The Oz Inspector

Thorsten Brunklaus

December 1, 2001 m Y 14d rt

Abstract

The Inspector is a graphical and interactive tool for displaying and examining Oz values.
It combines fast display services with powerful interactive in-place manipulation of the
datastructures.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

Introduction|

Inspector Basics|

2.1 SimplelInvocationy

2.2 Inspecting within Multiple Widgetd
2.2.1 Adding and DeletingWidgety

.3 Value Representation]

Interactive Examination|

B.1 Node Access Pointd
B.2 Node Operationg
3.2.1 Exploration.
3.2.2 Filterngand Mappind
B.2.3 Triggering Actiony
B.3 Using Selectiong.
B.3.1 Substructure Liftind

GUI Configuration

B.1 Structure Settingg

.2 Appearance Settings

k.3 Configuration Rangg

API Referencq

5.1 Inspector class methods

b.2 InspectorOptiony

5.3 Value Represenation] i
b.4 VisualSettingg

p.4.1 ColorAssignment.

b.5 Customizing ContextMenug

DA W ow W

© 0o ~N ~N N

5.5.1 Registering contextmenuy 23

p.5.2 MappingFunctiony 23
5.5.3 ActionProcedured 24
b.6 Equivalence Relationy 24
b.7 Inspecting user-definedtypes, 24

Introduction

Overview The Inspector is designed to obliterate the barrier between datastructures
and their graphical representation, in particular, to make the user feel operating di-
rectly with the values without abstractions involved. This is achieved by providing the
following features:

e Fast drawing services

Human readable and predictable data layout

Interactive and automatic type-directed tree transformations

Multiple views of the same data

Widely configurable

Chapter 1. Introduction

Inspector Basics

This chapter provides some basic understanding about how the Inspector can be used.

2.1 Simple Invocation

The simplest usage of the Inspector is to execute the statement { | nspect X}, where
X can be any Oz value. Unless the Inspector window is already open, this will create
a new window displaying the given value. For instance, the window in Figure .1 was
created using the statement

{I nspect |abel (i ama sanple tuple)}

It is possible to inspect more than one value at the same time. By default, new values
are appended to the current window.

Figure 2.1: The Oz Inspector

Inspector Selection Options

lakel) -

2.2 Inspecting within Multiple Widgets

The Inspector can handle an arbitrarily number of viewing windows (called widgets)
which can be accessed and configured independently.

4 Chapter 2. Inspector Basics

2.2.1 Adding and Deleting Widgets

To open a new display widget, click ‘Add new Widget” from the Inspector menu as
shown in Figure .2

When more than one widget is used, the notion of the active widget becomes important.
The active widget receives all work caused by applications of | nspect . By default, the
initial widget is the active widget. This can be changed using the TAB key. The active
widget is indicated by a box with extra-thick line width around its viewing area.

To show the value X in the | -th window, execute the statement { | nspect N | X}. The
widgets are numbered starting from zero.

The currently active widget can be removed by clicking ‘Delete active Widget’ from
the Inspector menu (see Figure P.2). The widget below the active widget becomes the
new active widget. If only a single widget is left, this action is ignored.

2.3 Value Representation

The Inspector can be configured to display values using either a tree-like or graph-like
representation (see Figure P.3).

Tree The value will be shown as a tree with respect to given depth and width explo-
ration limits. Values larger than the given limits are truncated, the cut positions being
indicated by down and right arrows, respectively.

Graph The value will be shown not only with respect to given depth and width ex-
ploration limits but also with respect to an equivalence relation: Repeatedly occurring
sub-values will only be displayed once, all later occurrences being replaced by ref-
erences to the first occurrence. This yields a more compact representation revealing
more information about the value’s structure. Equivalence is computed in a depth-first
left-to-right traversal over the entire (truncated) value.

2.3. Value Representation

Figure 2.2: Adding a new display widget

Inspector | Selection Options
Ahout...

|

Add new Widget
Delete active Widget

Clear all hut Selection

Iconify
Close

K — 0z Inspector

Inspector Selection Options @

lakel (i am a =sample tuple)

Chapter 2. Inspector Basics

Figure 2.3: Three views on the same datastructure

K — 0z Inspector

Inspector Selection Options @
LiLiE B B E) /|
E{E BE E E)
E{E BE E E)
E{E B B EI)
1 ™
=
E(RZ=k (R3I=FE R3 R3 R3] B
2
2
RZ)
T
=
E(t({R3I=F RI R3 R3] B
E{R3 R3 R3 R3)
E{R3 R3 R3 R3)
E{R3 R3 R3 R3))

Interactive Examination

Once a value is displayed, it can be examined more closely by using the context menus
attached to its nodes. A node’s context menu offers a configurable set of type-specific
operations on that node and can be opened by right-clicking the node’s so-called access

3.1 Node Access Points

Node access points are defined as follows:

Any atomic node is a node access point for itself. (An atomic node is a node that
has no subnodes.)

For any tuple excluding lists, the label and the parentheses are access points for
the entire tuple node.

For any record, the label and and the parentheses are access points for the entire
record node. In particular, the record’s features are defined not to be node access
points.

The node access points of lists depend on the display mode. In tree mode, the
brackets and pipe symbols (' | ') are node access points for the entire list. In
graph mode, each pipe symbol is a node access point for the sublist starting at
that point.

3.2 Node Operations

The Inspector offers three types of operations on nodes: exploration, filtering and map-
ping, and actions (see Figure B.1).

e Exploration allows to locally modify the depth and width exploration limits,
thereby expanding or shrinking the value to the region of interest.

e Mappings allow to transform values for display with respect to a given mapping
function. This makes it possible to either arbitrarily prune regions of the value
(also called filtering) or to extract information from abstract datatypes.

8 Chapter 3. Interactive Examination

Figure 3.1: A context menu opened over the closing parenthesis

Inspector Selection Options

lakel(k

Exlore Tree

Filter

Actionsz - =
= =

e Actions allow to apply side-effecting operations on displayed values. For in-
stance, this allows to make values available to external tools such as the exper-
imental Constraint Investigator, for gathering information beyond the scope of
the Inspector.

These types of operations are explained in the following sections.

3.2.1 Exploration

When inspecting a large data structure, one often needs to zoom in on a subvalue or
hide currently irrevelant data. This is what the exploration operations are intended for.
Two different kinds of operations exist, for modifying the depth and the width limits
respectively (see Figure B.2).

Depth Applying the operation ‘Depth +n’ to a node causes the subtree starting at
that node to be redrawn, with a depth of n levels. Applying the operation ‘Depth -n’
causes the node to be pruned, as well as its n - 1 parent nodes. The effect of the global
depth limit is that when new values are inspected, immediately the operation ‘Depth
+d’ is applied to them, where d is the global depth limit.

Width Every node also has a display width associated with it. If a node has a display
width w, only its first w subtrees will be displayed (in the case that w is zero, that
means none). Initially, all nodes are created with the default display width. Applying
the operation “Width +n’ or *“Width -n’ to a node modifies that node’s display width by
the specified amount and causes it to be redrawn accordingly.

Figure B.3 shows some examples of the effects of the operations described above. They
have all been obtained from inspecting the sample tuple given above, and applying
operations to it as follows:

1. The sample tuple has been shrinked by applying ‘Width -5.

2. The sample tuple has been subject to applying ‘Width -5” once and ‘Width +1’
twice.

3.2. Node Operations 9

Figure 3.2: Sample inspection and various results

Inspector Selection Options

lakel?- —— - —-———1- I:uple]l
Exlore Tree - - 4
: Width T yrigth +1
Filter “ Deth
] P < Width +5
Actionsz ,a‘|_
Width +10
Width -1 =

= width -5 | BB

Inspector Selection Options
lakbel (=) i

3. The sample tuple has been collapsed by applying ‘Depth -1°.

4. The sample tuple is only partially displayed when applying ‘Depth +1’. Note
that the operation does not augment the display depth, but replaces it.

5. The sample tuple has been partially displayed using ‘Depth +1” and then shrinked
in width by applying “Width -1” twice. This shows that the exploration functions
are compositional.

3.2.2 Filtering and Mapping

The Inspector defines default mappings for many data types, to perform commonly-
used operations such as inspecting the state of mutable data structures. Figure
demonstrates an example of this: By default, dictionaries are displayed as the un-
specific tag <di cti onary>. The default mapping ‘Show Items’ for dictionaries
replaces the dictionary node by a snapshot of its contents (specifically, as the result of
the Di ctionary.itens procedure).

10 Chapter 3. Interactive Examination

Figure 3.3: Example mapping invocation and its result

Inspector Selection Options

<dickionars>
Exlore Tree -
Filter " Show Keys
“ Show Items v
H Chaoas Cubuinn I |-

K 0z Inspector

Inspector Selection Options

Note how the different choice of background color indicates that this is, in fact, a
mapped representation. Mappings can be undone using the context menu option ‘un-
map’.

Mappings have the following properties:

e Mappings are fully compositional, meaning that any other mapping can be ap-
plied to an already-mapped node.

e Mapping works on a per-node basis. In particular, the Inspector will apply new
mappings to any child nodes of a mapped node.

e Mapping functions are type-specific. That means that every type offers its own
collection of mapping functions.

Mapping functions can be applied automaticly before inspection of the value. See
Section .1 for details on how to do this. Keep in mind that the results can be confusing
due to the per-node mapping strategy.

3.2.3 Triggering Actions

Figure B.4 demonstrates the invocation of an action. The by-need future is forced,
whereupon the Inspector will update its display accordingly, showing its value.

3.3. Using Selections 11

Figure 3.4: Example action invocation and its result

Inspector Selection Options

E<Bvhes o

Exlore Tree -

-

Actionsz - I - I
e | OFCE Evaluation :
F-J |-

K — 0z Inspector

Inspector Selection Options

compukbted fubkure

Like mappings, actions are type-specific. See Section for details on how to reg-
ister new actions.

3.3 Using Selections

Some of the operations presented above can also be triggered on the selected node by
the *Selection” menu. To ‘select’ a node means to left-click a node access point. The
corresponding node will be drawn with a selection frame around it. Figure B.5]shows
the operations that can be applied to the selected node.

3.3.1 Substructure Lifting

Figure B.§ demonstrates another application of selections: Any selected substructure
can be lifted to toplevel by applying the ‘Clear all but Selection’ command from the
Inspector menu.

Substructure lifting is intended to rapidly prune large trees and currently works only
with one structure selection. It cannot be undone.

12

Chapter 3. Interactive Examination

Inspector

Figure 3.5: The selection interface

Selection

Options

EL5
EL5
EL5

(£ (5

a

5
5
5

shrink

Reinspect

|

Figure 3.6: Substructure lifting

Inspector | Selection Options

About...

Add new Widget
Delete active Widget

| Clear all hut Selection

GUI Configuration

The Inspector is widely user configurable. The options are basically organized in two
groups as follows:

e Structure-related options control what node representation the Inspector chooses
for a given value. These include the traversal limits, mode (tree or graph) and
the mapping details.

e Appearance-related options control the display style to use, such as fonts, colors,
and subtree alignment, i.e., how subtrees are arranged.

Since the Inspector handles more than one widget, the user can specify whether the
settings should affect all widgets or the active widget only.

This chapter explains how to navigate through the graphical configuration dialog.

4.1 Structure Settings

Figure .7 shows the structure-related options.

Traversal The ‘Traversal’ box allows to change the default exploration limits for
newly inspected values. See Section for details on how these parameters are
used.

Representation The ‘Representation’ box allows to configure the traversal mode.
In tree mode, all structures are displayed as their (possibly infinite) tree unrolling, up to
the traversal limits. In particular, this mode does not detect cycles. In contrast, relation
mode both detects cycles and shared substructure. Relation mode also requires to select
the equivalence relation to use. (Note that the corresponding combo box is active only
when relation mode is selected.)

By default, the following equivalence relations are supported: The default of ‘token
equality’ uses Syst em eq, while ‘structural equality’ is unification-based. See Sec-
tion p.§ for details on how to add new relations.

Chapter 4. GUI Configuration

Figure 4.1: The selection dialog: “Structure’ tab

K — Inspector Settings

atructure 1 Appearance 1 Range 1

— Traversal
Width Limit: |50 =
Depth Limit: 15 =
Representation
& Tree Mode
~ Relation Mode Token Equality VI
— Mapping
aelected Type: Array VI
Type Defaults
~ Mo Default Mapping
& Apply Show Contents VI

ok Apply | Cancel

4.2. Appearance Settings 15

Mapping The “Mapping’ box allows to change the assignment of auto-mappings for
the selected type. A type is selected via the corresponding combo box to the right (see

Figure B.7).

Auto-mappings can be deactivated or activated for specific types by first selecting the
type, then either clicking ‘No default mapping’ or ‘Apply’, respectively. The latter then
requires to select one of the registered mapping functions for that type. (Note again
that the corresponding combo box box is active only if ‘Apply’ is selected.)

See Section for details on how to add new mappings.

4.2 Appearance Settings

Figure [.7 shows the appearance-related options. It should be self-explanatory.

4.3 Configuration Range

Figure .3 shows the options controlling the applicability of the settings made on the
previous tabs. Again, this should be self-explanatory.

16

Chapter 4. GUI Configuration

K

Figure 4.2: The selection dialog: ‘Appearance’ tab

Inspector sSettings

Range 1

—

atructure 1 Appearance

— Font

Faont Size: 14 E|

_1 Bold

— 3ubtree Alighment
_| Use Fixed Width Indent

— Colors
aelected Type: Atom VI

ok Apply

Cancel

4.3. Configuration Range

17

K

Figure 4.3: The selection dialog: Range tab

Inspector sSettings

atructure | Appearance 1

Range

—

— Apply Settings to
& Active Widget anly

o Al shown Widgets

Ok

Apply

Cancel

18

Chapter 4. GUI Configuration

| nspect

i nspect N

configure

configureN

cl ose

obj ect

API| Reference

The Inspector functor is available for import at the URI
It exports the following application programmer’s interface:

{Inspector.inspect X}

opens a new Inspector window if none exists, then displays X in the active widget.

{Inspector.inspectN +I X}

opens a new Inspector window if none exists, then displays X in the widget with num-
ber I, counting from zero. Note that the chosen widget must have been created already.
This is always the case for number zero.

{Inspector.configure +Key +Val ue}

sets the configuration option with key Key to value Val ue. The following sections
starting with Section p.2] explain in detail which keys and values are valid parameters.

{Inspector.configureN +I +Key X}

behaves like confi gure but directly addresses the widget number | which must be
existing already.

{I nspector.cl ose}

closes the Inspector window, if any.

| nspector.

is the class from which Inspector instances can be created.

I nspect or. obj ect

is the default instance of class | nspect or . which is implicitly used by | nspect,

I nspect or. i nspect N, | nspect or. confi gure, | nspector. configureNand| nspect or. cl ose.
Note that this object is not thread safe. Use the wrappers provided or a server abstrac-

tion.

20 Chapter 5. API Reference

5.1 Inspector class methods
The inspector class provides the methods shown below.

create

initializes a new inspector object with reasonable defaults.

i nspect (X)
inspects the value X.

i nspect N(+N X)
inspects the value denoted by X using widget number N. Keep in mind then the corre-
sponding widget must have been created already.

configureEntry(+Key +Val ue)
tells the inspector to update the option denoted by Key with value Val ue.

cl ose

closes and unmaps the inspector object.

Caution: The created inspector object itself is not thread safe. Use a server wrapper
instead if concurrency is required. This limitation applies only to the inspector object
itself but not its widgets.

5.2 Inspector Options
This section covers global Inspector options.

i nspect or Wdth
{Inspector.configure inspectorwWdth —+I}

adjusts the Inspector’s horizontal window dimension to | pixels. Defaults to 600.
i nspect or Dept h
{Inspector.configure inspectorDepth +I}
adjusts the Inspector’s vertical window dimension to | pixels. Defaults to 400.
i nspect or Opti onsRange
{Inspector.configure inspectorQptionsRange +A}

determines which widgets will be affected by reconfiguration. Acan be either
or , with the obvious meaning.

5.3. Value Represenation 21

5.3 Value Represenation

This section explains how to configure the value representation using the API.

wi dget TreeW dt h
{Inspector.configure w dget Treewdth +I}

adjusts the global width traversal limit to | . Defaults to 50.
wi dget Tr eeDept h
{Inspector.configure w dget TreeDepth +I}
adjusts the global depth traversal limit to | . Defaults to 15.
wi dget Tr eeDi spl ayMbde
{Inspector.configure w dget TreeDi spl ayMbde +B}
switches between tree and graph representation, depending on whether B denotes t r ue
or f al se, respectively.
wi dget UseNodeSet
{Inspector.configure w dget UseNodeSet —+I}
determines the subtree alignment. If | is 1, the standard aligment is used. A value of 2
selects fixed width indentation.
wi dget ShowSt ri ngs
{Inspector.configure w dget ShowStri ngs +B}
switches between normal and readable representation of strings. It defaults to f al se.

5.4 Visual Settings

This section explains how to configure the visual aspects of node drawing using the
API.

wi dget Tr eeFont
{Inspector.configure w dget TreeFont font(family:+F size: +S weight: +W}

selects the widget font as follows:

e -F denotes either or
e +Sdenotes any integer out of {10, 12, 14, 18, 24}.
e -Wdenotes either or

The default is f ont (fami | y: size: 12 wei ght:).

wi dget Cont ext MenuFont
{Inspector.configure w dget Cont ext MenuFont +V)}

selects the font used to draw the context menus. V denotes any valid X font description.
It defaults to

22

Chapter 5. API Reference

5.4.1 Color Assignment

{1 nspector.configure +A +Col or)}

assigns color Col or to item type A. Col or denotes an atom describing any valid
hexadecimal RGB color code. A is composed of a type prefix and a *Color’ suffix. For

example,

{1 nspector.configure intCol or }

chooses to draw integer nodes with color

types is shown in table Figure b.1}

. The complete list of known

Figure 5.1: Known atomic types

i nt

bool
bytestring
free

f dint

| abel
feature
backgr ound
vari abl er ef
r ef

generic
braces

col on

wi dt hbi t map
dept hbi t map
separ at or
pr oxy

sel ection

fl oat atom
uni t name
procedure future
Oz variables

Oz finite domain variables
record/tuple labels

record features

widget backround

using occurence of graph reference
defining occurence of graph reference
the generic value

parentheses around mixfix tuples
separator between feature and subtree
left arrow

down arrow

separators such as # and |

background color used for mappings
background color used for selections

5.5 Customizing Context Menus

This sections explains how to create context menus. The current implementation only
allows to attach entire context menus to a node. A context menu simply is a tuple

menu(W dt hLi st Dept hLi st Mappi ngLi st Acti onLi st) as follows:

e W dthLi st and Dept hLi st denote integer lists describing the possible limit
changes. The integer zero serves as separator indicator. Both lists default to
[1510 0 ~1 ~5 ~10].

e Mappi ngLi st denotes a list of tuples following the pattern

See Section for details about writing mappings.

If the function should be used for auto-mapping, use aut o(
instead. Each list must not contain more than one auto mapping entry.

(MapFun) .

(MapFun))

5.5. Customizing Context Menus 23

e ActionLi st denotes a list of tuples following the pattern (ActionProc).
See Section p.5.3 for details about writing actions.

5.5.1 Registering context menus
Context menus are registered using the statement
{Inspector.configure +Type +Menu}

where Type denotes an atom composed of a valid type prefix as shown in Figure
and a Menu suffix. Menu denotes the menu as described in Section b.5.

Figure 5.2: Menu types

hasht upl e Tuples with label #
pi pet upl e Possible open lists such as streams

l'ist Closed lists

labeltuple Tuple with any other label
record Oz Records (without kinded reocrds)
kindedrecord Feature constraints

future Futures

free Variables

fdint Finite domain variables
fset Finite set menus

array Oz arrays

dictionary Oz dictionaries

class Oz classes

object Oz objects

chunk Oz chunks

cell Oz cell

For example, executing
{1 nspector.configure recordvenu Menu}

assigns a new record context menu denoted by Menu.

5.5.2 Mapping Functions

Writing mapping functions is easy: Every function follows the pattern below.

fun {MyMapFuncti on Val ue MaxW dt h MaxDept h}
i f {want ToMap Val ue} then
/* conputations */
el se Val ue
end
end

24 Chapter 5. API Reference

MaxW dt h and MaxDept h are integers denoting the node’s width and depth limits. This
allows to handle cycles independently of whether they would have been recognized or
not. Keep in mind that mapping functions should not have side-effects.

5.5.3 Action Procedures
Action procedures follow the pattern below.

proc {MyAction Val ue}
/* conputations */
end

5.6 Equivalence Relations

Equivalence relations are registered using the statement
{1 nspector.configure w dgetRel ati onLi st [(Rel Fun) /* ... nore rel

Every Rel Fun is expected to compute the characteristic function of its relation and
therefore follows the pattern

fun {Rel Fun X Y}
/* computations resulting true or false */
end

These functions should not have side effects. Again, the implementation currently only
supports the replacement of the all relations.

5.7 Inspecting user-defined types

Oz allows to add new types to the system. The Inspector is able to display such values

without beeing rebuilt provided that they can be distinguished using Val ue. st at us

and transformed to a built-in type. In this case, it is sufficient to add a new mapping

function attached to that type. In the default case, the inspector will use Val ue. t oVi rt ual Stri ng
to obtain a useful representation of the unknown value. Depending on its type, the value

will be monitored und updated, too.

For example, to introduce weak dictionaries to the inspector use the code shown below.
| ocal

fun {lItenFun V WD}
{WeakDi ctionary.itenms V}

end
Key = case {Val ue.status {WakDi ctionary.new _}} of det(T) then T [] _ f
TypeKey = {Virtual String.toAtom Key# }
in
{I nspector.configure TypeKey menu(nil nil [auto((ltenfFun))] |
end

See Section for details about how | t enFun is built.

