
The Oz Programming Interface

Leif Kornstaedt

Version 1.2.3
December 1, 2001

Abstract

The Oz Programming Interface (OPI) is the primary tool for interaction with the Mozart
development system. It offers special support for editing Oz code, running Mozart as a
sub-process, and interacting with Mozart’s development tools. This document is a refer-
ence manual for the complete functionality of the OPI.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 Invoking the OPI 3

2.1 Invoking the OPI in the Unix Environment 3

2.2 Invoking the OPI Under Windows 3

2.3 Invoking the OPI From Within Emacs 4

2.4 The Oz Major Modes . 4

2.5 Inspecting the OPI’s Commands and User Options 5

3 Editing Oz Code 7

3.1 Managing Oz Buffers . 7

3.2 Indentation . 7

3.3 Fontification . 8

3.4 Comments . 9

3.5 Expression-Level Commands . 9

4 Running Mozart from the OPI 11

4.1 Running and Halting . 11

4.2 Mozart’s Output Buffers . 12

4.3 Feeding Code to the Compiler . 12

4.4 Running the Command-Line Tools 13

4.5 Dealing With Errors . 14

4.6 Seeing the OPI from Mozart . 14

5 Interacting With the Development Tools 17

6 Using Profiles 19

A Summary of Oz-Specific Emacs Key Bindings 21

B Mozart System Development Support 23

B.1 Viewing Emulator Bytecode . 23

B.2 Testing Locally . 23

B.3 Running under gdb . 25

C Application Programmer’s Interface 27

D Limitations 29

1

Introduction

The Mozart Programming System provides a powerful environment for the develop-
ment of software systems, called the ‘Oz Programming Interface’ (OPI). The OPI is
built around the extensible Emacs editor and runs (at least) under GNU Emacs, Ver-
sion 19.24 or greater, and XEmacs, Version 19.14 or greater. Its main features are:

Features

Editing Oz code. The OPI automatically indents program lines and colorizes Oz source code to ease
reading and writing of Oz programs. Due to its awareness of the syntactical structure
of Oz, one can work with programs by applying commands to whole constructs such
as procedure or class definitions.

Running Mozart as a sub-process. The OPI handles input to and output from a Mozart sub-process,
providing a convenient interface for the interactive use of the Mozart system and for
explorative programming.

Starting Mozart’s development tools. The OPI provides menus and shortcuts to interact with the
development system’s graphical tools, e.g., setting breakpoints for the thread debugger
or displaying the current position in the source file being debugged.

The Manual’s Structure This manual is structured as follows. Chapter 2 gives
an overview of the OPI’s general integration into the standard framework provided by
Emacsen1. Chapter 3, Chapter 4, and Chapter 5 are dedicated to the three main features
mentioned above respectively. Chapter 6 describes how to manage multiple Oz mode
settings using profiles. Appendix A summarizes all Oz-specific key bindings.

The last three appendices provide information for advanced users. Appendix B details
how to test Mozart system components locally and how to run Mozart under gdb. Ap-
pendix C documents some functions of the OPI that might be useful for users who want
to write their own editing commands. Finally, Appendix D lists the known limitations
of the OPI with workarounds.

1‘Emacsen’ is the plural of ‘Emacs’. In this manual, we use the term when the feature being described
applies to both GNU Emacs and XEmacs.

2 Chapter 1. Introduction

Learning Emacs This manual assumes some familiarity with the general editing
commands of Emacsen and uses standard Emacs terminology. If you want to exploit
the full power of the OPI you should get some acquaintance with Emacs. A good place
to start is the Emacs on-line tutorial [1], available from the Emacs Help menu; this is
also the place to check if you are confused by the terminology used in this manual. You
might especially want to look up the following words in the Emacs manual’s glossary:
point, mark, region, buffer, window, frame, mode line, killing, command, user option,
prefix argument.

Acknowledgements

The Oz Programming Interface of the Mozart system is an extension and partial re-
design of the Oz Programming Interface of DFKI Oz, Versions 1.1 and 2.0. Credit has
to go to the following people:

• Michael Mehl2, for initially providing editing support (indentation, fontifica-
tion),

• Ralf Scheidhauer3, for running Oz as a sub-process,

• Benjamin Lorenz4, for the interaction with the Oz debugger,

• Jochen Dörre, for initially providing Oz expression editing commands and jump-
ing to compiler error messages.

Leif Kornstaedt is the person now responsible for the entirety of Mozart’s OPI. Please
address any remarks to him.

2http://www.ps.uni-sb.de/~mehl/
3http://www.ps.uni-sb.de/~scheidhr/
4http://www.ps.uni-sb.de/~lorenz/

2

Invoking the OPI

This chapter describes how to invoke the OPI, i.e., how to access its functionality.

2.1 Invoking the OPI in the Unix Environment

The easiest way to start the OPI is to type the following command at the shell prompt1:

% oz 〈emacs args〉

After setting up the necessary environment variables, this starts up an Emacs process,
passing to it all arguments given on the command line, creates a new buffer named Oz,
and starts a Mozart sub-process.

Which Emacs to Use The command used to invoke Emacs is determined through
the following steps:

1. If the environment variable OZEMACS is set, its contents is used.

2. Else, if a command named emacs is found in the PATH, this is used.

3. Else, if a command named xemacs is found in the PATH, this is used.

4. Else, if a command named lemacs is found in the PATH, this is used.

2.2 Invoking the OPI Under Windows

The installation procedure will have created a program group for the Mozart system.
The OPI is started by launching the Mozart item. This item is a shortcut to the oz.exe
program within the bin subfolder of the installation folder; as under Unix, any argu-
ments given to it are passed on to the invoked Emacs.

1The percent sign (%) represents the shell prompt; it is not part of the command.

4 Chapter 2. Invoking the OPI

Which Emacs to Use The command used to invoke Emacs is determined through
the following steps:

1. If the environment variable OZEMACS is set, its contents is used.

2. Else, if the registry indicates where GNU Emacs is installed, this is used.

3. Else, if the registry indicates where XEmacs is installed, this is used.

2.3 Invoking the OPI From Within Emacs

You can also configure your Emacs so that you can use all of the OPI’s functionality
without using the oz script. Here’s what you would typically add to your Emacs startup
file (usually called ~/.emacs under Unix and C:_emacs under Windows 95; under
Windows NT, it is located in your home directory):

(or (getenv "OZHOME")

(setenv "OZHOME"

"/usr/local/oz")) ; or wherever Mozart is installed

(setenv "PATH" (concat (getenv "OZHOME") "/bin:" (getenv "PATH")))

(setq load-path (cons (concat (getenv "OZHOME") "/share/elisp")

load-path))

(setq auto-mode-alist

(append ’(("\\.oz\\’" . oz-mode)

("\\.ozg\\’" . oz-gump-mode))

auto-mode-alist))

(autoload ’run-oz "oz" "" t)

(autoload ’oz-mode "oz" "" t)

(autoload ’oz-gump-mode "oz" "" t)

(autoload ’oz-new-buffer "oz" "" t)

Don’t worry if you don’t understand all of this (yet).

2.4 The Oz Major Modes

All of the OPI’s functions are accessible in the following two major modes:

command oz-mode

This is the major mode for editing Oz code. Loading a file with extension .oz auto-
matically puts a buffer into Oz mode. You can tell a buffer is in Oz mode by the string
Oz in its mode line.

command oz-gump-mode

This is the major mode for editing Oz code with embedded Gump specifications (see
“Gump–A Front-End Generator for Oz”). Loading a file with extension .ozg auto-
matically puts a buffer in Oz-Gump mode. You can tell a buffer is in Oz-Gump mode
by the string Oz-Gump in its mode line.

2.5. Inspecting the OPI’s Commands and User Options 5

Oz Mode Hook To both of these, the following hook applies.

user option oz-mode-hook

A list of functions to be run when one of the Oz modes is activated. These func-
tions are applied without arguments. Change using Emacs functions add-hook and
remove-hook.

2.5 Inspecting the OPI’s Commands and User Options

The Oz Menu The Oz major modes add a menu called Oz to the menu bar (see
Figure 2.1); this menu is also accessible by pressing the right mouse button in an Oz
buffer. Many of the commands described in the next chapters are accessible through
this menu.

Figure 2.1: The Oz Menu.

Emacs Conventions The Oz modes conform to the following Emacs conventions:

• Nearly all functions and variables start with oz-...

• If the documentation string of a variable starts with an asterisk, then its value
is meant for the user to modify at will (a so-called user option). The documen-
tation string of a variable can be inspected with M-x describe-variable
(C-h v).

6 Chapter 2. Invoking the OPI

• If a function has a documentation string, then it is meant for the user to use
directly if she so wishes. Inspect the documentation string of a function with
M-x describe-function (C-h f); if a command is bound to a key, you
can examine its documentation string with M-x describe-key (C-h k).

• The OPI provides the feature oz. See Emacs’ require function for more details.

Customization New Emacsen offer a feature called customization, which serves
the purpose of setting the user options pertaining to a mode in a structured way. You can
access this feature by M-x customize; look at the group Programming/Languages/Oz.
You can also access this group directly via M-x customize-group RET oz.

Key Bindings A short description of the current major mode and its key bindings
can be obtained through Emacs’ M-x describe-mode (C-h m). In this manual,
the key sequences a command is bound to by default will always be shown in paren-
thesis following the command name.

user option oz-mode-map

Keymap used in the Oz modes.

Generally, Oz-specific commands are made available both with C-. and C-c . as
prefix. This manual always lists only the first of these. However, some terminals may
not be able to generate C-.; this is why the second one is provided.

3

Editing Oz Code

The commands in this chapter assist in editing Oz code. To achieve this, many of these
are aware of the lexical or syntactical structure of Oz programs.

3.1 Managing Oz Buffers

The Oz modes offer commands for creating new interactive buffers and quickly switch-
ing between Oz buffers:

command oz-new-buffer (C-. n)

Create a new buffer using the Oz major mode. Note that this buffer has no associated
file name, so quitting Emacs will kill it without warning.

command oz-next-buffer (M-n)
command oz-previous-buffer (M-p)

Switch to the previous resp. next buffer in the buffer list that runs in an Oz mode. If no
such buffer exists, an error is signalled.

3.2 Indentation

The preferred indentation style can currently be customized through the following user
option:

user option oz-indent-chars (default: 3)

Number of columns that statements are indented wrt. the block containing them.

Several commands assist in formatting existing Oz code.

command oz-indent-line &optional COUNT (TAB)

Reindent the current line. If COUNT is given, reindent that many lines above and below
point as well.

command oz-indent-region

Reindent all lines at least partly covered by the current region.

8 Chapter 3. Editing Oz Code

command oz-indent-buffer

Reindent every line in the buffer.

command indent-oz-expr (M-C-q)

Reindent all lines at least partly covered by the Oz expression following point. For a
description of what constitutes an Oz expression, see Section 3.5.

The following command assists in authoring Oz code.

command oz-electric-terminate-line (RET)

Terminate the current line, i.e., delete all whitespace around point and break the line.
If the user option oz-auto-indent is non-nil, indent both lines.

user option oz-auto-indent (default: t)

See oz-electric-terminate-line.

Additionally, DEL is bound to the Emacs command backward-delete-char-untabify.

3.3 Fontification

Fontification is the term used in Emacs for displaying text in different font faces, de-
pending on its syntactical form and context, to ease reading of code. For example,
comments and strings may be displayed in different colours.

Many major modes in Emacs provide several levels of fontification with increasing use
of faces, but also increasing resource consumption. In the Oz modes, there are three
levels. You can select one using the font-lock-maximum-decoration user option,
e.g., add the following line to your .emacs:

(setq font-lock-maximum-decoration 3)

The default level depends on your version of Emacs.

The following user option controls automatic fontification in the OPI.

user option oz-want-font-lock (default: t)

If non-nil, automatically invoke font-lock-mode when any of the Oz modes is acti-
vated. If you prefer to control this via global-font-lock-mode, you can set this to
nil.

You might like the following user option and command if you care about superfluous
(usually invisible) spaces:

user option oz-pedantic-spaces (default: nil)

If non-nil, highlight ill-placed whitespace. Note that this user option must be set before
the oz library is loaded.

face oz-space-face

The face in which ill-placed whitespace is highlighted.

command oz-remove-annoying-spaces

Remove all ill-placed whitespace from the current buffer. This is all the whitespace
that is highlighted in oz-space-face.

3.4. Comments 9

3.4 Comments

command oz-fill-paragraph &optional JUSTIFY

Like the fill-paragraph command, but handles Oz comments. If any of the cur-
rent line is a comment, fill the comment or the paragraph of it that point is in, pre-
serving the comment’s indentation and initial percent signs. The buffer-local variable
fill-paragraph-function is bound to this command, so it will also be invoked by
M-x fill-paragraph (M-q).

command oz-comment-region START END &optional ARG

Comment or uncomment each line in the region. With just C-u as prefix argument,
uncomment each line in region. A numeric prefix argument ARG means use ARG com-
ment characters. If ARG is negative, delete that many comment characters instead.
Blank lines do not get comments.

command oz-uncomment-region START END &optional ARG

Comment or uncomment each line in the region. See the oz-comment-region com-
mand for more information; note that the prefix argument is negated though.

3.5 Expression-Level Commands

In this section, we use the term Oz definition to stand for the text from a proc, fun,
class or meth keyword up to its matching end. Also, we use the term Oz expres-
sion to stand for the text corresponding to either a bracketed Oz construct (such as
proc ... end or local ... end) or a single word.

command forward-oz-expr &optional COUNT (M-C-f)

Move point forward by one balanced Oz expression. With COUNT, do it that many
times. Negative COUNT means backwards.

command backward-oz-expr &optional COUNT (M-C-b)

Move point backward by one balanced Oz expression. With COUNT, do it that many
times. COUNT must be positive.

command mark-oz-expr COUNT (M-C-@, M-C-SPC)

Set mark COUNT balanced Oz expressions from point. The place mark goes to is the
same place the forward-oz-expr command would move to with the same argument.

command transpose-oz-exprs ARG (M-C-t)

Like the transpose-words command (M-t) but applies to balanced Oz expressions.
Caveat: This might not produce nice results in all cases.

command kill-oz-expr COUNT (M-C-k)

Kill the balanced Oz expression following point. With COUNT, kill that many Oz
expressions after point. Negative COUNT means kill -COUNT Oz expressions before
point.

10 Chapter 3. Editing Oz Code

command backward-kill-oz-expr COUNT (M-C-DEL1)

Kill the balanced Oz expression preceding point. With COUNT, kill that many Oz
expressions before point. Negative COUNT means kill -COUNT Oz expressions after
point.

command oz-beginning-of-defun (M-C-a)

Move point to the start of the Oz definition it is in. If point is not inside an Oz definition,
move to start of buffer. Returns t unless search stops due to beginning or end of buffer.

command oz-end-of-defun (M-C-e)

Move point to the end of the Oz definition it is in. If point is not inside an Oz definition,
move to end of buffer.

1Note that under some configurations, this key combination kills the X server.

4

Running Mozart from the OPI

The OPI allows to run Mozart directly from the OPI. A sub-process is started that
executes ozengine with a single root functor argument, by default called OPI.ozf.
In particular, {Property.get argv} will always return nil.

Emulator and Compiler The output of the process is redirected into an Emacs
buffer called *Oz Emulator*. For instance, all output done via System.show etc.
will appear in this buffer. Additionally, the OPI.ozf program instantiates an Oz
compiler and attaches its input and output to an Emacs buffer called *Oz Compiler*;
communication, in this case, is done via a socket. The compiler might also create a
new buffer for output of source code, called *Oz Temp*.

When we speak of the ‘Oz Emulator’ and ‘Oz Compiler’ buffers in this manual, we
mean the buffers called *Oz Emulator* and *Oz Compiler* respectively.

In order to run the Mozart system, the OPI has to know its installation path. This is
normally found through the environment variable OZHOME; it will have been set by the
oz shell script if you started the OPI with it. If it is not set, the value of the following
variable will be used instead.

user option OZ-HOME (default: /usr/local/oz1)

Directory where Oz is installed. Only used as fallback when the environment variable
OZHOME is not set.

4.1 Running and Halting

The following commands are used to start and halt the Mozart sub-process.

command run-oz (C-. r)

Start Mozart as a sub-process if it is not already running. Handle input and output via
the Oz Emulator buffer. If the current buffer is not running in an Oz mode, create a
new buffer in Oz mode.

user option oz-change-title (default: nil)

If non-nil, change the Emacs frame’s title while a Mozart sub-process is running.
1This default is actually fixed at the time the Mozart system is configured and built, so it might vary

on your system.

12 Chapter 4. Running Mozart from the OPI

user option oz-frame-title (default: "Oz Programming Interface (...)")

String to use as Emacs frame title while a Mozart sub-process is running. In the default
shown above, the old frame title will be inserted in place of the ellipsis.

command oz-halt FORCE (C-. h)

Halt the Mozart sub-process. With no prefix argument, feed an /{Application.exit 0}

statement and wait for the process to terminate. Waiting time is limited by the user op-
tion oz-halt-timeout; after this delay, the process is sent a SIGHUP if still living.

With C-u as prefix argument, send the process a SIGHUP without delay. With C-u C-u
as prefix argument, send it a SIGKILL instead.

user option oz-halt-timeout (default: 30)

Number of seconds to wait for shutdown in command oz-halt.

4.2 Mozart’s Output Buffers

Several commands make inspecting the Oz Emulator and Oz Compiler buffers easier.

command oz-toggle-emulator (C-. e)
command oz-toggle-compiler (C-. c)
command oz-toggle-temp (C-. t)

Toggle visibility of the Oz Emulator, Compiler or Temporary window respectively.
If the buffer is not visible in any window, then display it. If it is, then delete the
corresponding window.

user option oz-other-buffer-size (default: 35)

Percentage of screen to use for Oz Compiler, Emulator or Temp window.

4.3 Feeding Code to the Compiler

Feedable Regions The commands that send regions of the current buffer to the
Oz Compiler for compilation come in four flavors:

• Feeding the whole buffer. More specifically, the region the buffer has been nar-
rowed to is fed.

• Feeding the currently marked region, i.e., the text contained between point and
mark.

• Feeding the line point is in. If a numeric prefix argument is given, that many
lines are fed; if the prefix argument is negative, that many preceding lines as
well as the current line are fed.

• Feeding the paragraph point is in (or after, if it is not inside any paragraph). A
paragraph is a region of text delimited by empty lines, i.e., lines not even con-
taining whitespace. If a numeric prefix argument is given, that many paragraphs
are fed; if the prefix argument is negative, that many preceding paragraphs as
well as the current paragraph are fed.

4.4. Running the Command-Line Tools 13

command oz-feed-buffer (C-. C-b)
command oz-feed-region START END (C-. C-r)
command oz-feed-line COUNT (C-. C-l)
command oz-feed-paragraph COUNT (C-. C-p, M-C-x)

The corresponding text region is fed to the compiler and processed with its currently
active switches.

command oz-show-buffer (C-. s C-b)
command oz-show-region START END (C-. s C-r)
command oz-show-line COUNT (C-. s C-l)
command oz-show-paragraph COUNT (C-. s C-p)

Feed the corresponding text region to the Oz Compiler. Assuming it to contain an
expression, enclose it by an application of the procedure Show.

command oz-to-coresyntax-buffer

command oz-to-coresyntax-region START END
command oz-to-coresyntax-line COUNT
command oz-to-coresyntax-paragraph COUNT

The corresponding text region is prefixed by

\localSwitches

\switch +core -codegen

and fed to the Oz Compiler. If compilation succeeds, the resulting source file will be
displayed in the Oz Temporary buffer.

command oz-send-string STRING &optional SYSTEM

Feed STRING to the Oz Compiler, restarting it if it died. If SYSTEM is non-nil, it is
a command for the system and is prefixed by

\localSwitches

\switch +threadedqueries -verbose -expression -runwithdebugger

user option oz-prepend-line (default: t)

If non-nil, prepend a \line directive to all Oz queries, specifying the file name (or
buffer name, if there’s no associated file) and the line number. This information is
used by the compiler to output meaningful error messages and to include debugging
information in the generated machine code.

4.4 Running the Command-Line Tools

command oz-compile-file

Compile an Oz program non-interactively.

user option oz-compile-command (default: "ozc -c %s")

Default shell command to do a compilation. This may contain at most one occurrence
of %s, which is replaced by the current buffer’s file name. Used by oz-compile-file.

14 Chapter 4. Running Mozart from the OPI

command oz-debug-application

Invoke ozd.

user option oz-application-command (default: "%s")

Default shell command to do execute an Oz application. This may contain at most one
occurrence of %s, which is replaced by the current buffer’s file name, minus the .oz
or .ozg extension. Used by oz-debug-application.

4.5 Dealing With Errors

Error Messages An error message is either an error or warning message issued by
the Oz Compiler or an exception displayed by the Emulator.

Error Coordinates Where available, error coordinates are associated with error
messages, consisting of the file name (or buffer name) and line number of the corre-
sponding Oz source code.

user option oz-popup-on-error (default: t)

If non-nil, pop up Compiler resp. Emulator buffer upon an error message.

command next-error &optional ARG (C-x ‘)

Visit next compilation error message and corresponding source code.

A prefix arg specifies how many error messages to move; negative means move back to
previous error messages. Just C-u as a prefix means reparse the error message buffer
and start at the first error.

This normally uses the most recently started compilation. To specify use of a particular
buffer for error messages, type C-x ‘ in that buffer.

4.6 Seeing the OPI from Mozart

Startup When the OPI.ozf file is applied, a startup file is searched and loaded as
follows:

1. It is first checked whether the environment variable OZRC is set. If it is, its
contents is interpreted as a file name that is fed to the OPI compiler.

2. Else, if the file ~/.oz/ozrc exists and is readable, it is fed to the compiler.

3. Else, if the file ~/.ozrc exists and is readable, it is fed to the compiler.

4.6. Seeing the OPI from Mozart 15

Compiler Environment The environment available when running Mozart from
the OPI is an enriched base environment (see “The Oz Base Environment”). All of
Mozarts system modules and tools are available under variables named like the cor-
responding modules, e.g., the functionality of the open programming component is
available as Open. Additionally, the following aliases are introduced:

Alias Long Form
Show System.show

Print System.print

Browse Browser.browse

Inspect Inspector.inspect

Load Pickle.load

Save Pickle.save

SearchOne Search.base.one

SearchAll Search.base.all

SearchBest Search.base.best

ExploreOne Explorer.one

ExploreAll Explorer.all

ExploreBest Explorer.best

Compiler Interface When Mozart is started from the OPI, an instance of the Mozart
compiler is created that listens for queries from the interactive development environ-
ment. This interaction is handled via a compiler interface called Emacs.interface

(see Section Compiler Interfaces, (The Mozart Compiler)).

System Properties It is possible to test whether Mozart is currently running under
the OPI or as a standalone system via the following system property:

{Property.get ’oz.standalone’ ?B}

This returns false when Mozart has been started from the OPI. When this is the case,
a reference to the compiler interface via which the interaction with the Emacs devel-
opment environment takes place can be obtained via

{Property.get ’opi.compiler’ ?O}

16 Chapter 4. Running Mozart from the OPI

5

Interacting With the Development
Tools

This section briefly documents how Mozart’s development tools are integrated into the
OPI; several of these commands are available from the Oz menu. For more details
about the tools themselves, see the individual user manuals. For a description of the
feedable regions, see Section 4.3.

The following command is useful for several of the tools.

command oz-bar-remove

Remove any coloured bar marking an Oz source line. Such bars are used by the Com-
piler Panel, the Debugger and the Profiler.

Browser

command oz-browse-buffer (C-. b C-b)
command oz-browse-region START END (C-. b C-r)
command oz-browse-line COUNT (C-. b C-l)
command oz-browse-paragraph COUNT (C-. b C-p)

Feed the corresponding text region to the Oz Compiler. Assuming it to contain an
expression, enclose it by an application of the procedure Browse.

Inspector

command oz-inspect-buffer (C-. i C-b)
command oz-inspect-region START END (C-. i C-r)
command oz-inspect-line COUNT (C-. i C-l)
command oz-inspect-paragraph COUNT (C-. i C-p)

Feed the corresponding text region to the Oz Compiler. Assuming it to contain an
expression, enclose it by an application of the procedure Inspect.

System Panel

command oz-open-panel (C-. C-. s)

Open the System Panel by feeding the statement {Panel.open} to the Oz Compiler.

18 Chapter 5. Interacting With the Development Tools

Compiler Panel

command oz-open-compiler-panel (C-. C-. c)

Open the Compiler Panel by feeding the statement {New CompilerPanel.’class’ init(OPI.compiler) _}

to the Oz Compiler.

Debugger

command oz-debugger ARG (C-. C-. d)

Open the Oz Debugger by feeding the statement {Ozcar.open} to the Oz Compiler.
With ARG, close it instead by {Ozcar.close}.

command oz-breakpoint-at-point ARG (C-x SPC)

Set a dynamic breakpoint for the Oz Debugger in any code carrying the current source
file name (or buffer name) and line number as debugging information. With ARG,
delete any breakpoints at these coordinates instead.

Profiler

command oz-profiler ARG (C-. C-. p)

Open the Oz Profiler by feeding the statement {Profiler.open} to the Oz Compiler.
With ARG, close it instead by {Profiler.close}.

6

Using Profiles

To make it easy to run multiple versions of Oz and also customize them through the
.emacs file, there is the notion of profiles. A profile is an alist providing values for
the Oz mode variables you want to set different from their default. Besides the ability
to have profiles for multiple versions of Mozart, you can also define profiles for build
and debug directories (with possibly different gdb setting for interactive debugging for
debug directories).

user option oz-profiles (default: nil)

An alist of profiles for different Oz mode configurations.

command oz-set-profile NAME

Select profile NAME from those defined in oz-profiles.

command oz-profile-undo

Undo the bindings established by the current profile.

20 Chapter 6. Using Profiles

A

Summary of Oz-Specific Emacs Key
Bindings

In this appendix, we present a summary table of all Oz-specific Emacs key bindings.
This is intended as a convenient reference; more detailed explanations are given in
previous chapters.

C-. is the short Oz-specific prefix; C-. C-. is the short Oz-specific tool prefix.
Both have equivalent long prefixes: C-c . and C-c . C-c .; these are useful on
terminals that cannot generate C-. (such as a VT100). The table below documents
only the short prefix.

22 Appendix A. Summary of Oz-Specific Emacs Key Bindings

Editing Code
M-C-f (page 9) forward expression
M-C-b (page 9) backward expression
M-C-k (page 9) kill expression
M-C-DEL (page 10) backward kill expression
M-C-@ (page 9) mark expression
M-C-SPC (page 9) mark expression
M-C-q (page 8) indent expression
M-C-a (page 10) beginning of definition
M-C-e (page 10) end of definition
M-C-t (page 9) transpose expressions
C-x ‘ (page 14) next error
Managing Buffers
M-n (page 7) next Oz buffer
M-p (page 7) previous Oz buffer
C-. n (page 7) new Oz buffer
Interacting With a Mozart Sub-Process
C-. e (page 12) toggle emulator buffer
C-. c (page 12) toggle compiler buffer
C-. t (page 12) toggle temporary buffer
C-. r (page 11) start Mozart sub-process
C-. h (page 12) halt Mozart sub-process
C-u C-. h (page 12) halt Mozart sub-process (forced)
Executing Code
C-. C-b (page 13) feed buffer
C-. C-r (page 13) feed region
C-. C-l (page 13) feed line
C-. C-p (page 13) feed paragraph
M-C-x (page 13) feed paragraph
Evaluating Expression and Browsing Result
C-. b C-b (page 17) browse buffer
C-. b C-r (page 17) browse region
C-. b C-l (page 17) browse line
C-. b C-p (page 17) browse paragraph
Evaluating Expression and Showing Result
C-. s C-b (page 13) show buffer
C-. s C-r (page 13) show region
C-. s C-l (page 13) show line
C-. s C-p (page 13) show paragraph
Interacting With Tools
C-. C-. s (page 17) open system panel
C-. C-. c (page 18) open compiler panel
C-. C-. p (page 18) start profiler
C-. C-. d (page 18) start debugger
C-x SPC (page 18) set breakpoint on current line
Mozart System Development Support
C-. d (page 25) toggle gdb
C-. o (page 24) toggle global/local emulator
C-. m (page 24) set path to local emulator
C-u C-. o (page 24) toggle global/local functors
C-u C-. m (page 24) set search path to local functors

B

Mozart System Development Support

The commands and user options described in this section are probably only interesting
for people developing or extending parts of Mozart and thus compiling their own sys-
tem components. They provide for testing parts of the system locally before installing
and for running them under the GNU Debugger gdb.

For completeness and as a reference for the developers themselves, they are described
here nevertheless.

B.1 Viewing Emulator Bytecode

The bytecode produced by the compiler can be displayed conveniently in an Emacs
buffer. See Section 4.3 for a description of the feedable regions.

command oz-to-emulatorcode-buffer

command oz-to-emulatorcode-region START END
command oz-to-emulatorcode-line COUNT
command oz-to-emulatorcode-paragraph COUNT

The corresponding text region is prefixed by

\localSwitches

\switch -core +codegen +outputcode -feedtoemulator

and fed to the Oz Compiler. If compilation succeeds, the resulting source file will be
displayed in the Oz Temporary buffer.

command ozm-mode

This is the major mode for displaying (especially fontifying) bytecode. Loading a file
with extension .ozm automatically puts a buffer into Oz-Machine mode. You can tell
a buffer is in Oz-Machine mode by the string Oz-Machine in its mode line.

B.2 Testing Locally

One part of the support is concerned with testing system functors locally.

24 Appendix B. Mozart System Development Support

user option oz-build-dir (default: ~/mozart)

Path to the build directory, i.e., the directory in which configure was invoked. You
should set this before the OPI is loaded into Emacs for the following user options to be
initialized correctly.

user option oz-emulator (default: see below)

File name of the Oz Emulator binary. This is used when running the Emulator under
gdb, and by the oz-other command.

The default value of this variable is taken from the environment variable OZEMULATOR
if it is set, else it is set to

oz-build-dir/platform/emulator/emulator.exe

user option oz-functor-path (default: see below)

Search path for the Oz system functors. This is used by the oz-other command. By
default, this specifies rules to look for functors in the oz-build-dir/share/lib and
oz-build-dir/share/tools directories. This is useful for first testing changes before
installing the modified functors globally.

The default value of this variable is taken from the environment variable OZ_LOAD if
it is set, else it is set to

prefix=x-oz\\://system/=oz-build-dir/share/lib/:
prefix=x-oz\\://system/=oz-build-dir/share/tools/:
prefix=x-oz\\://boot/=oz-build-dir/platform/emulator/:
cache=~/.oz/cache:cache=oz-home/cache

where oz-home stands for the value of the environment variable OZHOME.

user option oz-root-functor (default: "x-oz://system/OPI.ozf")

Name of the root functor to load on startup.

command oz-set-other SET-FUNCTOR-PATH (C-. m)

If SET-FUNCTOR-PATH is nil, call oz-set-emulator, else call oz-set-functor-path.

command oz-set-emulator (C-. m)

Interactively set the value of the variable oz-emulator. Also, if the environment vari-
able OZEMULATOR is set, replace its value by this one.

command oz-set-functor-path (C-u C-. m)

Interactively set the value of the variable oz-functor-path. Also, if the environment
variable OZ_LOAD is set, replace its value by this one.

command oz-other SET-FUNCTOR-PATH (C-. o)

If SET-FUNCTOR-PATH is nil, call oz-other-emulator, else call oz-other-functor-path.

command oz-other-emulator (C-. o)

Toggle between global and local Oz Emulator. The local emulator is given by the user
option oz-emulator; see oz-set-emulator.

command oz-other-functor-path (C-u C-. o)

Toggle between global and local Oz functor search path. The local functors are given
by the user option oz-functor-path; see oz-set-functor-path.

B.3. Running under gdb 25

B.3 Running under gdb

The last command is for starting the Mozart Emulator under gdb.

command oz-gdb (C-. d)

Toggle debugging of the Oz Emulator with gdb. This sets some additional environment
variables since the oz script has to be bypassed, and starts gud-mode with the emulator
binary specified by the user option oz-emulator.

user option oz-gdb-autostart (default: t)

If non-nil, start emulator immediately when in gdb mode. Else you have the possibil-
ity to first set breakpoints and only run the emulator when you issue the run command
to gdb.

26 Appendix B. Mozart System Development Support

C

Application Programmer’s Interface

This section documents some functions that might be useful to users wanting to write
their own Oz-syntax-aware commands. All of these commands respect Oz syntax wrt.
quoted elements.

function oz-is-quoted

Return non-nil iff point is inside a string, quoted atom, backquote variable, ampersand-
denoted character or end-of-line comment. In this case, move the point to the beginning
of the corresponding token. Else point is not moved.

function oz-backward-keyword

function oz-forward-keyword

Search backward resp. forward for the last resp. next keyword or parenthesis preceding
resp. following point. Return non-nil iff such was found. Ignore quoted keywords.
Point is left at the first character of the keyword.

function oz-backward-begin

Move to the last unmatched start of a bracketed Oz construct and return column of
point.

function oz-forward-end

Move point to the next unmatched end.

function oz-backward-paren

Move to the last unmatched opening parenthesis and return column of point.

function oz-forward-paren

Move to the next unmatched closing parenthesis.

Please submit interesting commands you formulate using these functions to the author.

28 Appendix C. Application Programmer’s Interface

D

Limitations

Some features of Oz syntax are not handled correctly for purposes of fontification and
indentation. These will be described in the following so that you can work around
these limitations.

Fontification

• An ampersand as the last character in a string or before a backslash-escaped
double quote in a string prevents this double quote from being recognized as a
string delimiter. Workaround: Write [&&] or "\&" instead of "&".

• A backslash character token &\\ immediately followed by a lowercase letter
is misinterpreted as a directive, e.g., in C == &\\andthen ... Workaround:
Include a space character.

• At maximum fontification level, method names are coloured in font-lock-funtion-name-face.
If one mistakenly uses a keyword as method name, as in meth lock() ... end,
then one is not reminded of the fact that this constitutes a syntax error.

• The use of non-escaped double quotes in Gump regular expression tokens written
with angle brackets confuses fontification. Workaround: Express the regular
expression by a string.

Indentation

• If a keyword is immediately preceded by a number (without space), e.g., 10thread,
the keyword is not recognized as such. This also concerns fontification. Workaround:
Write a space.

• Indentation does not know about /* ... */ style comments, that is, their con-
tents is indented like code and taken into account for computing the following
indentation level. Workaround: Only use such comments to comment out prop-
erly nested code.

• Indentation does not know about conditional compilation. Workaround: Only
use conditionals around properly nested code.

30 Appendix D. Limitations

• Line breaks inside strings, quotes or backquote variables are reported as errors
when computing the indentation level. Workaround: Write line breaks as "\n"
and/or use virtual strings with # concatenation for multiline strings.

• Indentation is not aware of infix operators, e.g.:

feat

f:

5 +

7

The 7 should be underneath the 5. Workaround: Enclose the expression in paren-
theses.

• The contents of Gump regular expression tokens in angle bracket notation are
not ignored for purposes of indentation. Workaround: Express the regular ex-
pression by a string.

Bibliography

[1] Richard M. Stallman. GNU Emacs Manual, 7th edition, 1991.

Index

\line directive, 13
~/.oz/ozrc, 14
~/.ozrc, 14

add-hook, 5
Application

Application, exit, 12

backward-kill-oz-expr, 10
backward-oz-expr, 9
breakpoints, 18
Browser, 17
buffer

buffer, compiler, 11, 12
buffer, emulator, 11, 12
buffer, menu, 5
buffer, temporary, 11, 12

buffer name, 13, 14
bytecode, 23

class, 9
comments, 8, 9
compiler

compiler, buffer, 11, 12
compiler, core syntax, 13

Compiler Panel, 18
core syntax, 13

Debugger, 18
definition, 9
describe-function, 6
describe-key, 6
describe-mode, 6
describe-variable, 5
documentation string, 5

Emacs
Emacs, conventions, 5
Emacs, GNU, 1, 3, 4
Emacs, startup file, 4
Emacs, XEmacs, 1, 3, 4

emulator
emulator, buffer, 11, 12
emulator, byte code, 23
emulator, debugging, 25

emulator, local, 24
end, 9, 27
error message, 13
exception, 14
expression, 9

face, 8
file name, 13, 14
fill-paragraph, 9
font, 8
forward-oz-expr, 9
frame title, 11
fun, 9
functor

functor, root, 11, 24
functor, system, 24

gdb, 25
GNU Emacs, 1, 3, 4
gud-mode, 25

hook, 5

indent-oz-expr, 8
Inspector, 17

key bindings
key bindings, of a major mode, 6

key bindings, 6
keymap, 6
kill-oz-expr, 9
killing, 9

line number, 13, 14

mark-oz-expr, 9
menu, 5, 17
meth, 9
mode line, 4, 23

next-error, 14

OPI.ozf, 11
Oz expression

Oz expression, indenting, 8
Oz expression, killing, 9

32

INDEX 33

Oz expression, marking, 9
Oz expression, moving over, 9

oz shell script, 3, 11, 25
oz-application-command, 14
oz-auto-indent, 8
oz-backward-begin, 27
oz-backward-keyword, 27
oz-backward-paren, 27
oz-bar-remove, 17
oz-beginning-of-defun, 10
oz-breakpoint-at-point, 18
oz-browse-buffer, 17
oz-browse-line, 17
oz-browse-paragraph, 17
oz-browse-region, 17
oz-build-dir, 24
oz-change-title, 11
oz-comment-region, 9
oz-compile-command, 13
oz-compile-file, 13
oz-debug-application, 14
oz-debugger, 18
oz-electric-terminate-line, 8
oz-emulator, 24
oz-emulator, 25
oz-end-of-defun, 10
oz-feed-buffer, 13
oz-feed-line, 13
oz-feed-paragraph, 13
oz-feed-region, 13
oz-fill-paragraph, 9
oz-forward-end, 27
oz-forward-keyword, 27
oz-forward-paren, 27
oz-frame-title, 12
oz-functor-path, 24
oz-gdb, 25
oz-gdb-autostart, 25
oz-gump-mode, 4
oz-halt, 12
oz-halt-timeout, 12
OZ-HOME, 11
oz-indent-buffer, 8
oz-indent-chars, 7
oz-indent-line, 7
oz-indent-region, 7
oz-inspect-buffer, 17
oz-inspect-line, 17
oz-inspect-paragraph, 17

oz-inspect-region, 17
oz-is-quoted, 27
oz-mode, 4
oz-mode-hook, 5
oz-mode-map, 6
oz-new-buffer, 7
oz-next-buffer, 7
oz-open-compiler-panel, 18
oz-open-panel, 17
oz-other, 24
oz-other-buffer-size, 12
oz-other-emulator, 24
oz-other-functor-path, 24
oz-pedantic-spaces, 8
oz-popup-on-error, 14
oz-prepend-line, 13
oz-previous-buffer, 7
oz-profile-undo, 19
oz-profiler, 18
oz-profiles, 19
oz-remove-annoying-spaces, 8
oz-root-functor, 24
oz-send-string, 13
oz-set-emulator, 24
oz-set-functor-path, 24
oz-set-other, 24
oz-set-profile, 19
oz-show-buffer, 13
oz-show-line, 13
oz-show-paragraph, 13
oz-show-region, 13
oz-space-face, 8
oz-to-coresyntax-buffer, 13
oz-to-coresyntax-line, 13
oz-to-coresyntax-paragraph, 13
oz-to-coresyntax-region, 13
oz-to-emulatorcode-buffer, 23
oz-to-emulatorcode-line, 23
oz-to-emulatorcode-paragraph, 23
oz-to-emulatorcode-region, 23
oz-toggle-compiler, 12
oz-toggle-emulator, 12
oz-toggle-temp, 12
oz-uncomment-region, 9
oz-want-font-lock, 8
ozengine, 11
ozm-mode, 23

proc, 9

34 INDEX

Profiler, 18
program group, 3
Property

Property, argv, 11

remove-hook, 5
root functor, 11, 24
run-oz, 11

shell script
shell script, oz, 3, 11, 25

socket, 11
spaces, 8
startup file, 14
strings, 8
System Panel, 17

temporary buffer, 11, 12
transpose-oz-exprs, 9

whitespace, 8
Windows, 3, 4

XEmacs, 1, 3, 4

