
The Mozart Constraint Extensions Reference

Tobias Müller

Version 1.2.3
December 1, 2001

Abstract

This reference manual explains all abstractions provided to extend Mozart Oz 3 constraint
capabilities. It is intended to be used in conjunction with the document “The Mozart
Constraint Extensions Tutorial” .

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Implementing Propagators 1

1.1 Overview . 1

1.2 The class OZ_Expect . 1

1.2.1 Types . 1

1.2.2 Constructor and Destructor 2

1.2.3 Specification of a Set of Integers 3

1.2.4 Member Functions for Checking the Constraint Store . . 3

1.2.5 Member Functions for Control Purposes 5

1.2.6 Macros . 6

1.3 The class OZ_Propagator . 7

1.3.1 Constructor and Destructor Member Functions 7

1.3.2 Operator Member Functions 8

1.3.3 Provided Member Functions 8

1.3.4 Member Functions to be Defined by the Programmer . . 9

1.4 The class OZ_FDIntVar . 10

1.4.1 Constructor Member Functions 10

1.4.2 Operator Member Functions 10

1.4.3 Member Functions . 11

1.5 The class OZ_FiniteDomain . 12

1.5.1 Miscellaneous . 12

1.5.2 Constructor Member Functions 13

1.5.3 Initialisation Member Functions 13

1.5.4 Reflection Member Functions 14

1.5.5 Operator Member Functions 15

1.5.6 Auxiliary Member Functions 16

1.6 The class OZ_FSetVar . 17

1.6.1 Constructor Member Functions 17

1.6.2 Operator Member Functions 17

1.6.3 Member Functions . 18

1.7 The class OZ_FSetValue . 19

1.7.1 Miscellaneous . 19

1.7.2 Constructor Member Functions 19

1.7.3 Reflection Member Functions 20

1.7.4 Operator Member Functions 20

1.7.5 Auxiliary Member Functions 21

1.8 The class OZ_FSetConstraint . 22

1.8.1 Constructor Member Functions 22

1.8.2 Initialization Member Functions 23

1.8.3 Reflection Member Functions 23

1.8.4 Imposing Constraints . 25

1.8.5 Auxiliary Member Functions 27

1.9 Auxiliary Interface Functions . 28

2 Building Constraint Systems from Scratch 33

2.1 The class OZ_CtDefinition . 33

2.2 The class OZ_CtWakeUp . 34

2.3 The class OZ_CtProfile . 34

2.4 The class OZ_Ct . 34

2.5 The class OZ_CtVar . 36

2.5.1 Members to be Defined 36

2.5.2 Provided Members . 37

3 Employing Linear Programming Solvers 39

3.1 The Module LP . 39

4 Propagation Engine Library 41

4.1 Overview . 41

4.2 The class PEL_ParamTable . 41

4.3 The class PEL_EventList . 41

4.4 The class PEL_PropFnctTableEntry 42

4.5 The class PEL_PropFnctTable . 43

4.6 The class PEL_PropQueue . 43

4.7 The class PEL_FSetProfile . 44

4.8 The class PEL_FSetEventLists 45

4.9 The class PEL_FDProfile . 45

4.10 The class PEL_FDEventLists . 46

4.11 The class PEL_SuspVar . 46

4.12 The class PEL_SuspFSetVar . 47

4.13 The class PEL_SuspFDIntVar . 48

1

Implementing Propagators

1.1 Overview

This reference is intended to be a supplement to the user manual. It is assumed that the
reader has already read the manual and is familiar with the concepts of the CPI .

Include Files The value of the environment variable OZHOME is supposed to denote
the installation directory of the Oz system to be used. The abstractions provided by the
CPI are defined in the following header file.

$OZHOME/include/mozart_cpi.hh

This file includes the file mozart.h which provides the basic functionality for inter-
facing Oz with C/C++ code. For details see “Interfacing to C and C++”.

Naming Conventions The CPI defines classes, functions, macros etc. Their names
begin with OZ_. Names of macros are made up of upper case letters. Member functions
and data members begin with lower case letters. The name of accessor functions begin
with get and names of predicates begin with is.

The C/C++ compiler to be used is gcc version 2.7.2 or higher.

1.2 The class OZ_Expect

The functionality provided by class OZ_Expect is intended to be used for implementing
header functions.

1.2.1 Types

data type OZ_expect_t

struct OZ_expect_t {

int size, accepted;

OZ_expect_t(int s, int a) : size(s), accepted(a) {}

};

2 Chapter 1. Implementing Propagators

Return type of member functions which check for constraints on parameters (see Sec-
tion 1.2.4).

enumerable type OZ_FDPropState

enum

OZ_FDPropState {fd_prop_singl = 0,

fd_prop_bounds,

fd_prop_any};

The values of this enumerable type are used to determine what kind of pruning of a
finite domain causes a propagator to be resumed. The values OZ_FDPropState have
the following meaning.

value rerun propagator in case ...
fd_prop_singl ... a finite domain becomes a singleton.
fd_prop_bounds ... the bounds of a finite domain are narrowed.
fd_prop_any ... an arbitrary value is removed from a finite

domain or an equality constraint is imposed.

enumerable type OZ_FSetPropState

enum

OZ_FSetPropState {fs_prop_glb = 0,

fs_prop_lub,

fs_prop_val,

fs_prop_any,

fs_prop_bounds};

The values of this enumerable type are used to determine what kind of pruning of a
finite set constraint causes a propagator to be resumed. The values OZ_FSetPropState
have the following meaning.

value rerun propagator in case ...
fs_prop_val ... a finite set constraint becomes a finite set value.
fs_prop_glb ... a value is added to a set.
fs_prop_lub ... a value is removed from a set.
fs_prop_bounds ... a value is added to or removed from a set.
fs_prop_any ... either the conditions for fs_prop_bounds apply

or an equality constraint is imposed.

data type OZ_ExpectMeth

typedef

OZ_expect_t (OZ_Expect::*OZ_ExpectMeth)(OZ_Term)

Type of member functions which check for constraints on parameters (see Section 1.2.4).

1.2.2 Constructor and Destructor

OZ_expect

OZ_Expect(void);

Default constructor of the class OZ_Expect.

destructor ~OZ_expect

~OZ_Expect();

Destructor of the class OZ_Expect.

1.2. The class OZ_Expect 3

1.2.3 Specification of a Set of Integers

Specification of a set of integers is mainly used in context with finite domain and finite
set constraints.

level_4 ::= level_3
| compl(level_3)

level_3 ::= level_2
| [level_2+]
| nil

level_2 ::= level_1
| level_1#level_1

level_1 ::= OZ_getFDInf(),...,OZ_getFDSup()
(in case of OZ_Expect::expectDomDescr())

| OZ_getFSetInf(),...,OZ_getFSetSup()
(in case of OZ_Expect::expectFSetDescr())

1.2.4 Member Functions for Checking the Constraint Store

A member function described in this section takes as first argument a term, typically
a parameter of a propagator. Extra arguments allow to control the behaviour of the
member function or to specify the way subterms are to be checked. The returned value
is of type OZ_expect_t and denotes the result of the examination of the constraint
store.

expectDomDescr

OZ_expect_t expectDomDescr(OZ_Term descr, int level = 4);

This member function expects descr to be a finite domain specification (see Sec-
tion 1.2.3) according to level. The non-terminal level_n in Section 1.2.3 corresponds
to level=n.

expectFSetDescr

OZ_expect_t expectFSetDescr(OZ_Term descr, int level = 4);

This member function expects descr to be a finite set specification (see Section 1.2.3)
according to level. The non-terminal level_n in Section 1.2.3 corresponds to level=n.

expectVar

OZ_expect_t expectVar(OZ_Term t);

Expects t to be a variable. A determined term t is regarded as an inconsistency.

expectRecordVar

OZ_expect_t expectRecordVar(OZ_Term t);

Expects t to be a record.

expectBoolVar

4 Chapter 1. Implementing Propagators

OZ_expect_t expectBoolVar(OZ_Term t);

Expects t to be a finite domain variable with domain {0,1} resp. the value 0 or 1.

expectIntVar

OZ_expect_t

expectIntVar(OZ_Term t,

OZ_FDPropState ps = fd_prop_any);

Expects t to be a finite domain variable or a finite domain integer. The value of ps
controls on what events the propagator has to be resumed. See the explanation on
OZ_FDPropState in Section 1.2.1 for the values of ps.

expectFSetVar

OZ_expect_t

expectFSetVar(OZ_Term t,

OZ_FSetPropState ps = fs_prop_any);

Expects t to be a finite set variable or a finite set value. The value of ps controls on
what events the propagator has to be resumed. See the explanation on OZ_FSetPropState
in Section 1.2.1 for the values of ps.

expectGenCtVar

OZ_expect_t expectGenCtVar(OZ_Term t,

OZ_CtDefinition * def,

OZ_CtWakeUp w);

Expects t to be a constrained variable resp. a compatible value according to def. The
value w determines the event the propagator is reinvoked. See Section 2.1 for details
on OZ_CtDefinition and Section 2.2 for details on OZ_CtWakeUp.

expectInt

OZ_expect_t expectInt(OZ_Term t);

Expects t to be a small integer. See the systems manual “Interfacing to C and C++”
for details.

expectFloat

OZ_expect_t expectFloat(OZ_Term t);

Expects t to be a float.

expectFSetValue

OZ_expect_t expectFSetValue(OZ_Term t);

Expects t to be a finite set value.

expectLiteral

OZ_expect_t expectLiteral(OZ_Term t);

Expects t to be a literal.

expectLiteralOutOf

OZ_expect_t expectLiteralOutOf(OZ_Term t, OZ_Term * ls);

Expects t to be a literal contained in ls where ls points to an array of literals termi-
nated with (OZ_Term) NULL.

expectVector

1.2. The class OZ_Expect 5

OZ_expect_t expectVector(OZ_Term t,

OZ_ExpectMeth expect_f);

Expects t to be a vector of terms which are all sufficiently constrained with respect to
expect_f. A vector is either a tuple, a closed record, or a list.

expectProperRecord

OZ_expect_t expectProperRecord(OZ_Term t,

OZ_ExpectMeth expect_f);

Expects t to be a proper record where all subtrees are sufficiently constrained with
respect to expect_f. A proper record expects its subtrees to be indexed by literals.

expectProperRecord

OZ_expect_t expectProperRecord(OZ_Term t,

OZ_Term * ar);

Expects t to be a proper record with at least subtrees under the features in ar are
present where ar points to an array of features terminated with (OZ_Term) NULL.

expectProperTuple

OZ_expect_t expectProperTuple(OZ_Term t,

OZ_ExpectMeth expect_f);

Expects t to be a proper tuple where all subtrees are sufficiently constrained with
respect to expect_f. A proper tuple expects its subtrees to be indexed by integers.

expectList

OZ_expect_t expectList(OZ_Term t, OZ_ExpectMeth expect_f);

Expects t to be a list where all elements are sufficiently constrained with respect to
expect_f. A list is either the atom nil or a 2-tuple with label ’|’ where the second
element is a list again.

expectStream

OZ_expect_t expectStream(OZ_Term st);

Expects either an unbound variable or nil resp. a 2-tuple with label ’|’ where the
second element is a stream too.

1.2.5 Member Functions for Control Purposes

collectVarsOn

void collectVarsOn(void);

This member function turns collecting variables on. That means that pruning of pa-
rameters checked in this mode may cause the propagator to be resumed.

collectVarsOff

void collectVarsOff(void);

This member function turns collecting variables off. That means that pruning of pa-
rameters checked in this mode cannot cause the propagator to be resumed.

impose

OZ_Return impose(OZ_Propagator *p);

6 Chapter 1. Implementing Propagators

The propagator p is imposed. The return value is the result of the initial invocation of
OZ_Propagator::propagate().

suspend

OZ_Return suspend(OZ_Thread th);

This member function is to be called if the header function has to be suspended. The
thread th can be created with OZ_makeSuspendedThread() which is defined by the
SCI (see “Interfacing to C and C++” for details).

fail

OZ_Return fail(void);

This member function is to be called if an inconsistency has been detected.

isSuspending

OZ_Boolean isSuspending(OZ_expect_t r);

Returns OZ_TRUE if r indicates that constraints expected on a parameter are not present
in the current store. Otherwise it returns OZ_FALSE.

isFailing

OZ_Boolean isFailing(OZ_expect_t r);

Returns OZ_TRUE if r indicates an inconsistency. Otherwise it returns OZ_FALSE.

isExceptional

OZ_Boolean isFailing(OZ_expect_t r);

Returns OZ_TRUE if r indicates an inconsistency causing an exception. Otherwise it
returns OZ_FALSE.

1.2.6 Macros

macro OZ_EXPECTED_TYPE

OZ_EXPECTED_TYPE(S)

This macro declares a C/C++ string used by the macros OZ_EXPECT and OZ_EXPECT_SUPEND
in case an inconsistency is detected. For details see Section Imposing Nestable Propa-
gators, (The Mozart Constraint Extensions Tutorial) .

macro OZ_EM

The macros OZ_EM_ are provided to create standardized error messages.

1.3. The class OZ_Propagator 7

expected constraint macro to be used
literal OZ_EM_LIT

float OZ_EM_FLOAT

small integer OZ_EM_INT

finite domain integer OZ_EM_FD

boolean finite domain integer in {0,1} OZ_EM_FDBOOL

description of a finite domain integer OZ_EM_FDDESCR

finite set of integers OZ_EM_FSETVAL

finite set of integers constraint OZ_EM_FSET

description of a finite set of integers OZ_EM_FSETDESCR

vector of OZ_EM_VECT

record of OZ_EM_RECORD

truth name OZ_EM_TNAME

stream OZ_EM_STREAM

macro OZ_EXPECT

OZ_EXPECT(O, P, F)

This macros checks if a term occurring at argument position P of a SCI function is
currently expectedly constrained with respect to the function F. The first parameter O
must be an instance of the class OZ_Expect resp. a class derived from it. Only if the
expected constraints are available in the store the code following this macro is executed.

macro OZ_EXPECT_SUSPEND

OZ_EXPECT_SUSPEND(O, P, F, SC)

This macros has the same semantics as the previous one except that in case that ex-
pected constraints are currently not present in the store the counter SC is incremented
and the following code is executed.

1.3 The class OZ_Propagator

This class is the base class of all propagators to be implemented. Since this class is a
virtual base class, it is not possible to create an instance of that class.

1.3.1 Constructor and Destructor Member Functions

OZ_Propagator

OZ_Propagator(void);

This constructor is to be called whenever an instance of a class derived from OZ_Propagator

is created.

~OZ_Propagator

virtual ~OZ_Propagator();

This destructor is defined to be virtual to force the destructors in the derived classes to
be virtual. This ensure that destroying a derived class results in calling the destructor
of the derived class.

8 Chapter 1. Implementing Propagators

1.3.2 Operator Member Functions

new

static void * operator new(size_t);

This operator allocates the appropriate amount of heap memory when a propagator is
created.

delete

static void operator delete(void *, size_t);

This operator deallocates the heap memory occupied by a propagator when it is de-
stroyed.

1.3.3 Provided Member Functions

mayBeEqualVars

OZ_Boolean mayBeEqualVars(void);

This member function returns OZ_TRUE if at least one variable the propagator was
imposed on has been unified. Otherwise it returns OZ_FALSE. See Section Detecting
Equal Variables in a Vector, (The Mozart Constraint Extensions Tutorial) for details.

replaceBy

OZ_Return replaceBy(OZ_Propagator * p);

This member function replaces the current propagator (i.e. *this) by the propagator
p.

replaceBy

OZ_Return replaceBy(OZ_Term a, OZ_Term b);

This member function replaces the current propagator (i.e. *this) by the equality con-
straint between a and b.

Caution: before replaceBy can be called, for all x of type OZ_FDIntVar the member
function x.leave() has to be called.

replaceByInt

OZ_Return replaceByInt(OZ_Term v, int i);

This member function replaces the current propagator (i.e. *this) by the equality con-
straint between v and i.

postpone

OZ_Return postpone(void);

This member function (usually in conjunction with the return statement) causes the
execution of the propagator to be postponed, i.e. the propagator is immediately switched
to runnable and put at the end of the thread queue.

imposeOn

OZ_Boolean imposeOn(OZ_Term t);

This member function imposes the current propagator (i.e. *this}) on t. If the im-
position was successful, i.e., t refers to a variable, OZ_TRUE is returned, otherwise
OZ_FALSE.

1.3. The class OZ_Propagator 9

addImpose

void addImpose(OZ_FDPropState s, OZ_Term v);

void addImpose(OZ_FSetPropState s, OZ_Term v);

These member functions add v to the parameters of the propagator to be imposed with
next invocation of OZ_Propagator::impose. In case v does not denote a variable
nothing happens. The value of s determines the event when the propagator is to be
resumed.

impose

void impose(OZ_Propagator * p);

This member function imposes the propagator p on the parameters collected by addImpose.
The propagator is immediately switched to runnable, but not initially run.

toString

char * toString(void) const;

Returns a textual representation of the propagator pointing to a static array of chars.

1.3.4 Member Functions to be Defined by the Programmer

The member functions in this section are purely virtual, i.e., a class inheriting from
OZ_Propagator must define these functions, otherwise it is not possible to create in-
stances of such a class. These pure virtual member functions make OZ_Propagator to
an abstract base class.

sizeOf

virtual size_t sizeOf(void) = 0;

The implementation of this pure virtual function in a derived class P is supposed to
return the size of an instance of P.

sClone

virtual void sClone(void) = 0;

The implementation of this pure virtual function in a derived class P is called during
cloning and is supposed to apply to each data member of type OZ_Term the function
OZ_sCloneTerm (see Section 1.9) and possibly, copy dynamically allocated extensions
of the object’s state. Further details on that issue can be found in Section Avoiding
Redundant Copying, (The Mozart Constraint Extensions Tutorial) .

gCollect

virtual void gCollect(void) = 0;

The implementation of this pure virtual function in a derived class P is called during
garbage collection and is supposed to apply to each data member of type OZ_Term the
function OZ_sCloneTerm (see Section 1.9) and possibly, copy dynamically allocated
extensions of the object’s state. Further details on that issue can be found in Section
Avoiding Redundant Copying, (The Mozart Constraint Extensions Tutorial) .

propagate

virtual OZ_Return propagate(void) = 0;

10 Chapter 1. Implementing Propagators

The implementation of this pure virtual function in a derived class P is supposed to
implement the operational semantics of the propagator. The return value indicates the
result of the computation to the emulator.

getParameters

virtual OZ_Term getParameters(void) const = 0;

The implementation of this pure virtual function in a derived class P is supposed to
return the list (as Oz data structure) of P’s parameters. Nested parameter structures are
to be represented as nested lists.

getProfile

virtual OZ_PropagatorProfile getProfile(void) const = 0;

The implementation of this pure virtual function in a derived class P is supposed to
return the static profile member function used to get information about the state of a
propagator class (for instance, the number of total invocations).

1.4 The class OZ_FDIntVar

An instance of this class is a mapping of a finite domain integer variable on the heap of
the emulator to a C/C++ data structure. The provided functionality allows to directly
manipulate the domain (constraint) of the heap variable.

1.4.1 Constructor Member Functions

constructor OZ_FDIntVar

OZ_FDIntVar(void);

This constructor creates an uninitialised instance of the class OZ_FDIntVar, which can
be initialised later by the member functions ask(), read(), or readEncap().

constructor OZ_FDIntVar

OZ_FDIntVar(OZ_Term v);

This constructor creates an instance of class OZ_FDIntVar and initialises it using
read().

1.4.2 Operator Member Functions

new

static void * operator new(size_t);

This operator allocates memory for a single instance of class OZ_FDIntVar. This op-
erator must only be used inside the function propagate() of class OZ_Propagator.
The allocated memory is automatically reclaimed when propagate() is left.

new[]

static void * operator new[](size_t);

This operator allocates memory for an array of instances of OZ_FDIntVar. This opera-
tor must only be used inside the function propagate() of class OZ_Propagator. The
allocated memory is automatically reclaimed when propagate() is left.

1.4. The class OZ_FDIntVar 11

delete

static void operator delete(void *, size_t);

This operator is a dummy since reclaiming memory happens automatically.

delete[]

static void operator delete[](void *, size_t);

This operator is a dummy since reclaiming memory happens automatically.

operator *

OZ_FiniteDomain &operator * (void);

This operator returns a finite domain representing the constraint of this variable.

operator ->

OZ_FiniteDomain * operator -> (void);

This operator returns a pointer to a finite domain representing the constraint of this
variable.

1.4.3 Member Functions

isTouched

OZ_Boolean isTouched(void) const;

This function returns OZ_TRUE if at least one element has been removed from the do-
main and otherwise OZ_FALSE.

ask

void ask(OZ_Term);

This member function initialises an instance of OZ_FDIntVar for only reading con-
straints from the store and it does not require a call of leave() or fail().

read

int read(OZ_Term);

This member function initialises an instance of OZ_FDIntVar for constraints to be
read from and to be written to the constraint store. It returns the size of the domain.
Using this function requires to call either leave() or fail()when leaving the member
function propagate() of class OZ_Propagator.

readEncap

int readEncap(OZ_Term);

This member function initialises an instance of OZ_FDIntVar for constraints to be
read from the constraint store and to perform encapsulated constraint propagation as
required by reified constraint propagators. It returns the size of the domain. Using this
function requires to call either leave() or fail() when leaving the member function
OZ_Propagator::propagate(). For further details see Section Reified Constraints,
(The Mozart Constraint Extensions Tutorial) .

leave

OZ_Boolean leave(void);

12 Chapter 1. Implementing Propagators

This member function has to be applied to each object of type OZ_FDIntVarwhen leav-
ing the function propagate() of class OZ_Propagator and no inconsistency was de-
tected (except it was initialised with ask()). This member function returns OZ_FALSE
if the domain denotes a singleton. Otherwise it returns OZ_TRUE.

fail

void fail(void);

This member function has to be applied to each object of type OZ_FDIntVar when
leaving the function propagate() of class OZ_Propagator and inconsistency was
detected (except it was initialised with ask()).

dropParameter

void dropParameter(void);

This member function removes the parameter associated with *this from the parame-
ter set of the current propagator. This function takes care of multiple occurrences of a
single variable as parameter, i.e., a parameter is removed if there is only one occurrence
of the corresponding variable in the set of parameter left.

1.5 The class OZ_FiniteDomain

Instances of this class represent the domains for finite domain integer variables. A
domain may have holes and can range from 0 to OZ_getFDSup(), which is currently
134 217 726.

The representation of a finite domain consists of two parts. As long as there are no
holes in the domain it suffices to store the lower and upper bound of the domain. Holes
are stored in the so-called extension of the domain representation. This extension is
either a bit-vector or a list of intervals. The kind of extension used is automatically
determined and not visible outside.

The smallest element of a domain d is denoted by min(d) and the largest element by
max(d).

1.5.1 Miscellaneous

enumerable type OZ_FDState

enum OZ_FDState {fd_empty, fd_full, fd_bool, fd_singl};

Values of this enumerable type are used when constructing an instance of the class
OZ_FiniteDomain or in conjunction with operators == resp. !=.

value explanation
fd_empty The domain does not contain any element.
fd_full The domain contains all elements possible,

i.e. 0, . . . ,OZ_getFDSup().

fd_bool The domain contains 0 and 1.
fd_singl The domain contains a single element.

1.5. The class OZ_FiniteDomain 13

1.5.2 Constructor Member Functions

OZ_FiniteDomain

OZ_FiniteDomain(void);

This default constructor creates an uninitialized instance.

OZ_FiniteDomain

OZ_FiniteDomain(const OZ_FiniteDomain &d);

This copy constructor copies the current domain of d to *this, so that d and *this

denote the same domain but are independent representations of it.

OZ_FiniteDomain

OZ_FiniteDomain(OZ_FDState state);

This constructor creates an object which represents a domain according to the value of
state. Valid values for state are fd_empty and fd_full.

OZ_FiniteDomain

OZ_FiniteDomain(OZ_Term t);

This constructor is the composition of the default constructor and the member function
initDescr().

OZ_FiniteDomain

OZ_FiniteDomain(const OZ_FSetValue &fs);

This constructor initialises *this with the values contained in the finite set fs.

1.5.3 Initialisation Member Functions

The return value of all initialisation member functions is the size of the domain they
initialised.

initRange

int OZ_FiniteDomain::initRange(int l, int u);

Initialises an instance of class OZ_FiniteDomain to the domain {l, . . . ,u}.

In case l > u, the domain is set to be empty.

initSingleton

int OZ_FiniteDomain::initSingleton(int l);

Initialises an instance of class OZ_FiniteDomain to the domain {l}.

initDescr

int OZ_FiniteDomain::initDescr(OZ_Term d);

Initialises an instance of class OZ_FiniteDomain to a domain according to the do-
main description d. The domain description must be conform with level4 (see syntax
definition of a domain description in Section 1.2.4, entry expectDomDesc).

initFull

int OZ_FiniteDomain::initFull(void);

Initialises an instance of class OZ_FiniteDomain to the domain {0, . . . ,OZ_getFDSup()}.

14 Chapter 1. Implementing Propagators

initEmpty

int OZ_FiniteDomain::initEmpty(void);

Initialises an instance of class OZ_FiniteDomain to the empty domain.

initBool

int OZ_FiniteDomain::initBool(void);

Initialises an instance of class OZ_FiniteDomain to the domain {0,1}.

1.5.4 Reflection Member Functions

getMidElem

int getMidElem(void) const;

This member function returns the element in the middle of the domain. For the domain
d it is (max(d)−min(d)) div 2. If this value happens to be a hole the element closest to
it will be returned. In case there are two elements with the same distance to the middle
of the domain the smaller one will be taken.

getNextSmallerElem

int getNextSmallerElem(int v) const;

This member function returns the largest element in the domain smaller than v. In case
v is the smallest element it returns −1.

getNextLargerElem

int getNextLargerElem(int v) const;

This member function returns the smallest element in the domain larger than v. In case
v is the largest element it returns −1.

getLowerIntervalBd

int getLowerIntervalBd(int v) const;

This member function returns the smallest value of the interval v belongs to. In case v
does not belong to any interval the function returns −1.

getUpperIntervalBd

int getUpperIntervalBd(int v) const;

This member function returns the largest value of the interval v belongs to. In case v

does not belong to any interval the function returns −1.

getSize

int getSize(void) const;

This member function returns the size of the domain, i.e. the number of elements in
the domain.

getMinElem

int getMinElem(void) const;

This member function returns the smallest element of the domain.

getMaxElem

int getMaxElem(void) const;

This member function returns the largest element of the domain.

1.5. The class OZ_FiniteDomain 15

getSingleElem

int getSingleElem(void) const;

This member function returns the element of a singleton domain. In case the domain
is not a singleton domain it returns −1.

1.5.5 Operator Member Functions

operator =

const OZ_FiniteDomain &operator = (const OZ_FiniteDomain &fd);

This assignment operator copies fd to its left hand side, so that both domains are the
same but are independent of each other.

operator ==

OZ_Boolean operator == (const OZ_FDState s) const;

This operator returns OZ_TRUE if the domain corresponds to the value of s. Otherwise
it returns OZ_FALSE.

operator ==

OZ_Boolean operator == (const int i) const;

This operator returns OZ_TRUE if the domain contains only i. Otherwise it returns
OZ_FALSE.

operator !=

OZ_Boolean operator != (const OZ_FDState s) const;

This operator returns OZ_TRUE if the domain does not correspond to the value of s.
Otherwise it returns OZ_FALSE.

operator !=

OZ_Boolean operator != (const int i) const;

This operator returns OZ_TRUE if the domain does not contain i or contains more than
one element. Otherwise it returns OZ_FALSE.

operator &

OZ_FiniteDomain operator & (const OZ_FiniteDomain &y) const;

This member function returns the intersection of the finite domains represented by y

and *this.

operator |

OZ_FiniteDomain operator | (const OZ_FiniteDomain &y) const;

This member function returns the union of the finite domains represented by y and
*this.

operator ~

OZ_FiniteDomain operator ~ (void) const;

This member function returns the negation of the finite domain represented by *this.
The negation is computed by removing all elements in *this from {0, . . . ,OZ_getFDSup()}.

operator &=

16 Chapter 1. Implementing Propagators

int operator &= (const OZ_FiniteDomain &y);

int operator &= (const int y);

This member function computes the intersection of the finite domains represented by
y and *this and assigns the result to *this. Further, the size of the updated domain
is returned.

operator +=

int operator += (const int y);

This member function adds the element y to the domain represented by *this and
returns the size of the updated domain.

operator -=

int operator -= (const int y);

This member function removes the element y from the domain represented by *this

and returns the size of the updated domain.

operator -=

int operator -= (const OZ_FiniteDomain &y);

This member function removes all elements contained in the domain represented by y

from the domain represented by *this and returns the size of the updated domain.

operator <=

int operator <= (const int y);

This member function removes all elements being larger than y from the domain rep-
resented by *this and returns the size of the updated domain.

operator >=

int operator >= (const int y);

This member function removes all elements being smaller than y from the domain
represented by *this and returns the size of the updated domain.

1.5.6 Auxiliary Member Functions

intersectWithBool

int intersectWithBool(void);

This member function intersects the current domain with the domain {0,1} and pro-
duces the following return value.

return value meaning
−2 The resulting domain is empty.
−1 The resulting domain is {0,1}
otherwise The remaining element is returned.

constrainBool

int constrainBool(void);

This member function intersects the current domain with the domain {0,1} and returns
the size of resulting domain.

isIn

1.6. The class OZ_FSetVar 17

OZ_Boolean isIn(int i) const;

This member function returns OZ_TRUE if i is contained in the domain represented by
*this. Otherwise it returns OZ_FALSE.

copyExtension

void copyExtension(void);

This member function replaces the current extension of the domain representation by
a copy of it.

disposeExtension

void disposeExtension(void);

This member function frees the heap memory occupied by the extension of the domain.

toString

char * toString(void) const;

Returns a textual representation of the finite domain pointing to a static array of chars.

1.6 The class OZ_FSetVar

An instance of this class is a mapping of a finite set constraint variable on the heap of
the emulator to a C/C++ data structure. The provided functionality allows to directly
manipulate the domain (constraint) of the heap variable.

1.6.1 Constructor Member Functions

constructor OZ_FSetVar

OZ_FSetVar(void);

This constructor creates an uninitialised instance of the class OZ_FSetVar, which can
be initialised later by the member functions ask(), read(), or readEncap().

OZ_FSetVar

OZ_FSetVar(OZ_Term v);

This constructor creates an instance of the class OZ_FSetVar and initialises it using
read().

1.6.2 Operator Member Functions

new

static void * operator new(size_t);

This operator allocates memory for a single instance of class OZ_FSetVar. This opera-
tor must only be used inside the member function propagate() of the class OZ_Propagator.
The allocated memory is automatically reclaimed when propagate() is left.

new[]

static void * operator new[](size_t);

This operator allocates memory for an array of instances of OZ_FSetVar. This operator
must only be used inside the member function propagate() of the class OZ_Propagator.
The allocated memory is automatically reclaimed when propagate() is left.

18 Chapter 1. Implementing Propagators

delete

static void operator delete(void *, size_t);

This operator is a dummy since reclaiming memory happens automatically.

delete[]

static void operator delete[](void *, size_t);

This operator is a dummy since reclaiming memory happens automatically.

operator *

OZ_FSetConstraint &operator * (void);

This operator returns a finite set constraint representing the constraint of this variable.

operator ->

OZ_FSetConstraint * operator -> (void);

This operator returns a pointer to a finite set constraint representing the constraint of
this variable.

1.6.3 Member Functions

isTouched

OZ_Boolean isTouched(void) const;

This function returns OZ_TRUE if at least one element has been removed from or added
to the set and otherwise OZ_FALSE.

ask

void ask(OZ_Term);

This member function initialises an instance of OZ_FSetVar for only reading con-
straints from the store and it does not require a call of leave() or fail().

read

void read(OZ_Term);

This member function initialises an instance of OZ_FSetVar for constraints to be read
from and to be written to the constraint store. Using this function requires to call
either leave() or fail() when leaving the member function propagate() of class
OZ_Propagator.

readEncap

void readEncap(OZ_Term);

This member function initialises an instance of OZ_FSetVar for constraints to be read
from the constraint store and to perform encapsulated constraint propagation as re-
quired by reified constraint propagators. Using this function requires to call either
leave() or fail()when leaving the member function OZ_Propagator::propagate().
For further details see Section Reified Constraints, (The Mozart Constraint Extensions
Tutorial) .

leave

OZ_Boolean leave(void);

1.7. The class OZ_FSetValue 19

This member function has to be applied to each object of type OZ_FSetVar when
leaving the function propagate() of class OZ_Propagator and no inconsistency was
detected (except it was initialised with ask()). If the set constraint denotes a set value
this member function returns OZ_FALSE and else it returns OZ_TRUE.

fail

void fail(void);

This member function has to be applied to each object of type OZ_FSetVar when
leaving the function propagate() of class OZ_Propagator and inconsistency was
detected (except it was initialised with ask()).

dropParameter

void dropParameter(void);

This member function removes the parameter associated with *this from the parame-
ter set of the current propagator. This function takes care of multiple occurrences of a
single variable as parameter, i.e., a parameter is removed if there is only one occurrence
of the corresponding variable in the set of parameter left.

1.7 The class OZ_FSetValue

1.7.1 Miscellaneous

enumerable type OZ_FSetState

enum OZ_FSetState {fs_empty, fs_full};

Used when constructing a Finite Set or with the operator ==.

value meaning
fs_empty the empty set
fs_full the set {OZ_getFSInf(), . . . ,OZ_getFSSup()}

1.7.2 Constructor Member Functions

OZ_FSetValue

OZ_FSetValue(void);

This constructor creates an uninitialised Finite Set Value.

OZ_FSetValue

OZ_FSetValue(const OZ_FSetConstraint &fsc);

fsc must have a determined value (i.e. fsc.isValue() must be true). A Finite Set is
constructed from this value.

OZ_FSetValue

OZ_FSetValue(const OZ_Term t);

Constructor using a level4 list description like for Finite Domains (see Section 1.2.4)
to create a Finite Set Value.

OZ_FSetValue

OZ_FSetValue(const OZ_FSetState state);

20 Chapter 1. Implementing Propagators

Creates a Finite Set Value according to state (fs_empty or fs_full).

OZ_FSetValue

OZ_FSetValue(int min_elem, int max_elem);

Creates a Finite Set Value {min_elem, . . . ,max_elem}.

1.7.3 Reflection Member Functions

getMinElem

int getMinElem(void) const;

Returns the smallest element of the set.

getMaxElem

int getMaxElem(void) const;

Returns the largest element of the set.

getNextLargerElem

int getNextLargerElem(int i) const;

Returns the next larger Element after i in the set, or −1 if there is none.

getNextSmallerElem

int getNextSmallerElem(int i) const;

Returns the next smaller Element before i in the set, or −1 if there is none.

getKnownInList

OZ_Term getKnownInList(void) const;

Returns a level4-List (see Section 1.2.4) containing the elements in the set.

getKnownNotInList

OZ_Term getKnownNotInList(void) const;

Returns a level4-List (see Section 1.2.4) containing the elements in the complementary
set.

1.7.4 Operator Member Functions

operator ==

OZ_Boolean operator == (const OZ_FSetValue &fs) const;

Tests equality on sets.

operator <=

OZ_Boolean operator <= (const OZ_FSetValue &fs) const;

Return OZ_True if *this is a subset of fs.

operator &

OZ_FSetValue operator & (const OZ_FSetValue &fs) const;

Returns the intersection of *this with fs.

operator |

OZ_FSetValue operator | (const OZ_FSetValue &fs) const;

1.7. The class OZ_FSetValue 21

Returns the union of *this with fs.

operator -

OZ_FSetValue operator - (const OZ_FSetValue &fs) const;

Returns the elements in *this not in fs.

operator &=

OZ_FSetValue operator &= (const OZ_FSetValue &fs);

*this is assigned its intersection with fs.

operator |=

OZ_FSetValue operator |= (const OZ_FSetValue &);

*this is assigned its union with fs.

operator &=

OZ_FSetValue operator &= (const int i);

If i is in *this, this function returns {i}; otherwise the empty set.

operator +=

OZ_FSetValue operator += (const int i);

i is put into *this.

operator -=

OZ_FSetValue operator-=(const int);

i is removed from *this, if in.

operator -

OZ_FSetValue operator-(void) const;

Returns the complement of *this.

1.7.5 Auxiliary Member Functions

init

void init(const OZ_FSetState state);

Initializes a Finite Set Value according to state (fs_empty or fs_full).

isIn

OZ_Boolean isIn(int i) const;

Returns OZ_True if i is in *this.

isNotIn

OZ_Boolean isNotIn(int) const;

Returns OZ_True if i is not in *this.

getCard

int getCard(void) const;

Returns the cardinality of *this.

getKnownNotIn

22 Chapter 1. Implementing Propagators

int getKnownNotIn(void) const;

Returns the cardinality of *this’ complement.

copyExtension

void copyExtension(void);

This member function replaces the current extension of the set value representation by
a copy of it.

disposeExtension

void disposeExtension(void);

This member function frees the heap memory occupied by the extension of the set
value.

toString

char * toString(void) const;

Returns a textual representation of the finite set value pointing to a static array of chars.

1.8 The class OZ_FSetConstraint

An OZ_FSetConstraint defines (among other things) a set of values that are definitely
in (the greatest lower bound), a set of values that are definitely out of any set satisfying
the Constraint; and a set of values who may or may not be in. These sets will be
referred to as IN, OUT, and UNKNOWN sets in the descriptions below.

1.8.1 Constructor Member Functions

OZ_FSetConstraint

OZ_FSetConstraint(void);

Creates an uninitialised OZ_FSetConstraint entity.

OZ_FSetConstraint

OZ_FSetConstraint(const OZ_FSetValue &fs);

Creates a constraint where the IN set is fs.

OZ_FSetConstraint

OZ_FSetConstraint(OZ_FSetState state);

Creates a Finite Set Constraint with IN set of state state, and OUT its complement.

value of state constraint
fs_empty the empty set matches
fs_full the set {0, . . . ,OZ_getFSetSup()} matches.

OZ_FSetConstraint

OZ_FSetConstraint(const OZ_FSetConstraint &fsc);

Copy-constructs a Finite Set Constraint from fsc.

1.8. The class OZ_FSetConstraint 23

1.8.2 Initialization Member Functions

init

void init(void);

Initializes an empty constraint.

init

void init(const OZ_FSetValue &fs);

Initializes a constraint that is only matched by fs.

init

void init(OZ_FSetState);

Initializes a Finite Set Constraint with IN set of state state, and OUT its complement.

value of state constraint
fs_empty the empty set matches
fs_full the set {0, . . . ,OZ_getFSetSup()} matches.

1.8.3 Reflection Member Functions

These all access members of *this.

getKnownIn

int getKnownIn(void) const;

Returns the cardinality of IN.

getKnownNotIn

int getKnownNotIn(void) const;

Returns the cardinality of OUT.

getUnknown

int getUnknown(void) const;

Returns the cardinality of UNKNOWN.

getGlbSet

OZ_FSetValue getGlbSet(void) const;

Returns IN.

getLubSet

OZ_FSetValue getLubSet(void) const;

Returns the set of values that may be in sets satisfying the constraint.

getUnknownSet

OZ_FSetValue getUnknownSet(void) const;

Returns UNKNOWN.

getNotInSet

OZ_FSetValue getNotInSet(void) const;

Returns OUT.

24 Chapter 1. Implementing Propagators

getGlbCard

int getGlbCard(void) const;

Returns the cardinality of IN.

getLubCard

int getLubCard(void) const;

Returns the cardinality of the set of all values that are in some a set satisfying the
constraint.

getNotInCard

int getNotInCard(void) const;

Returns the cardinality of OUT.

getUnknownCard

int getUnknownCard(void) const;

Returns the cardinality of UNKNOWN.

iterators

int getGlbMinElem(void) const;

int getLubMinElem(void) const;

int getNotInMinElem(void) const;

int getUnknownMinElem(void) const;

int getGlbMaxElem(void) const;

int getLubMaxElem(void) const;

int getNotInMaxElem(void) const;

int getUnknownMaxElem(void) const;

int getGlbNextSmallerElem(int) const;

int getLubNextSmallerElem(int) const;

int getNotInNextSmallerElem(int) const;

int getUnknownNextSmallerElem(int) const;

int getGlbNextLargerElem(int) const;

int getLubNextLargerElem(int) const;

int getNotInNextLargerElem(int) const;

int getUnknownNextLargerElem(int) const;

These functions allow to access and iterate over elements of several sets related to the
constraint.

name function
getMinElem get the minimal element, −1 if empty
getMaxElem get the maximal element, −1 if empty
getNextLargerElem(i) get the next larger element above i, −1 if there is none
getNextSmallerElem(i) get the next smaller element below i, −1 if there is none

name referred set
glb the set of values that are in all sets satisfying the constraint
lub the set of all values that are in some sets satisfying the constraint
unknown the set of values that are in some, but not all sets satisfying the constraint
notIn the set of values that are in no sets satisfying the constraint

1.8. The class OZ_FSetConstraint 25

getCardMin

int getCardMin(void) const;

Returns the minimal allowed cardinality.

getCardMax

int getCardMax(void) const;

Returns the maximal allowed cardinality (−1 means the constraint cannot be satisfied)

getCardSize

int getCardSize(void) const;

Returns the size of the interval between the minimal and maximal allowed cardinality.

getKnownInList

OZ_Term getKnownInList(void) const;

Returns IN as a list.

getKnownNotInList

OZ_Term getKnownNotInList(void) const;

Returns OUT as a list.

getUnknownList

OZ_Term getUnknownList(void) const;

Returns UNKNOWN as a list.

getLubList

OZ_Term getLubList(void) const;

Returns the union of IN and UNKNOWN as a list.

getCardTuple

OZ_Term getCardTuple(void) const;

Returns a tuple consisting of integers giving the minimum and maximum allowed car-
dinality.

1.8.4 Imposing Constraints

Where an operator member Function returns an OZ_Boolean, it is to indicate whether
constraint becomes unsatisfiable in the operation.

operator =

OZ_FSetConstraint &operator = (const OZ_FSetConstraint &fsc);

fsc gets assigned to *this.

operator -

OZ_FSetConstraint operator - (void) const;

The complementary constraint is returned.

operator +=

OZ_Boolean operator+=(int i);

26 Chapter 1. Implementing Propagators

i is added to *this.IN.

operator -=

OZ_Boolean operator-=(int i);

i is added to *this.OUT.

operator <<=

OZ_Boolean operator <<= (const OZ_FSetConstraint &fsc);

fsc is added to *this.

operator %

OZ_Boolean operator % (const OZ_FSetConstraint &fsc);

Returns OZ_True if all values known to be in *this are known not to be in fsc, and
the other way round.

operator &

OZ_FSetConstraint operator & (const OZ_FSetConstraint &fsc) const;

Returns the intersection of *this and fsc.

operator |

OZ_FSetConstraint operator | (const OZ_FSetConstraint &fsc) const;

Returns the union of *this and fsc.

operator -

OZ_FSetConstraint operator - (const OZ_FSetConstraint &fsc) const;

Returns the difference of *this and fsc.

operator <=

OZ_Boolean operator <= (const OZ_FSetConstraint &fsc);

Returns OZ_True if *this has as least the elements excluded (in OUT) that are excluded
by fsc.

operator >=

OZ_Boolean operator >= (const OZ_FSetConstraint &);

Returns OZ_True if *this has as least the elements included (in IN) that are included
by fsc.

operator !=

OZ_Boolean operator != (const OZ_FSetConstraint &fsc);

The elements known to be in fsc are excluded from *this

operator ==

OZ_Boolean operator == (const OZ_FSetConstraint &fs) const;

Returns OZ_True if *this is equivalent to fsc.

le

OZ_Boolean le(const int i);

All values above i are excluded from *this.

ge

OZ_Boolean ge(const int);

All values below i are excluded from *this.

1.8. The class OZ_FSetConstraint 27

1.8.5 Auxiliary Member Functions

putCard

OZ_Boolean putCard(int cardmin, int cardmax);

The minimum and maximum allowed cardinality is set.

isValue

OZ_Boolean isValue(void) const;

Returns OZ_True if the constraint determines exactly one set.

isIn

OZ_Boolean isIn(int i) const;

Returns OZ_True if i is known to be in every(!) set satisfying the constraint.

isNotIn

OZ_Boolean isNotIn(int i) const;

Returns OZ_True if i is in no set satisfying the constraint.

isEmpty

OZ_Boolean isEmpty(void) const;

Returns OZ_True if *this is satisfied only by the empty set.

isFull

OZ_Boolean isFull(void) const;

Returns true if *this can only be satisfied by the set containing all possible values
(i.e. , {0, . . . ,OZ_getFSetSup()}).

isSubsumedBy

OZ_Boolean isSubsumedBy(const OZ_FSetConstraint &fsc) const;

Returns true if *this is subsumed by fsc.

copyExtension

void copyExtension(void);

This member function replaces the current extension of the set constraint representation
by a copy of it.

disposeExtension

void disposeExtension(void);

This member function frees the heap memory occupied by the extension of the set
constraint.

toString

char * toString(void) const;

Returns a textual representation of the finite set constraint pointing to a static array of
chars.

28 Chapter 1. Implementing Propagators

1.9 Auxiliary Interface Functions

function OZ_gCollectTerm

void OZ_gCollectTerm(OZ_Term &t);

During garbage collection this function updates the reference t to a term on the heap.
This is typically required when the member function gCollect() of a propagator is
invoked.

function OZ_gCollectBlock

void OZ_gCollectBlock(OZ_Term * frm, OZ_Term * to, const int n);

During garbage collection this function updates the n elememts in frm and stores them
in to.

function OZ_gCollectAllocBlock

OZ_Term * OZ_gCollectAllocBlock(int n, OZ_Term * frm);

During garbage collection this function updates the n elements in frm and returns a
pointer to the updates. The updates are stored in freshly allocated heap memory.

function OZ_sCloneTerm

void OZ_sCloneTerm(OZ_Term &t);

During cloning this function updates the reference t to a term on the heap. This is
typically required when the member function sClone() of a propagator is invoked.

function OZ_sCloneBlock

void OZ_sCloneBlock(OZ_Term * frm, OZ_Term * to, const int n);

During cloning this function updates the n elememts in frm and stores them in to.

function OZ_sCloneAllocBlock

OZ_Term * OZ_sCloneAllocBlock(int n, OZ_Term * frm);

During cloning this function updates the n elements in frm and returns a pointer to the
updates. The updates are stored in freshly allocated heap memory.

function OZ_isPosSmallInt

OZ_Boolean OZ_isPosSmallInt(OZ_Term val);

This function returns OZ_TRUE if val denotes an integer contained in the finite set
{0, . . . ,OZ_getFDSup()}. Otherwise it returns OZ_FALSE.

function OZ_hallocOzTerms

OZ_Term * OZ_hallocOzTerms(int n);

This function allocates a block of heap memory for n items of type OZ_Term and returns
a pointer to the block.

function OZ_hallocChars

char * OZ_hallocChars(int n);

This function allocates a block of heap memory for n items of type char and returns a
pointer to the block.

function OZ_hallocCInts

int * OZ_hallocCInts(int n);

1.9. Auxiliary Interface Functions 29

This function allocates a block of heap memory for n items of type int and returns a
pointer to the block.

function OZ_hfreeOzTerms

void OZ_hfreeOzTerms(OZ_Term * ts, int n);

The function frees the heap memory allocated by OZ_hallocOzTerms(). The first
argument ts points to a memory block and the value of n must denote the correct size
of the block.

function OZ_hfreeCInts

void OZ_hfreeCInts(int * is, int n);

The function frees the heap memory allocated by OZ_hallocCInts. The first argument
is points to a memory block and the value of n must denote the correct size of the
block.

function OZ_hfreeChars

void OZ_hfreeChars(char * is, int n);

The function frees the heap memory allocated by OZ_hallocChars(). The first argu-
ment is points to a memory block and the value of n must denote the correct size of
the block.

function OZ_copyCInts

int * OZ_copyCInts(int n, int * is);

Copies n ints from is and returns the location of the copy. If n is equal to 0 it returns
(int *) NULL.

function OZ_copyChars

char * OZ_copyChars(int n, char * cs);

Copies n chars from cs and returns the location of the copy. If n is equal to 0 it returns
(char *) NULL.

function OZ_findEqualVars

int * OZ_findEqualVars(int sz, OZ_Term * ts);

The function expects ts to be a pointer to an OZ_Term array of size sz. It returns an
array of ints indicating variables which are equal. Suppose that the ith field of the
returned array holds one of the following values.

value explanation
−1 The term stored at that position is not a variable.
i This is the first occurrence of a variable stored in the array at position i.
j 6= i This is a repeated occurrence of a variable stored at position j in the array.

The first occurrence can be found at position j.

The returned int array is statically allocated, i.e. it is overridden on every invocation.
For details see Section Detecting Equal Variables in a Vector, (The Mozart Constraint
Extensions Tutorial) .

function OZ_isEqualVars

OZ_Boolean OZ_isEqualVars(OZ_Term v1, OZ_Term v2);

30 Chapter 1. Implementing Propagators

This function returns OZ_TRUE if v1 and v2 refer to the same variable. Otherwise it
returns OZ_FALSE.

function OZ_findSingletons

int * OZ_findSingletons(int sz, OZ_Term * ts);

The function expects ts to be a pointer to an OZ_Term array of size sz which expects
its elements to refer to finite domain variables. It returns an array of ints indicating
variables which are singletons. Suppose that the ith field of the returned array holds
one of the following values.

value explanation
≥ 0 The term stored at that position is a singleton.
otherwise The term stored at that position is still a finite domain variable.

The returned int array is statically allocated, i.e. it is overridden on every invocation.

function OZ_typeErrorCPI

OZ_Return OZ_typeErrorCPI(char * __typeString,

int pos,

char * comment);

The return value of this function indicates the runtime system that an exception has to
be raised. The message printed is composed using the posth substring of __typeString
and comment.

function OZ_getFDInf

int OZ_getFDInf(void);

This function returns the value of the smallest element a finite domain which is repre-
sented by an instance of the class OZ_FiniteDomain can take. The value returned is
0.

function OZ_getFDSup

int OZ_getFDSup(void);

This function returns the value of the largest element a finite domain which is repre-
sented by an instance of the class OZ_FiniteDomain can take. The value returned is
134 217 726.

function OZ_getFSetInf

int OZ_getFSetInf(void);

This function returns the value of the smallest element a finite set value which is rep-
resented by an instance of the class OZ_FSetValue can take. The value returned is
0.

function OZ_getFSetSup

int OZ_getFSetSup(void);

This function returns the value of the largest element a finite set value which is rep-
resented by an instance of the class OZ_FSetValue can take. The value returned is
134 217 726.

function OZ_fsetValue

1.9. Auxiliary Interface Functions 31

OZ_Term OZ_fsetValue(OZ_FSetValue * fsv);

This function converts the finite set value fsv to the corresponding OZ_Term.

function OZ_fsetValueToC

OZ_FSetValue * OZ_fsetValueToC(OZ_Term fsv);

This function converts fsv, referring to a finite set value, to a pointer to the finite set
value.

function OZ_vectorSize

int OZ_vectorSize(OZ_Term t);

This function returns the size of a vector. In case t is no vector it returns −1.

type returned value
Literal The value returned is 0.
List he value returned is the length of the list.
Tuple The value returned is the arity of the tuple.
Record The value returned is the number of features of the record.

function OZ_getOzTermVector

OZ_Term * OZ_getOzTermVector(OZ_Term t, OZ_Term * v);

This function expects t to be a vector and v to be an array with minimal OZ_vectorSize(t)
elements. It converts t to an OZ_Term array and returns a pointer to the next free po-
sition in the array v after converting t. In case t is no vector the function returns
NULL.

function OZ_getCIntVector

int * OZ_getCIntVector(OZ_Term t, int * v);

This function expects t to be a vector of small integers and v to be an array with
minimal OZ_vectorSize(t) elements. It converts t to an int array and returns a
pointer to the next free position in the array v after converting t. In case t is no vector
the function returns NULL.

32 Chapter 1. Implementing Propagators

2

Building Constraint Systems from
Scratch

2.1 The class OZ_CtDefinition

getKind

virtual int getKind(void) = 0;

Returns an integer identifying a constraint system. The integer value has to be unique
for each constraint system. Call int OZ_getUniqueId(void) to obtain a unique iden-
tifier.

getNoOfWakeUpLists

virtual int getNoOfWakeUpLists(void) = 0;

Returns the numbers of wake-up lists of variables constrained with this kind of con-
straint. This number corresponds to the number of events which can cause a propagator
being imposed on that kind of variable being rerun.

getNamesOfWakeUpLists

virtual char ** getNamesOfWakeUpLists(void) = 0;

Returns an array (with getNoOfWakeUpLists() entries) of strings describing the event(s)
associated to the corresponding wake-up list.

getName

virtual char * getName(void) = 0;

Returns the name of the constraint system. Is used when outputting variables of that
kind.

leastConstraint

virtual OZ_Ct * leastConstraint(void) = 0;

Returns the constraint which is subsumed by or equal to all other constraints of a certain
constraint system.

isValidValue

virtual OZ_Boolean isValidValue(OZ_Term t) = 0;

Returns OZ_True if the Oz value referred to by t is a value which is in the domain of
the constraint system. Otherwise it returns OZ_False.

34 Chapter 2. Building Constraint Systems from Scratch

2.2 The class OZ_CtWakeUp

init

void init(void);

Initializes an instance of this class. 1

isEmpty

OZ_Boolean isEmpty(void);

Returns OZ_True if no wake-up list has to be scanned.

setWakeUp

OZ_Boolean setWakeUp(int i);

Sets the wake-up list indexed by i (i= 0, . . . , getNoOfWakeUpLists()-1) to be scanned.

isWakeUp

OZ_Boolean isWakeUp(int i);

Returns OZ_True if the corresponding wake-up list indexed by i is to be scanned.

getWakeUpAll

static OZ_CtWakeUp getWakeUpAll(void);

Sets all possible wake-up events.

2.3 The class OZ_CtProfile

constructor OZ_CtProfile

OZ_CtProfile(void);

Initializes an instance of this class.

init

virtual void init(OZ_Ct * c) = 0;

Stores a profile according to the constraint referred to by c.

2.4 The class OZ_Ct

An instance of this class represents a constraint of a certain constraint system.

constructor OZ_Ct

OZ_Ct(void);

Initializes an instance of this class.

isValue()

virtual OZ_Boolean isValue(void) = 0;

Returns OZ_True if the constraint denotes exactly one value of the domain of the con-
straint system.

1Note that there is no default constructor for some implementational reasons.

2.4. The class OZ_Ct 35

toValue

virtual OZ_Term toValue(void) = 0;

Returns an Oz value of the value denoted by the constraint. Returned value is only
defined if isValue yields OZ_True.

isValid

virtual OZ_Boolean isValid(void) = 0;

Returns OZ_True if the constraint denotes at least one element of the domain of the
constraint system. Otherwise it returns OZ_False.

isWeakerThan

virtual OZ_Boolean isWeakerThan(OZ_Ct * c) = 0;

Returns OZ_True if the constraint represented by *c subsumes the constraint repre-
sented by *this instance.

unify

virtual OZ_Ct * unify(OZ_Ct * c) = 0;

Returns a constraint that approximates all elements of the constraint domain denoted
by the constraints *c and *this.

unify

virtual OZ_Boolean unify(OZ_Term t) = 0;

Returns OZ_True if the value denoted by t is included in the values approximated by
the constraint.

sizeOf

virtual size_t sizeOf(void) = 0;

Returns the size of an instance of the class derived OZ_Ct (analogue to C’s sizeof

operator).

getProfile

virtual OZ_CtProfile * getProfile(void) = 0;

Returns a constraint profile (see Section 2.3) according to the constraint.

getWakeUpDescriptor

virtual OZ_CtWakeUp getWakeUpDescriptor(OZ_CtProfile * p) = 0;

Returns a descriptor for the wake-up lists to be scanned (see Section 2.2). This de-
scriptor is computed by comparing the constraint with the profile p. Note the profile is
usually taken from the constraint before modifying it.

toString

virtual char * toString(int) = 0;

Returns a textual representation of the constraint.

copy

virtual OZ_Ct * copy(void) = 0;

Returns a pointer to a copy of the constraint. The memory for the copy is to be allocated
by the operator OZ_Ct::new.

operator new

36 Chapter 2. Building Constraint Systems from Scratch

static void * operator new(size_t, int align = sizeof(void *));

Allocates memory for an instance of the constraint on the heap of the Oz runtime
system.

operator delete

static void operator delete(void *, size_t);

Deallocates memory of an instance of the constraint from the heap of the Oz runtime
system.

2.5 The class OZ_CtVar

The constraint system dependent part of a class derived from OZ_CtVar stores typically

• a constraint C, i.e., an instance of the class representing a constraint,

• a constraint EC, i.e., an instance of the class representing a constraint,

• a reference to a constraint CR, and

• a constraint profile CP.

The constraint C is used to handle constraints of global variables. The constraint EC is
used to handle encapsulate propagation typically occurring in reified constraints. The
reference to a constraint CR is used to access the actual constraint and thus to be able
to modify it. It either points to C, EC, or directly to the constraint associated with a
constrained variable.

2.5.1 Members to be Defined

ctSetValue

virtual void ctSetValue(OZ_Term t) = 0;

Initializes C to the value denoted by t and makes CR pointing to C.

ctRefConstraint

virtual OZ_Ct * ctRefConstraint(OZ_Ct * c) = 0;

Sets CR to c and returns CR.

ctSaveConstraint

virtual OZ_Ct * ctSaveConstraint(OZ_Ct * c) = 0;

Stores c in C and returns a reference to C.

ctSaveEncapConstraint

virtual OZ_Ct * ctSaveEncapConstraint(OZ_Ct * c) = 0;

Stores c in EC and returns a reference to EC.

ctRestoreConstraint

virtual void ctRestoreConstraint(void) = 0;

Stores C at *CR.

2.5. The class OZ_CtVar 37

ctSetConstraintProfile

virtual void ctSetConstraintProfile(void) = 0;

Initializes CP with the profile of CR.

ctGetConstraintProfile

virtual OZ_CtProfile * ctGetConstraintProfile(void) = 0;

Returns CP.

ctGetConstraint

virtual OZ_Ct * ctGetConstraint(void) = 0;

Returns CR.

isTouched

virtual OZ_Boolean isTouched(void) const = 0;

Returns OZ_True if current constraint is not implied anymore by the constraint that
was present upon calling read() or readEncap().

2.5.2 Provided Members

constructor OZ_CtVar

OZ_CtVar(void);

Initializes an instance of this class.

operator new

static void * operator new(size_t);

Allocates memory for an instance of a class derived from OZ_CtVar on the propagator
heap of the Oz runtime system.

operator delete

static void operator delete(void *, size_t);

Deallocates memory of an instance of a class derived from OZ_CtVar from the propa-
gator heap of the Oz runtime system.

operator new[]

static void * operator new[](size_t);

Allocates memory for an array of instances of a class derived from OZ_CtVar on the
propagator heap of the Oz runtime system.

operator delete[]

static void operator delete[](void *, size_t);

Deallocates memory of an array of instances of a class derived from OZ_CtVar from
the propagator heap of the Oz runtime system.

ask

void ask(OZ_Term);

Initializes an instance of a derived class of OZ_CtVar for reading the constraint of the
corresponding variable. The members leave() and fail() must not be called.

read

38 Chapter 2. Building Constraint Systems from Scratch

void read(OZ_Term);

Initializes an instance of a derived class of OZ_CtVar for accessing the corresponding
variable in the constraint store for constraint propagation. Modifying the constraint is
visible in the store. The members leave() and fail() must be called.

readEncap

void readEncap(OZ_Term);

Initializes an instance of a derived class of OZ_CtVar for accessing the correspond-
ing variable in the constraint store for encapsulated constraint propagation (typically
used for reified constraints). Modifying the constraint is not visible in the store. The
members leave() and fail() must be called.

leave

OZ_Boolean leave(void);

This member function has to be called if the instance of a derived class of OZ_CtVar
has been initialized by read() resp. readEncap() and the constraint represented by
the propagator is consistent with the constraint store. It returns OZ_False if the corre-
sponding variable denotes a value. Otherwise it returns OZ_True. Further, this member
function causes suspending computation to be woken up.

fail

void fail(void);

This member function has to be called if the instance of a derived class of OZ_CtVar
has been initialized by read()resp. readEncap() and the constraint represented by
the propagator is inconsistent with the constraint store.

dropParameter

void dropParameter(void);

This member function removes the parameter associated with *this from the parame-
ter set of the current propagator. This function takes care of multiple occurrences of a
single variable as parameter, i.e., a parameter is removed if there is only one occurrence
of the corresponding variable in the set of parameter left.

3

Employing Linear Programming
Solvers

3.1 The Module LP

The module LP is provided as contribution (being part of the Mozart Oz 3 distribution1)
and can be accessed either by

declare [LP] = {Module.link [’x-oz://contrib/LP’]}

or by

import RI at ’x-oz://contrib/LP’

as part of a functor definition.

{LP.solve $RIs +ObjFn +Constrs ?OptSol ?RetVal}

Invoke the LP solver. Use LP.config for configuring the solver.

VECTOR_OF(X) ::= tuple of X
| record of X
| list of X

RIs ::= VECTOR_OF(RI)

RI ::= float | real interval variable

The first parameter is a vector of real-interval variables. The current bounds of the
real-intervals are used as bound constraints by the LP solver. The second parameter
determines the objective function:

ObjFn ::= objfn(row: 〈VECTOR_OF(float)〉
opt: min | max)

The value at opt stands for minimize (min) resp. maximize (max). The third parameter
introduces the constraints to the LP solver.

1The module LP is not provided on any Windows platform.

40 Chapter 3. Employing Linear Programming Solvers

Constrs ::= VECTOR_OF(Constr)

Constr ::= constr(row: 〈VECTOR_OF(float)〉
type: ’=<’ | ’==’ | ’>="

rhs: float)

The fourth parameter OptSol is constrained to the optimal solution. In case it is al-
ready constrained to a real-interval variable, the LP solver derives an additional con-
straint which makes sure that no greater (minimize) resp. smaller (maximize) solution
is found. The last parameter indicates the success of the LP solvers.

RetVal ::= optimal

| infeasable

| unbounded

| failure

{LP.config +put +ConfigDirection}

Set configuration of module LP. One can set mode and solver.

{LP.config +get ?CurrentConfig}

Read current configuration of module LP.

CurrentConfig ::= config(avail: 〈AVAIL_SOLVERS〉
| mode: 〈MODES〉
| solver: 〈SOLVER〉)

Note that 〈SOLVER〉 takes a value out of 〈AVAIL_SOLVERS〉. The solvers available
depend on your local installation. The solver LP_SOLVE (lpsolve) is the default
solver.

AVAIL_SOLVERS ::= lpsolve

| cplex_primopt

| cplex_dualopt

The solver may run in two modes:

MODES ::= quiet

| verbose

The verbose mode is intended for debugging and outputs whether an optimal was
found (resp. if not what was the problem) and if so the optimal solution.

4

Propagation Engine Library

4.1 Overview

enumerable type pf_return_t

typedef enum { pf_failed,

pf_entailed,

pf_sleep } pf_return_t;

Return type of a propagation function.

function type pf_fnct_t

typedef pf_return_t (* pf_fnct_t)(int *, PEL_SuspVar * []);

Type of a propagation function. A propagation function takes an array of parameter
indicies and an array of references to constrained variables ((PEL_SuspVar *)). It
returns a value of type pf_return_t.

4.2 The class PEL_ParamTable

Sadd

int add(int i);

Add parameter index i to parameter table. The table index where i is stored is returned.

getHigh

int getHigh(void);

Returns the highest table index of the table.

operator []

int &operator [] (int i);

Returns a reference to the element at table position i, i.e., the element can be read and
written.

4.3 The class PEL_EventList

add

int add(int i);

42 Chapter 4. Propagation Engine Library

Add propagation function index i to event list. The event list index where i is stored
is returned.

wakeup

void wakeup(PEL_PropQueue *pq, PEL_PropFnctTable * pft[]);

Copies all entries of the event list to pq and marks the appropriate entries in pft as
scheduled.

getHigh

int getHigh(void);

Returns the highest index of the event list.

operator []

int &operator [] (int i);

Returns a reference to the element at event list position i, i.e., the element can be read
and written.

4.4 The class PEL_PropFnctTableEntry

constructor PEL_PropFnctTableEntry

PEL_PropFnctTableEntry(pf_fnct_t fn, int idx);

Constructs a propagator table entry with propagation function fn and index to param-
eter table idx.

isScheduled

void isScheduled(void);

Tests if the propagation function of this entry is marked as scheduled.

setScheduled

void setScheduled(void);

Marks the propagation function of this entry as scheduled.

unsetScheduled

void unsetScheduled(void);

Marks the propagation function of this entry as not scheduled.

isDead

int isDead(void);

Tests if the propagation function of this entry is marked as dead.

setDead

void setDead(void);

Marks the propagation function of this entry as dead.

getFnct

pf_fnct_t getFnct(void);

Returns the pointer to the propagation function of this entry.

getParamIdx

4.5. The class PEL_PropFnctTable 43

int getParamIdx(void);

Returns the index to parameter table of this entry.

4.5 The class PEL_PropFnctTable

constructor PEL_PropFnctTable

PEL_PropFnctTable(void);

Constructs a propagation function table.

add

int add(PEL_ParamTable &pt, PEL_PropQueue &pq,

pf_fnct_t fnct, int x, int y);

int add(PEL_ParamTable &pt, PEL_PropQueue &pq,

pf_fnct_t fnct, int x, int y, int z);

Adds an entry for the propagation function fnct with parameters x and y (resp. x,
y, and z) and returns the index of the entry in the table. The propagation function is
registered with pq and the parameter indices are stored in pt.

4.6 The class PEL_PropQueue

constructor PEL_PropQueue

PEL_PropQueue(void);

Constructs a propagation queue.

enqueue

void enqueue(int fnct_idx);

Enqueue a propagation function index fnct_idx. The propagation function index is
related to a propagation function table.

dequeue

int dequeue(void);

Returns a propagation function index.

apply

pf_return_t apply(PEL_PropFnctTable &pft,

PEL_ParamTable &pt,

PEL_SuspVar * []);

Dequeues an index and applies the corresponding propagation function closure of pft.
It returns the value returned by the propagation function.

isEmpty

int isEmpty(void);

Tests if the queue is empty.

setFailed

void setFailed(void);

44 Chapter 4. Propagation Engine Library

Sets the queue failed.

isFailed

int isFailed(void);

Tests if the queue is failed.

isBasic

int isBasic(void);

Tests if all propagation functions registered with the queue have ceased to exist.

incAPF

void incAPF(void);

Increments the registration counter by 1.

decAPF

void decAPF(void);

Decrements the registration counter by 1.

reset

void reset(void);

Resets the queue. (???)

getSize

int getSize(void);

Returns the number of queued propagation function entry indicies.

4.7 The class PEL_FSetProfile

constructor PEL_FSetProfile

PEL_FSetProfile(void);

Constructs a profile for finite set constraint.

init

void init(OZ_FSetConstraint &fset);

Initializes the profile with fset.

isTouched

int isTouched(OZ_FSetConstraint &fset);

Tests if the constraint fset is more constrained than the constraint, the profile has been
initialized with.

isTouchedSingleValue

int isTouchedSingleValue(OZ_FSetConstraint &fset);

Tests if the constraint fset has become a single value since the last initialization of the
profile.

isTouchedLowerBound

int isTouchedLowerBound(OZ_FSetConstraint &fset);

4.8. The class PEL_FSetEventLists 45

Tests if the lower bound of the constraint fset has been further constrained since the
last initialization of the profile.

isTouchedUpperBound

int isTouchedUpperBound(OZ_FSetConstraint &fset);

Tests if the upper bound of the constraint fset has been further constrained since the
last initialization of the profile.

4.8 The class PEL_FSetEventLists

getLowerBound

PEL_EventList &getLowerBound(void);

Returns the event list for lower bound events.

getUpperBound

PEL_EventList &getUpperBound(void);

Returns the event list for upper bound events.

getSingleValue

PEL_EventList &getSingleValue(void);

Returns the event list for single value events.

gc

void gc(void);

Performs a garbage collection. Has to be called if the hosting propagation is garbage
collected.

4.9 The class PEL_FDProfile

constructor PEL_FDProfile

PEL_FDProfile(void);

Constructs a profile for finite domain constraint.

init

void init(OZ_FDConstraint &fd);

Initializes the profile with fd.

isTouched

int isTouched(OZ_FDConstraint &fd);

Tests if the constraint fd is more constrained than the constraint, the profile has been
initialized with.

isTouchedWidth

int isTouchedWidth(OZ_FDConstraint &fd);

Tests if the width of the constraint fd has been further constrained since the last ini-
tialization of the profile.

46 Chapter 4. Propagation Engine Library

isTouchedLowerBound

int isTouchedLowerBound(OZ_FDConstraint &fd);

Tests if the lower bound of the constraint fd has been further constrained since the last
initialization of the profile.

isTouchedUpperBound

int isTouchedUpperBound(OZ_FDConstraint &fd);

Tests if the upper bound of the constraint fd has been further constrained since the last
initialization of the profile.

isTouchedBounds

int isTouchedBounds(OZ_FDConstraint &fd);

Tests if at least one of the bounds of the constraint fd has been further constrained
since the last initialization of the profile.

isTouchedSingleValue

int isTouchedSingleValue(OZ_FDConstraint &fd);

Tests if the constraint fd has become a single value since the last initialization of the
profile.

4.10 The class PEL_FDEventLists

getBounds

PEL_EventList &getBounds(void);

Returns the event list for bound events.

getSingleValue

PEL_EventList &getSingleValue(void);

Returns the event list for single value events.

gc

void gc(void);

Performs a garbage collection. Has to be called if the hosting propagation is garbage
collected.

4.11 The class PEL_SuspVar

This class defines the minimal functionality required by classes derived from PEL_SuspVar.

wakeup

virtual int wakeup(void) = 0;

This function is required to be defined the derived classes.

4.12. The class PEL_SuspFSetVar 47

4.12 The class PEL_SuspFSetVar

constructor PEL_SuspFSetVar

PEL_SuspFSetVar(void);

Constructs an uninitialized library finite set variable.

constructor PEL_SuspFSetVar

PEL_SuspFSetVar(PEL_FSetProfile &fsetp,

OZ_FSetConstraint &fset,

PEL_FSetEventLists &fsetel,

PEL_PropQueue &pq,

PEL_PropFnctTable &pft,

int first = 1);

Constructs an initialized library finite set variable which is directly connected with the
corresponding variable in the constraint store.

constructor PEL_SuspFSetVar

PEL_SuspFSetVar(OZ_FSetConstraint &fsetl,

PEL_FSetEventLists &fsetel,

PEL_PropQueue &pq,

PEL_PropFnctTable &pft);

Constructs an initialized library finite set variable which is not directly connected with
the corresponding variable in the constraint store. This constructor is used if the library
variable is subordinated to the store variable, e.g. when implementing a clause of a
disjunction.

init

PEL_SuspFSetVar * init(PEL_FSetProfile &fsetp,

OZ_FSetConstraint &fset,

PEL_FSetEventLists &fsetel,

PEL_PropQueue &pq,

PEL_PropFnctTable &pft,

int first = 1);

This initialization function is associated with the constructor for the directly connected
library variable and returns a pointer the library variable.

init

PEL_SuspFSetVar * init(OZ_FSetConstraint &fsetl,

PEL_FSetEventLists &fsetel,

PEL_PropQueue &pq,

PEL_PropFnctTable &pft);

This initialization function is associated with the constructor for the not directly con-
nected library variable and returns a pointer the library variable.

propagate_to

int propagate_to(OZ_FSetConstraint &fset, int first = 0);

The constraint fset is propagated to the library variable and wakeup is called if nec-
essary. The function returns 0 in case propagation fails. Otherwise it returns 1.

48 Chapter 4. Propagation Engine Library

wakeup

virtual int wakeup(int first = 0);

Causes propagation functions to be scheduled for rerun according to the constraints
imposed on this variable since the last invocation of this function. This function returns
1 if variable denotes a single value and else 0.

operator *

OZ_FSetConstraint &operator * (void);

Returns the finite set constraint associated with this variable.

operator ->

OZ_FSetConstraint * operator -> (void);

Returns the pointer to the finite set constraint associated with this variable.

4.13 The class PEL_SuspFDIntVar

constructor PEL_SuspFDVar

PEL_SuspFDVar(void);

Constructs an uninitialized library finite set variable.

constructor PEL_SuspFDVar

PEL_SuspFDIntVar(PEL_FDProfile &fdp,

OZ_FiniteDomain &fdv,

PEL_FDEventLists &fdel,

PEL_PropQueue &pd,

PEL_PropFnctTable &pft,

int first = 1);

Constructs an initialized library finite domain variable which is directly connected with
the corresponding variable in the constraint store.

constructor PEL_SuspFDVar

PEL_SuspFDIntVar(OZ_FiniteDomain &fdl,

PEL_FDEventLists &fdel,

PEL_PropQueue &pd,

PEL_PropFnctTable &pft);

Constructs an initialized library finite domain variable which is not directly connected
with the corresponding variable in the constraint store. This constructor is used if the
library variable is subordinated to the store variable, e.g. when implementing a clause
of a disjunction.

init

PEL_SuspFDIntVar * init(PEL_FDProfile &fdp,

OZ_FiniteDomain &fd,

PEL_FDEventLists &fdel,

PEL_PropQueue &pq,

PEL_PropFnctTable &pft,

int first = 1);

4.13. The class PEL_SuspFDIntVar 49

This initialization function is associated with the constructor for the directly connected
library variable and returns a pointer the library variable.

init

PEL_SuspFDIntVar * init(OZ_FiniteDomain &fdl,

PEL_FDEventLists &fdel,

PEL_PropQueue &pq,

PEL_PropFnctTable &pft);

This initialization function is associated with the constructor for the not directly con-
nected library variable and returns a pointer the library variable.

propagate_to

int propagate_to(OZ_FiniteDomain &fd, int first = 0);

The constraint fd is propagated to the library variable and wakeup is called if necessary.
The function returns 0 in case propagation fails. Otherwise it returns 1.

wakeup

virtual int wakeup(int first = 0);

Causes propagation functions to be scheduled for rerun according to the constraints
imposed on this variable since the last invocation of this function. This function returns
1 if variable denotes a single value and else 0.

operator *

OZ_FiniteDomain &operator * (void);

Returns the finite domain constraint associated with this variable.

operator ->

OZ_FiniteDomain * operator -> (void);

Returns the pointer to the finite domain constraint associated with this variable.

Index

LP
config
LP, config, get, 40
LP, config, put, 40

LP, solve, 39

50

