Oz Explorer — Visual Constraint Programming
Support

Christian Schulte

Version 1.2.3

December 1, 2001 m 0 1 a rt

Abstract

The Oz Explorer is a graphical and interactive tool to visualize and analyze search trees.
A research paper on the Oz Explorer is [fl].

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

1 Summary

P Invoking the Explorel

B The User Interface|

B The Search Treq

5 Status Information

b6 The Menu Bai

6.1 The Explorer Menu
b.2 The MoveMeny
6.3 The SearchMenu
6.4 The NodesMenu
.5 TheHideMeny
6.6 The OptionsMeny

[7 User-defined Actiong

[7.1 Information Actions

|[/.2 Compare Actiony
[7.3 Statistics Actions

B The Explorer Object

10
O D S

Contents

Summary

This chapter briefly outlines the features of the Oz Explorer.

Invoking The Explorer is invoked by applying it to a script. It can be applied to both
a script and an order, which switches the Explorer to branch and bound mode such that
it supports best solution search.

Exploring The search tree of the current script can be explored in a user-guided
manner. Starting from any node in the search tree further parts can be explored. Ex-
plored parts of the search tree are drawn as they are explored.

Search trees can be explored in a depth-first fashion up to the next solution. Entire
subtrees as well as single nodes can be explored. Exploration and/or drawing can be
stopped and resumed at any time.

Information Access Nodes in the tree representing choices and solutions carry
as information their corresponding computation spaces. The Explorer gives first-class
access to them by predefined or user-defined procedures.

Statistical information is available in a status bar during exploration. Detailed statistical
information with respect to a subtree can be accessed by predefined or user-defined
procedures.

Display Economics The display of large search trees can be kept economic by
scaling the tree and by hiding subtrees. Support for automatically hiding complete
subtrees not containing solutions is provided. Hidden subtrees can be unhidden on
demand.

Recomputation The Explorer can run scripts with a large number of constraints
and propagators and with large search trees efficiently with respect to both space and
time. User-configurable recomputation can be employed to trade space for time for
scripts which would require to much memory otherwise.

Postscript Output The search tree of a script can be dumped in postscript format.

Finding Nodes Nodes in the search tree can be selected directly or by convenient
short cuts.

Chapter 1. Summary

script

one

al |

one

al |

Invoking the Explorer

The Explorer is provided as an object Expl or er . obj ect . The Explorer can be applied
to a script as follows.

{Expl orer. object script(+ScriptP)}
{Expl orer.object script(+ScriptP +OrderP)}

Initializes the Explorer with the script ScriptP (a unary procedure). If the binary pro-
cedure OrderP is given, the Explorer runs this script in branch and bound mode.

{Expl orer. object one(+ScriptP)}
{Expl orer. object one(+ScriptP +O derP)}

Initializes the Explorer with the script ScriptP (a unary procedure) and starts explo-
ration of the search tree up to the first solution. If the binary procedure OrderP is
given, the Explorer runs this script in branch and bound mode.

{Expl orer.object all(+ScriptP)}
{Expl orer.object all (+ScriptP +O derP)}

Initializes the Explorer with the script ScriptP (a unary procedure) and starts explo-
ration of the entire search tree. If the binary procedure OrderP is given, the Explorer
runs this script in branch and bound mode.

The following procedures are provided for convenience.

{Expl orer.one +Scri ptP}

Initializes the Explorer with the script ScriptP (a unary procedure) and starts explo-
ration of the search tree up to the first solution.

{Explorer.all +ScriptP}

Initializes the Explorer with the script ScriptP (a unary procedure) and starts explo-
ration of the entire search tree.

4 Chapter 2. Invoking the Explorer

best
{Explorer.best +ScriptP +OrderP}

Initializes the Explorer with the script ScriptP (a unary procedure) and starts explo-
ration of the entire search tree following a branch and bound strategy. Best solution is
performed with respect to OrderP (a binary procedure).

The User Interface

Figure 3.1: The user interface of the Explorer.

menu bar
0z Explorer H= E3
Ezplorer Move " Search Modes Hide Options
current
node —— scale bar
K
‘ {
L=
Time: 1oms 0%y , O 30 2 W 3 Depth: 4 \k
| scroll bars

I
status bar

The graphical user interface of the Explorer is shown in Figure B.1. The main compo-
nents of the graphical user interface are as follows.

Menu Bar The menu bar gives access to the Explorer’s operations. Accelerators to
operations are available with the keyboard and with the mouse. Chapter f] describes
the operations.

Scale Bar The scale bar allows to scale the search tree. Clicking with the right
mouse button scales the search tree such that it fits the size of the window (if possible).

Scrollbars With the vertical and horizontal scrollbars the visible part of the search
tree can be adjusted.

Status Bar The status bar contains status information on the Explorer and on the
search tree. See Chapter [for more information.

Chapter 3. The User Interface

Selected Node Within the search tree, a single node can be selected. The selected
node is drawn shadowed. Most operations execute with respect to the currently selected
node or with respect to the subtree starting at the currently selected node.

Current Node, Current Subtree To the selected node (subtree) we also refer to
as the current node (current subtree).

Figure B.J does not show the mouse pointer. From the mouse pointer one can get
additional status information. This is explained in Chapter p]

The Search Tree

Node

choice

choice

solved

solved

failed

suspended

Figure 4.1: Nodes in the search tree.

Kind

open

closed

suspended

entailed

Color

O

X | Qo O O

light blue

blue

light green

green

red

HIEEERO IR O O]

orange

thin border

thick border

thin border

thick border

thin border

thin border

Figure [sketches how the different nodes are drawn by the Explorer.

Choice nodes Choice nodes are drawn as circles. A choice node is closed, if all of

its direct descendants are explored, otherwise it is open.

Solved nodes Solved nodes are drawn as diamonds. The Explorer distinguishes
between nodes corresponding to entailed (i.e., spaces where no actors and propagators
are left) or suspended (i.e., spaces where actors or propagators are left) computation

spaces.

Failed nodes Failed nodes are drawn as rectangular boxes.

Chapter 4. The Search Tree

Suspended nodes Suspended nodes are drawn as stars. If the search tree contains
a suspended node, it cannot be further explored. If the corresponding computation
space becomes stable, the node will change to a node corresponding to the now stable
space.

Figure 4.2: Hidden subtrees in the search tree.

Explored Solutions Color

A

partially yes light green
A

partially no purple
A

fully yes green
A

fully no red

Hidden subtrees Besides of nodes, the search tree may also contain hidden sub-
trees. Hidden subtrees are drawn as triangles, see Figure .2l More on hiding subtrees
can be found in Section p.5.

Selecting nodes Choice nodes, solved nodes, and hidden subtrees can be
selected by clicking on them with the left mouse button. The selected node is drawn
shadowed (See also Chapter B).

Numbered nodes Invoking an action on a node marks the node with a number.
For invoking actions see Section .4

Status Information

Status bar The status bar displays the most important information on the Explorer
and the search tree.

BAB To the left of the status bar the letters BAB (for branch and bound) are dis-
played, if the Explorer is currently running in best solution search mode. Otherwise,
no letters are displayed.

Time The time gives the runtime spent so far for exploration, where time for garbage
collection is excluded. The percentage figure displayed in parenthesis shows the amount
of time spent on copying.

Nodes The number of occurrences of each kind of node follows then to the right.
The choice node drawn in the status bar is of special importance: if the search tree has
been explored completely, the choice node is drawn as a closed node, otherwise as an
open choice node (see Chapter #] on open and closed choice nodes).

Depth The depth shows the depth of the search tree, that is the number of nodes on
the longest path in the search tree.

Mouse pointer When the Explorer is idle, the mouse pointer is displayed as an
arrow. If the Explorer is exploring the search tree the mouse pointer has the shape of a
watch. During drawing, the mouse pointer shows a pencil.

10

Chapter 5. Status Information

The Menu Bar

All operations available with the Explorer can be chosen from menu entries. Some
operations can invoked by keyboard accelerators. The most important operations can
be invoked with the mouse.

Keyboard accelerators are shown to the right of menu entries. Accelerators beginning
with C- require the control-key to be pressed together with the key. Operations avail-
able via mouse buttons are tagged by a small figure to the left of the explanation.

6.1 The Explorer Menu

About. ..

Halt

Break

Reset

This menu contains operations to stop, reset, and quit the Explorer.

Displays a window containing short information on the Explorer.
Cg

Halts exploration of the search tree, but does not halt drawing of newly explored parts.
Cc

Breaks both exploration and drawing of the search tree. Drawing is stopped as follows:
not yet drawn subtrees are drawn as hidden.

Cr

Resets the Explorer such that only the top node of the search tree is explored and drawn.

Export Postscript. . .

Close

Opens a window to choose a file. After a file has been selected, the drawing of the
search tree is dumped to this file in postscript format.

C-x

The Explorer window is closed. When the Explorer is invoked again, a new Explorer
window is created.

12

Chapter 6. The Menu Bar

6.2 The Move Menu

Operations accessible from this menu manipulate the current node.

Center (3
Scrolls the search tree such that the current node is centered (if possible).
Top Node t
Makes the top most node of the search tree the current node.
Leftmost -
Makes the leftmost node of the search tree the current node.
Rightmost +
Makes the rightmost node of the search tree the current node.
Backtrack b
Makes the nearest open choice node the current node. Nearest means the nearest node
which is above and to the left of the current node.
Previous Solution <

Next Solution

Makes the previous solution (i.e., the nearest solution to the left of the current node)
the current node.

>

Makes the next solution (i.e., the nearest solution to the right of the current node) the
current node.

6.3 The Search Menu

Next Solution

All Solutions

One Step

Operations available from this menu explore the search tree.

n

Explores the search tree starting from the current node up to the next solution. Explo-
ration can be stopped as described in Section £.1.

a

Explores the entire current subtree. Exploration can be stopped as described in Sec-

tion p.1.
:

Performs a single distribution step starting from the current choice node.

6.4. The Nodes Menu 13

6.4 The Nodes Menu

Operations available from this menu allow to select and invoke actions.

Information Action

Shows a sub menu from which an information action can be selected. Chapter [] de-
scribes how new actions can be defined.

Information i

Invokes the currently selected information action (see above) on the current node.

Compare Action

Shows a sub menu from which a compare action can be selected. Chapter f] describes
how new actions can be defined.

Select Compare 1
Selects the current node as compare node. Selecting a different node draws an arrow
from the compare node to the new current node.

Deselect Compare 0

Deselects the compare node and deletes the arrow.

Compare 2
Applies the currently selected compare action to the compare node (i.e., the node from
which the arrow issues) and the current node.

Statistics Action

Shows a sub menu from which a statistics action can be selected. Chapter f] describes
how new actions can be defined.

Statistics S

Applies the currently selected statistics action to the current node.

6.5 The Hide Menu

This menu features operations for hiding and unhiding subtrees. The drawing of sub-
trees during unhiding can be stopped as described in Section §.7]

Hide/Unhide h

If the current subtree is hidden, it gets unhidden. If the current subtree is not hidden,
it gets hidden. Unhiding is not recursive: If the hidden tree contains hidden subtrees
itself, they remain hidden.

14 Chapter 6. The Menu Bar

Hide Failed f

All completely explored subtrees in the current subtree that do not contain a solution
are hidden.

Unhide But Failed u

All subtrees of the current subtree with the exception of completely explored subtrees
not containing a solution are unhidden.

Unhide All Cu

All subtrees of the current subtree are unhidden.

Figure 6.1: Example for hiding and unhiding subtrees.

Hlde/Unhlde

%. Hlde/Unhlde %.
Hide Failed (?}. Unhide ({?}. Unhlde All (%.

% Failed %

The different operations to hide and unhide trees are illustrated by an example in Fig-
ure B.1. All operations are invoked with the entire tree as current subtree.

6.6 The Options Menu
This menu contains access to dialogs from which the Explorer can be configured.

Search ...

Creates a dialog to set options for the Explorer’s search engine.

6.6. The Options Menu 15

Drawing ...

— Recomputation
search: |n|:|ne Nornmal
Information: |5
Lo Large
B Full Recomputation in Failed Subtrees
Huge

Okay Cancel |

In the Search entry the kind of recomputation used during next and all solution search
(see also Section [6.3) can be entered. Entering none means that in each distribution
step during search a space is stored. Entering f ul I means that no spaces at all are
stored during search. Entering a number n means that only in each n-th distribution
step a space gets stored. Roughly, with a recomputation distance of n, the time needed
during search is increased by a factor of n and memory occupied is decreased by a
factor of n.

In the Information entry the kind of recomputation used for accessing the information
attached to nodes. Entering none means that each choice and solved node stores a
computation space. Entering f ul | means that only the top node stores its correspond-
ing computation space. The space of any other node is recomputed by redoing all
distribution steps. The number of required distribution steps thus depends on the depth
of the node. Entering a number n means that only nodes at a depth 1, n+1, 2n+1,

. store a computation space. Thus, in the worst case the access to a node’s space
recomputes n— 1 distribution steps.

Selecting Full Recomputation in Failed Subtrees means that in subtrees that are ex-
plored completely and do not contain a solution, no spaces are stored.

Pressing the buttons Normal, Large, and Huge enter values to the recomputation en-
tries. Normal is the default setting for scripts which do not contain very much prop-
agators (i.e., about a few hundred). The other two buttons suggest values for scripts
with more propagators or deep search trees.

Creates a dialog to set options used for the drawing of the search tree.

—— Drawing
M Hide Failed Subtrees
| Scale to Fit

Update Every |1III % Solutions

Okay Cancel |

The entries in the dialog are self-explanatory.

16 Chapter 6. The Menu Bar

Postscript . ..

Creates a dialog to set options used for dumping the search tree in postscript format
(see also Section p.1).

— Color Mode
4 Full Color - - Grayscale . - Black & White
— Orentation
4 Portrait - Landscape
Size
Maximal Size: |6 5i=3]

Okay | Cancel |

The format of the string to be entered in the Maximal size field must be as follows:

numdimx numdim

where dim must be one of i (inch), ¢ (centimeter), m(millimeter), or p (point, that is
1/72 inch).

The options can also be configured by sending a message to Expl or er. obj ect, for
details see Chapter B}

User-defined Actions

Actions for the Explorer can be user-defined. They must be provided as procedures to
the Expl or er. obj ect.

7.1 Information Actions

add
{Expl orer. obj ect add(information +PA
label : +V <= _
type: A <= root

If PA is the atom separator, a separator entry is added as last entry of the Information
Action sub menu.

Otherwise, an entry with label V (a virtual string) is added to the Information Action
sub menu, from which PA can be selected. If the | abel feature is missing, the print-
name of PA is taken as label instead. PA must be either a binary or ternary procedure.

When the information action is invoked, PA is applied with the integer tagging the
current node as first actual argument. The second actual argument depends on A. If
Ais root (the default) the argument is the root variable of the space attached to the
current node. If A is space the argument is the space itself. If A is procedure the
argument is a unary procedure P. On application, P returns the root variable of a copy
of the space.

If PAis a ternary procedure, it must return either a nullary procedure P or a pair O#M
of an object O and a message M. When the Explorer is cleared, reset, or closed, a new
thread is created that runs either { P} or { O M} is executed.

For example, the default information action can be defined as follows:
{Expl orer.object add(information proc {$ | X}
{I nspector.inspect |#X}

end
| abel :)}

del ete
{Expl orer. obj ect delete(information +PA)}

Deletes the information action PA from the Information Action submenu. If PA is the
atom al |, all but the default information actions are deleted from the submenu.

For example, after adding an information action P by

18

Chapter 7. User-defined Actions

{Expl orer add(information P)}
it can be deleted by

{Expl orer delete(information P)}

7.2 Compare Actions

add

del ete

{Expl orer. obj ect add(conpare +PA
| abel : +V <= _
type: +A <= root

If PAis the atom separ at or, a separator entry is added to the bottom of the Compare
Action submenu.

Otherwise, an entry with label V (a virtual string) is added to the Compare Action sub-
menu, from which PA can be selected. If the | abel feature is missing, the printhame of
PA is taken as label instead. PA must be either a 4-ary or 5-ary procedure. When
the compare action is invoked, PA is applied with the integer tagging the compare (cur-
rent) node as first (third) actual argument. The second (fourth) actual argument is the
computation space attached to the compare (current) node. These arguments depend
on A as explained for adding information actions.

If PAis a $5%-ary procedure, it must return either a nullary procedure P or a pair O#M
of an object O and a message M. When the Explorer is cleared, reset, or closed, a new
thread is created that runs either { P} or { O M} is executed.

For example, the default compare action can be defined as follows:

{Expl orer. object add(conpare proc {$ I1 X1 12 X2}
{I nspector.inspect |1# 2#X1#X2}

end
| abel :)}

{Expl orer. obj ect del ete(conpare +PA)}

Deletes the compare action P from the Compare Action submenu. If PA is the atom
al |, all but the default compare actions are deleted from the submenu.

7.3 Statistics Actions

add

{Expl orer.object add(statistics +PA
| abel: +V <=)

If PAis the atom separ at or, a separator entry is added to the bottom of the Satistics
Action sub menu.
Otherwise, an entry with label V (a virtual string) is added to the Satistics Action sub

menu, from which PA can be selected. If the | abel feature is missing, the printname
of PA is taken as label instead. PA must be either a binary or ternary procedure. When

7.3. Statistics Actions 19

the information action is invoked, PA is applied with the integer tagging the current
node as first actual argument. The second actual argument is a record as follows:

stat(c: ... % nunber of choice nodes
Ss: ... %nunber of solved nodes
f: ... %nunber of failed nodes
b: ... % nunber of suspended nodes
start: ... %depth of current node
depth: ... %depth of current subtree
shape: ... % describes current subtree

)

The value for the feature shape is either s, f, or b with the meaning from above or
a unary tuple with label c. The argument of the tuple is a list where the elements
recursively describe the shapes of the choice node’s subtrees.

For example, invoking a statistics action on the following subtree;

the second actual argument is as follows:

stat(c:4 s:1f:1 b:1
start: 1
depth: 4
shape: c([c([s f])
c(le(fbl))])
)

If PAis a ternary procedure, it must return either a nullary procedure P or a pair O#M
of an object O and a message M. When the Explorer is cleared, reset, or closed, a new
thread is created that runs either { P} or { O M} is executed.

For example, the default statistics action can be defined as follows:

{Expl orer. object add(statistics

proc {$ | R

{I nspector.inspect |#{Record.subtract R shape}}
end
| abel :)

del ete
{Expl orer.object delete(statistics +PA)}

Deletes the statistics action P from the Satistics Action submenu. If PA is the atom
al I, all but the default statistics actions are deleted from the submenu.

20

Chapter 7. User-defined Actions

The Explorer Object

This section lists all methods of Expl or er . obj ect . New Explorers can be created by

creating new objects from the class Expl or er . . Execution of
M/Expl orer = {New Expl orer. init}

creates a new Explorer which can be accessed by the variable MyExpl or er .

8.1 Invoking

script,one,all
{Expl orer.object script(+ScriptP +OderP <=)}
{Expl orer. object one(+ScriptP +OrderP <=)}
{Explorer.object all(+ScriptP +OrderP <=)}
Invokes the Explorer. For a detailed description see Chapter Pl

8.2 User-defined Actions

add
{Explorer.object add(...)}
Adds new actions to the Explorer. For a detailed description see Chapter }
del ete
{Expl orer.object delete(...)}
Deletes actions from the Explorer. For a detailed description see Chapter
8.3 Options
option
{Expl orer. obj ect option(search search: +Al 1<=_
information: +Al 2<=_
fail ed: +B<=)}

Sets the options for search as described in Section B.6] Al1 and Al2 must be either

none, ful |, or an integer.

22 Chapter 8. The Explorer Object
option
{{Expl orer.object option(draw ng hide: +Bl<=_
scale: +B2<=_
update: +l<=_)}
Sets the options for search as described in Section p.6] All and Al2 must be either
none, ful |, or an integer.
option

{Expl orer. obj ect option(postscript color: +Al<=_
orientation: +A2<=_
si ze: +V<=)}

Sets the options for postscript output as described in Section p.6] Al must be one of
full, grayscal e, or bw. A2 must be one of portrait orlandscape. V must be a
virtual string built according to the same rules as described in Section .6

Bibliography

[1] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 286-300, Leuven, Belgium, July 1997. The MIT Press.

Explorer

Expl orer, al | ,E

Expl orer, best, [

object
Expl orer, obj ect , add, [[7]
Expl orer, obj ect, al | ,E
Expl orer, obj ect , del et e, [

f9

Expl orer, obj ect, one,
Expl orer, obj ect, scri pt, E

Expl orer,one,ﬂ

24

Index

