted keywords.
Point is left at the first character of the keyword.

backwar d- begi n
Move to the last unmatched start of a bracketed Oz construct and return column of
point.

f orwar d- end

Move point to the next unmatched end.

backwar d- par en

Move to the last unmatched opening parenthesis and return column of point.

f orwar d- par en

Move to the next unmatched closing parenthesis.

Please submit interesting commands you formulate using these functions to the author.



28

Appendix C. Application Programmer’s Interface




Limitations

Some features of Oz syntax are not handled correctly for purposes of fontification and
indentation. These will be described in the following so that you can work around
these limitations.

Fontification

e An ampersand as the last character in a string or before a backslash-escaped
double quote in a string prevents this double quote from being recognized as a

string delimiter. Workaround: Write [ &&] or instead of
e A backslash character token immediately followed by a lowercase letter
is misinterpreted as a directive, e.g., in C == & ... Workaround:

Include a space character.

o At maximum fontification level, method names are coloured inf ont - | ock- f unt i on- nane- f ace.
If one mistakenly uses a keyword as method name, asinneth 1 ock() ... end,
then one is not reminded of the fact that this constitutes a syntax error.

e The use of non-escaped double quotes in Gump regular expression tokens written
with angle brackets confuses fontification. Workaround: Express the regular
expression by a string.

Indentation

o Ifakeyword isimmediately preceded by a number (without space), e.g., 10t hr ead,
the keyword is not recognized as such. This also concerns fontification. Workaround:
Write a space.

e Indentation does not know about/* ... */ style comments, that is, their con-
tents is indented like code and taken into account for computing the following
indentation level. Workaround: Only use such comments to comment out prop-
erly nested code.

e Indentation does not know about conditional compilation. Workaround: Only
use conditionals around properly nested code.



30 Appendix D. Limitations

e Line breaks inside strings, quotes or backquote variables are reported as errors
when computing the indentation level. Workaround: Write line breaks as
and/or use virtual strings with # concatenation for multiline strings.

e Indentation is not aware of infix operators, e.g.:

f eat
f:

7

The 7 should be underneath the 5. Workaround: Enclose the expression in paren-
theses.

e The contents of Gump regular expression tokens in angle bracket notation are
not ignored for purposes of indentation. Workaround: Express the regular ex-
pression by a string.



Bibliography

[1] Richard M. Stallman. GNU Emacs Manual, 7th edition, 1991.



\ i ne directive, [[3
~/ . 0zl ozrc,[l4
~/ . ozrc,[4

add- hook, fi
Application
Application, exit, f[3

backwar d-ki | | - oz-expr,
backwar d- oz- expr, [
breakpoints,
Browser, [L7]
buffer
buffer, compiler, [, L2
buffer, emulator, [}, 2
buffer, menu, §

buffer, temporary, [T, [2
buffer name, [L3, [i4

bytecode,

class, §
comments, g, @
compiler
compiler, buffer, [1], [[2
compiler, core syntax, [[3
Compiler Panel,
core syntax, [[3

Debugger,
definition,

descri be-function, f
descri be- key,
descri be- node, f
descri be-vari abl e,
documentation string, §

Emacs
Emacs, conventions, |
Emacs, GNU, [1, B,
Emacs, startup file, f]
Emacs, XEmacs, I, B,
emulator
emulator, buffer, [1], f[2
emulator, byte code, P3
emulator, debugging, 5

32

Index

emulator, local, P4
end, B, 1
error message, [3
exception, [L4
expression,

face, f

file name, [[3, [I4
fiII-paragraph,E
font, §

f orwar d- oz- expr, P
frame title, [[7]

fun,E

functor

functor, root, [L1], P4
functor, system, P4

gdb, P9
GNU Emacs, [, B, 8
gud- node,

hook, §

i ndent - oz- expr , f
Inspector, [L7]

key bindings
key bindings, of a major mode,
key bindings,

keymap,
kill-oz-expr,f
killing,

line number, [L3, [[4

mar k- oz- expr, |
menu, B, L7
met h, §

mode line, i, 3

next-error,[[4

OPl . ozf ,[11

Oz expression
Oz expression, indenting,
Oz expression, killing, @



33

Oz expression, marking,

Oz expression, moving over,
oz shell script, B, [[1, B§
0z-appl i cati on- command, E
0z- aut o-i ndent ,
o0z- backwar d- begi n, P7]
0z- backwar d- keywor d, @
0z- backwar d- par en, B
oz- bar - renove, [[7]
0z- begi nni ng- of - def un,
oz- br eakpoi nt - at - poi nt ,
0z- browse- buffer, @
oz- browse- | i ne, f[1]
0z- browse- par agr aph, @
oz- browse- r egi on, [[7]
0z-bui | d-dir, P4
oz-change-title, []]
0z- comment - r egi on, E
0z-conpi | e- command, E
oz-conpi l e-file, [[3
0z- debug- appli cati on, @
oz- debugger,
oz-electric-termnate-1i ne,E
oz-emul ator, P4
oz-enul at or, E
0z- end- of - def un,
oz-feed- buffer,@
oz-feed-1ine, [13
oz-f eed- par agr aph, B
oz-feed-regi on,@
oz-fill-paragraph, fi
oz-forward-end,@
oz- f or war d- keywor d, P1]
oz-f orwar d- par en,@
oz-frane-title,[[3
oz-functor-pat h, @
oz- gdb, P§
0z-gdb-autostart, @
0z- gunp- node,
oz-hal t, [[3
oz-halt-ti rreout,@
oz- HOVE, []]

0z-i ndent-buffer,E
oz-indent-chars, |
oz-indent-|i ne,m

oz-i ndent - r egi on, [

0z-1i nspect-buffer,@
oz-i nspect - i ne, [[7]

0z-i nspect - par agr aph,

0z-1inspect - r egi on,@
0z-i s-quot ed, P

0z- rrode,

o0z- mode- hook, fi

0z- node- map, E

oz-new buffer, [

oz- next -buffer,

0z- open- conpi | er - panel ,
oz- open- panel , [[7

0z- ot her,@

0z- ot her - buf f er - si ze, L2
oz- ot her - emul at or , P4

oz- ot her - f unct or - pat h, P4
0z- pedanti c- spaces, E

0Z- popup- on-error, @

oz- prepend-|ine, B
oz-previ ous- buf fer,
oz-profile-undo, @
oz-profiler,[§
oz-profiles,

0z-r enove- annoyi ng- spaces, E
oz-root - functor, P4
oz-send- st ring, [[3
oz-set-enul ator, P4
0z-set-functor-path, @
oz- set - ot her, P4
oz-set-profile, E

oz- show buf fer, [[3
0z-show | i ne,@

0z- show par agraph,@

0z- show r egi on, [[3
oz-space-face, E
0z-to-coresyntax-buffer, El
oz-to-coresyntax-line, E

0z- t o- cor esynt ax- par agr aph, [[3

0z-t 0-coresynt ax-region,
0z-t o- emul at or code- buf f er, B3
0z-to-emnul at or code- | i ne,

0z-t o- enul at or code- par agr aph,

0z-t o-emnul at or code-r egi on,
oz-toggl e-conpil er,

oz-t oggl e- enul at or,
oz-toggl e-tenp, E

0z- unconment - r egi on,
oz-want -font -1 ock,

ozengi ne, ]

ozm rmde,@

proc, B

B3



34

INDEX

Profiler, [[§

program group, §

Property
Property,argv, @

renove- hook,E

root functor, L7, p4

run-oz,

shell script

shell script, oz, B, 1, B5
socket, [L]
spaces, f
startup file, [[4]
strings, §
System Panel, [[7

temporary buffer, [T, [[7

transpose-o0z-exprs, E

whitespace, f
Windows, B,

XEmacs, [, B,



