
Window Programming in Mozart

Christian Schulte

Version 1.2.3
December 1, 2001

Abstract

This document is an introduction to window programming in Mozart. Mozart uses a high-
level object-oriented interface to Tk for window programming. The interface inherits from
Oz concurrency, objects and first-class procedures. From Tk the interface inherits a set of
powerful graphical abstractions. This document exemplifies both aspects: the basic usage
of the graphical abstractions and how to profit from Oz’s language features.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 Getting Started 3

2.1 Our First Graphical Application 3

2.1.1 Widgets . 4

2.1.2 Geometry . 4

2.1.3 Actions . 4

2.2 The Architecture . 5

2.3 Implementation . 5

3 Widgets 7

3.1 Toplevel Widgets and Widget Objects 7

3.2 The Graphics Engine, Tickles, and Widget Messages 8

3.2.1 The Graphics Engine . 8

3.2.2 Tickles and Widget Messages 8

3.2.3 Translating Tickles . 9

3.2.4 Special Tickles . 9

3.3 Frames . 10

3.3.1 Relief Options . 10

3.3.2 Screen Distance Options 11

3.3.3 Color Options . 11

3.3.4 Abbreviations and Synonyms 11

3.3.5 Additional Tk Information 11

3.4 The Widget Hierarchy . 12

3.5 Label Widgets . 12

3.5.1 Bitmap Options . 13

3.5.2 Font Options . 13

3.6 Images . 14

3.7 Messages . 16

4 Geometry Managers 19

4.1 Widgets and Parcels . 19

4.2 The Packer . 20

4.2.1 Side Options . 21

4.2.2 Padding . 21

4.2.3 Anchors . 22

4.2.4 Filling and Expansion . 22

4.3 The Grid Geometry Manager . 23

4.3.1 Padding . 25

4.3.2 Span Options . 25

4.3.3 Sticky Options . 25

4.3.4 Weight Options . 27

4.4 Using Anchors for Widgets . 27

5 More Widgets 29

5.1 Buttons and Actions . 29

5.2 Checkbuttons, Radiobuttons, and Variables 30

5.3 Querying Tickle Objects . 31

5.3.1 Querying Configuration Options 33

5.3.2 Querying Widget Parameters 33

5.4 Menus, Menuitems, and Menubuttons 34

5.5 Events . 35

5.5.1 Event Patterns . 36

5.5.2 Event Arguments . 37

5.5.3 Invoking Actions . 37

5.5.4 Appending and Deleting Event Bindings 38

5.6 More on Actions: Listeners . 38

5.7 Entries and Focus . 39

5.8 Scales . 40

5.9 Listboxes and Scrollbars . 40

5.10 Toplevel Widgets and Window Manager Commands 43

5.11 Selecting Files . 44

5.12 Example: Help Popups . 45

5.12.1 Displaying Help . 45

5.12.2 The Listener Class . 46

5.12.3 AttachHelp . 46

5.12.4 Using Help Popups . 47

6 Canvas Widgets 49

6.1 Getting Started . 49

6.2 Example: Drawing Bar Charts . 50

6.3 Canvas Tags . 50

6.3.1 Event Bindings . 52

6.4 Example: An Animated Time Waster 54

7 Text Widgets 57

7.1 Manipulating Text . 57

7.2 Text Tags and Marks . 58

7.3 Example: A ToyText Browser . 60

8 Tools for Tk 63

8.1 Dialogs . 63

8.2 Error Dialogs . 64

8.3 Menubars . 64

8.4 Handling Images . 67

A Data and Program Fragments 69

A.1 Getting Started . 69

A.2 More on Widgets . 69

A.3 Text Widgets . 70

1

Introduction

This document is an introduction to window programming in Mozart. Window pro-
gramming means to build graphical and interactive interfaces for applications.

In Mozart, the basic building blocks for window programming are widgets: objects that
represent graphical entities like labels, buttons, and menus. Windows are described
compositionally by means of object hierarchies and are subject to dynamic and inter-
active modification. Other entities we will deal with are for example fonts and images.
The appearance of widgets is managed by geometry managers. Interaction events, such
as pressing a mouse button, trigger execution of procedures or methods.

Mozart uses an object-oriented interface to Tk for window programming. The inter-
face inherits from Oz concurrency, objects and first-class procedures. From Tk the
interface inherits a set of powerful graphical abstractions. This document introduces
both aspects: the basic usage of the graphical abstractions and how to profit from Oz’s
language features. The interface employs a simple generic mapping to Tk. People
familiar with Tk will get acquainted very soon.

The Examples

The documents features a large number of examples which are designed to be tried by
the reader. All examples are contained in a demo file1 to be used with the “The Oz
Programming Interface” .

Further Information

One particular advantage of using Tk as graphics engine for Mozart is the wealth of
excellent documentation for Tcl and Tk.

A must read (or at least see or browse) in this particular respect is the original book[2]
of John Ousterhout. A very fascinating account on how to employ the graphical prim-
itives in Tk for developing high-level graphical applications is [1].

The definitive entry point into the full collection of Tcl/Tk related resources and infor-
mations is the web page at Scriptics2, a company co-founded by John Ousterhout.

1WindowProgramming.oz
2http://www.scriptics.com/

2 Chapter 1. Introduction

The details of all commands and widgets for Tcl and Tk can be found in the man-
pages that ship with the Tcl and Tk distributions. For convenience, the Mozart release
includes HTML versions of them3, which carry the following copyright4.

Acknowledgements

I am grateful to Michael Mehl, who co-authored an earlier version of this document.
Peter Van Roy contributed the paragraph in Section 5.3 that explains why tkReturn is
indeed asynchronous.

3../tcltk/contents.htm
4../tcltk/copyright.htm

2

Getting Started

This chapter shows a small graphical application from which we will identify the most
important concepts found in the window interface. The presentation is really designed
for identification of issues. An explanation of these issues follows in the remaining
chapters of this document.

2.1 Our First Graphical Application

Figure 2.1 shows a screen dump of our first graphical application. It allows to enter
text into the entry field. Pressing the button toggles the capitalization of the text in that
entry field.

Figure 2.1: Our first graphical application.

The program for the small graphical application is concerned with the following three
issues:

widgets Create the graphical entities called widgets. The application consists of three widgets:
a toplevel widget (this is the outermost window), an entry for entering text, and a
button.

4 Chapter 2. Getting Started

geometry Arrange the entry and button such that they appear inside the toplevel widget.

actions Attach an action to the button widget such that pressing the button changes the capital-
ization of the entry text.

In the sections below, we exhibit the code handling these issues. The complete appli-
cation then has the following structure:

〈Widget creation 4a〉
〈Geometry management 4b〉

2.1.1 Widgets

The following program fragment

4a 〈Widget creation 4a〉≡
W={New Tk.toplevel tkInit(title:’Capitalization’)}

E={New Tk.entry tkInit(parent:W)}

B={New Tk.button tkInit(parent: W

text: ’Change Capitalization’

action: 〈Action definition 4c〉)}

creates and initializes the widget objects of our application. Creating and initializing a
widget object creates a graphical image for the widget object. We refer to the graphical
image just as the widget. Most often we do not distinguish between the object and its
widget. All but the toplevel widget are linked by the parent features: this defines a
widget hierarchy for closing widgets and geometry management.

2.1.2 Geometry

Here we define the geometry for the entry and button widgets:

4b 〈Geometry management 4b〉≡
{Tk.send pack(E B fill:x padx:4 pady:4)}

2.1.3 Actions

The remaining program fragment:

4c 〈Action definition 4c〉≡
proc {$}

S={E tkReturn(get $)}

in

{E tk(delete 0 ’end’)}

{E tk(insert 0 {Map S 〈Change capitalization 69a〉})}
end

defines the action as a procedure to be executed when the button is pressed. It retrieves
the current content S from entry E, clears E, and reinserts S in E, but with toggled
capitalization. tkReturn illustrates another important issue: returning values from
widgets.

2.2. The Architecture 5

2.2 The Architecture

Figure 2.2 shows a sketch of the architecture of the window interface in Mozart. Its
core part is the graphics engine. The graphics engine computes graphical output and
displays it according to the input received.

Figure 2.2: Architecture sketch.
return values

actions

graphics engine events

Tk.send

tkInit

tk

Initializing widgets with the method tkInit and applying widgets to the tk method
send messages to the graphics engine. Additionally, the procedure Tk.send we used
for geometry management sends messages to the graphics engine. The graphics engine
understands tickles, Tk.send in fact just takes a tickle and sends it to the engine. Also
tkInit and tk methods map straightforwardly to tickle messages.

The graphics engine is sequential, each tickle is executed in order. User events are con-
sidered only when the graphics engine is idle, then the attached actions are executed.

2.3 Implementation

The implementation idea of the window interface is quite simple. The graphics engine
is executed by a separate operating system process (it runs in fact a modified wish).
Any communication with the graphics engine is done via strings. The interface maps
tickles and tickle messages to strings (this is done in a fairly efficient way). In the
reverse direction, strings can be mapped back to Oz data types like integers, atoms,
lists of integers or lists of atoms.

To get an impression of the efficiency of the implementation, try some examples, as
well as the demos1 and the tools2 that come with Mozart. They are all built on top of
the Tk window programming interface.

1“Mozart Demo Applications”
2“Oz Shell Utilities”

6 Chapter 2. Getting Started

3

Widgets

This chapter introduces some of the widget objects provided by the Tk interface. Ex-
amples illustrate the most common options and the values they can take.

3.1 Toplevel Widgets and Widget Objects

A toplevel widget serves as the outermost container for other widgets. It can be created
from the class Tk.toplevel and can be initialized by applying it to a message with
label tkInit. An example is shown in Figure 3.1. The features width and height

of the message together with their values specify that the toplevel widget is 150 pixels
wide and 50 pixels high.

Figure 3.1: Creating a toplevel widget.

W={New Tk.toplevel tkInit(width:150 height:50)}

Creating and initializing a widget object creates a graphical image for the widget ob-
ject. We will refer to the graphical image just as the widget. Most often we will not
distinguish between the object and its widget. A toplevel widget is special in that its
graphical image appears immediately on the screen after the widget object has been ini-
tialized. Other widgets require to be managed by a so-called geometry manager before
they appear on the screen. See Chapter 4 for a discussion of geometry managers.

A widget object can be sent a message with label tk to change the appearance or
behavior of its widget. For example, the background color of the toplevel widget W can
be changed to purple by

{W tk(configure background:purple)}

8 Chapter 3. Widgets

Additionally, a widget object understands messages that query its state. These will be
discussed later.

A widget object can be closed by applying the object to the message tkClose. Closing
the widget object also destroys the widget displayed on the screen. Section 3.4 contains
more details concerning how widget objects are closed.

The structure of messages with labels tkInit and tk depend on the particular widget
under consideration. However, all of these messages share a common structure. The
following section explains this structure and shows how to build messages such that
they are understood by widgets.

Reference information on toplevel widgets can be found in toplevel1.

3.2 The Graphics Engine, Tickles, and Widget Messages

Widget objects as well as instances of other classes defined in the Tk module are built
as object oriented frontends to a single graphical agent, the graphics engine.

3.2.1 The Graphics Engine

The graphics engine receives messages and executes them. By executing a message the
engine creates widgets, configures the appearance and behavior of widgets, or com-
putes a geometry for the layout of a widget on the screen.

tickles The messages the engine understands are tickles. The procedures Tk.send
and Tk.batch take a tickle or a list of tickles and send it to the graphics engine. We
use these two procedures especially to send tickles for geometry management, as is
discussed in Chapter 4.

translating object messages to tickles Messages sent to widgets and other
objects of the Tk interface are translated in a straightforward fashion to tickles. These
tickles are then forwarded to the graphics engine.

3.2.2 Tickles and Widget Messages

Tickles are used to describe messages for the graphics engine. A tickle is either a
boolean value, the name unit, a virtual string, a record that has neither a name as
label nor as feature, or a tickle object. A tickle object is any instance of a class that
the Tk module provides, unless otherwise mentioned (the only exception is the class
Tk.listener, see Section 5.6).

An initialization message with label tkInit must be a record without integer features.
The field of a feature must be a tickle. Only the special features parent, action, url,
and args may take different values. These features we will discuss later.

options To the features we refer to as configuration options, or for short as options.
Their values we refer to as option values.

1../tcltk/TkCmd/toplevel.htm

3.2. The Graphics Engine, Tickles, and Widget Messages 9

commands and arguments A message with label tk must be a record with at
least a single integer feature and maybe some other integer features and some options.
The value of the first integer feature we call the command, whereas we refer to the
remaining values for the integer features as arguments. For example, in the message

tk(set active background:purple)

set is the command, active is the single argument, and background is an option with
value purple.

3.2.3 Translating Tickles

The graphics engine does not understand tickles but strings that follow a particular
structure. This means that each tickle sent to the graphics engine is first translated to
a string. The translation is generic, for our purposes here it suffices to give a short
example. The full translation details can be found in Chapter The Module Tk, (System
Modules) .

For example,

example("test" 1 2.0 side:left(right:true) fill:x)

is translated to

"example test 1 2.0 -side left -right 1 -fill x"

That is, a record is translated to a string consisting of the label and the features and the
translation of the fields. Atomic features are prepended by a "-" and integer features
are ignored.

3.2.4 Special Tickles

Additionally, special tickles are supported (see Figure 3.2). Their usage becomes clear
in the examples that are presented in this document.

Figure 3.2: Examples of special tickles.

Example Translation Mnemonic Used
o(10 12 fill:red) 10 12 -fill red option see Figure 6.1
l(red green blue) [red green blue] list list of tickles
q(red green blue) {red green blue} quote see Figure 6.1
s(red green blue) "red green blue" string string of tickles
p(4 7 linestart) {4.7 linestart} position see (page 58)
b([a(b:1) c(d:2)]) a -b 1 c -d 2 batch see (page 20)
v(1#"\nno quote") 1\nno quote virtual string verbatim virtual strings
c(255 128 0) #FF8000 color see Figure 5.10
d(pack(grid row:4)) grid -row 4 delete skip record label

10 Chapter 3. Widgets

3.3 Frames

Frame widgets are similar to toplevel widgets in that they serve as containers for other
widgets. The difference is that a frame is used as container within other widgets,
whereas a toplevel widget is the outermost container. The main purpose of frames
is to determine geometrical layouts for the widgets they contain. More on geometry
management we see in Chapter 4.

3.3.1 Relief Options

relief and border Frames support the relief and borderwidth options. These
options determine a three dimensional border to be drawn around a frame. The values
for the relief option must be one of groove, ridge, flat, sunken, and raised. The
different styles of borders which correspond to theses values are shown in Figure 3.3.

Figure 3.3: Frame widgets with different values for relief.

Fs={Map [groove ridge flat sunken raised]

fun {$ R}

{New Tk.frame tkInit(parent:W width:2#c height:1#c

relief:R borderwidth:4)}

end}

{{Nth Fs 3} tk(configure background:black)}

{Tk.send pack(b(Fs) side:left padx:4 pady:4)}

parent widgets The tkInit message contains the option parent which links the
frames into its parent, the toplevel widget W. All widgets but toplevels need a parent
widget, this is discussed in Section 3.4.

The program shown in Figure 3.3 maps the list of relief option values to frame objects.
To make the frame with the option flat visible, its background is configured to be
black.

Note that we left out the code to create the toplevel widget. Here and in the follow-
ing we assume that the variable W is bound to a toplevel widget. The example file2,
however, contains the code needed to create the toplevel widget.

The exact meaning of the pack command used in this example is explained in Sec-
tion 4.2.

2WindowProgramming.oz

3.3. Frames 11

3.3.2 Screen Distance Options

As value for the borderwidth option we used an integer in the example shown in
Figure 3.3. Just giving a number specifies a distance in screen pixels. If the number is
followed by one of the letters c, m, i, and p the screen distance is given in centimeters,
millimeters, inches (2.54 centimeters), or printers’ points (1/72 inch).

A convenient way to specify screen distances that employ units is to use a virtual string
that appends the unit letter to the number, as used in Figure 3.3.

3.3.3 Color Options

To make the frame with the relief option flat visible, we configured the background
color to be black. Color options can be given either symbolically or numerically.

symbolic color values A symbolic color value can be given as virtual string like
black, "red", or "dArK"#blUe, where the capitalization does not have any signifi-
cance.

numerical color values A numerical color value is determined by three integers
between 0 and 255. The three integers describe the red, green, and blue part of the
color. A numerical color value in Oz can be specified by a ternary tuple with label c,
where the three fields of the tuple are the three integers. For example, the base col-
ors red, green, and blue are described by the tuples c(255 0 0), c(0 255 0), and
c(0 0 255) respectively.

Two examples that make frequent use of color options can be found in Section 5.8 and
Section 5.9.

3.3.4 Abbreviations and Synonyms

Some of the most common options have the following synonyms:

background bg

foreground fg

borderwidth bd

option abbreviations In addition to synonyms, it is also possible to abbreviate
options provided that the abbreviation is unambiguous. For example, it is correct to
abbreviate the background option by ba but not by b since b is also an abbreviation
for bitmap and borderwidth.

3.3.5 Additional Tk Information

The full Tk-reference information for each widget is shipped with the Mozart distribu-
tion. For an example, see the reference information for frame3.

Reference information on options that are supported by all widgets are explained in
options4.

3../tcltk/TkCmd/frame.htm
4../tcltk/TkCmd/options.htm

12 Chapter 3. Widgets

3.4 The Widget Hierarchy

masters and slaves Widgets are arranged in a hierarchy. Each widget has a single
parent. The only exceptions can be toplevel widget objects, which do not have to have
a parent. The parent of a widget is given by the option parent in the tkInit message.
Usually parent widgets are containers. To the parent of a widget we also refer to as its
master. To the widget itself we refer to as slave of its master.

For example, in the previous example shown in Figure 3.3 the five frame widgets are
slaves of the single toplevel widget.

The purpose of the hierarchy is threefold:

1. The geometry for widgets is computed according to the hierarchy. This is dis-
cussed in Chapter 4.

2. Creation and initialization has to follow the hierarchy. To initialize a widget ob-
ject it is necessary that its parent widget object is already created and initialized.
Otherwise initialization of a slave blocks until its master is initialized.

3. Closing a parent widget object also closes all its slaves. The slaves are closed
by applying them to the tkClose message. A widget object gets closed and its
widget gets destroyed only after all of its slaves have been closed.

After a widget object has been closed, using it in tickles sent directly to the graphics
engine, e.g. by Tk.send or Tk.batch, issues a runtime error.

3.5 Label Widgets

A label widget displays a text string or a bitmap. Options for frames are also valid
options for labels, additional options determine what the label displays. The reference
documentation for labels is label5.

Figure 3.4: Example for labels displaying bitmaps and text.

L1={New Tk.label tkInit(parent:W bitmap:info)}

L2={New Tk.label tkInit(parent:W text:’Labels: bitmaps and text’)}

{Tk.send pack(L1 L2 side:left padx:2#m pady:2#m)}

Figure 3.4 shows an example where the label L1 displays a bitmap and the label L2
displays text. As with other widgets, the options of a label widget can be reconfigured

5../tcltk/TkCmd/label.htm

3.5. Label Widgets 13

by sending the widget object a tk message with the command configure. Execution
of the following expression changes the bitmap to an exclamation mark:

{L1 tk(configure bitmap:warning)}

3.5.1 Bitmap Options

Label widgets and several other widgets allow to display bitmaps. There are two dif-
ferent kinds of bitmaps: predefined bitmaps and bitmaps stored in files.

If the first character of the bitmap option value is an @, the value is interpreted as
filename. For instance, feeding

{L2 tk(configure bitmap: ’@’#{Property.get ’oz.home’}#

’/doc/wp/queen.xbm’

foreground: orange)}

displays a bitmap stored in a file. Here the file name is given relative to where the
Mozart system has been installed, that is relative to {Property.get ’oz.home’} (for
the system module Property see Chapter Emulator Properties: Property, (System
Modules)).

predefined bitmaps If the first character is different from @, it is interpreted as the
name of a predefined bitmap. A program that displays all predefined bitmaps and their
names you can see in Figure 3.5. The program uses the grid geometry manager which
is discussed in Section 4.3.

bitmap colors Bitmaps have two colors. These colors can be configured with the
foreground and background options. The color of the bitmaps’ pixels is given by the
foreground color.

3.5.2 Font Options

A font to be used for displaying text can be specified by the font option. Valid values
for the font option are either platform specific font names or instances of the class
Tk.font. An instance of the class Tk.font is also a tickle object but is not a widget.

Platform dependent font names are for example X font names. If you are running
a Unix based system, you can for example display the available names by using the
xlsfonts program.

However the preferred way to specify fonts is to be platform independent of course.
The program in Figure 3.6 uses this technique.

The init message for creating a font determines with the options family (the style of
the font), weight (whether it is bold or normal), and size (how large is the font in
point, if the number is positive, in pixels if it is less than zero) how the font looks.
Tk.font supports more options, for a complete overview consult font6.

Regardless of the platform, the families courier, times, and helvetica are sup-
ported.

6../tcltk/TkCmd/font.htm

14 Chapter 3. Widgets

Figure 3.5: Predefined bitmaps.

{List.forAllInd [error gray75 gray50 gray25 gray12

hourglass info questhead question warning]

proc {$ I D}

R=(I-1) div 5

C=(I-1) mod 5

in

{Tk.batch [grid(row:R*2 column:C

{New Tk.label tkInit(parent:W bitmap:D)})

grid(row:R*2+1 column:C

{New Tk.label tkInit(parent:W text:D)})]}

end}

3.6 Images

Besides of text and bitmaps labels can display images. Images differ from bitmaps in
that they allow for more than two colors to be displayed.

Images are provided as objects in Oz. These objects are also tickle objects (see Sec-
tion 3.2), but are different from widget objects.

The program in Figure 3.7 creates an image object and displays the image in three
labels. Changing the configuration of the image, changes the displayed image in all
label widgets. For example, feeding the following expression

{I tk(configure file:D#’truck-right.ppm’)}

replaces all three displayed trucks by trucks heading in the inverse direction.

type and format Images can be of two different types. The value of the type

configuration option can be photo (as in our example), or bitmap. If the type is photo,
the image can display files in two different formats. The format is specified by the
format option. Valid values for the format option are gif and ppm.

bitmap images In case the value for the type option is bitmap, the value given for
the file option must be a valid bitmap file.

3.6. Images 15

Figure 3.6: Example for different fonts.

{ForAll [times helvetica courier]

proc {$ Family}

{ForAll [normal bold]

proc {$ Weight}

F={New Tk.font tkInit(family: Family

weight: Weight

size: 12)}

L={New Tk.label tkInit(parent: W

text: ’A ’#Weight#’ ’#Family#’ font.’

font: F)}

in

{Tk.send pack(L)}

end}

end}

Figure 3.7: Three labels displaying the same image.

D ={Property.get ’oz.home’}#’/doc/wp/’

I ={New Tk.image tkInit(type:photo format:ppm file:D#’truck-left.ppm’)}

L1={New Tk.label tkInit(parent:W image:I)}

L2={New Tk.label tkInit(parent:W image:I)}

L3={New Tk.label tkInit(parent:W image:I)}

{Tk.send pack(L1 L2 L3 padx:1#m pady:1#m side:left)}

16 Chapter 3. Widgets

referring to images by URLs In addition to files, images can also be referred to
by URLs. For example,

{New Tk.image tkInit(type:photo format:gif

url:’http://foo.com/bar.gif’}

would have loaded a gif file from the given URL. Note that the graphics engine itself is
not capable of handling URLs. Instead, the image object handles URLs by localizing a
URL to a local file (see also Chapter Resolving URLs: Resolve, (System Modules)).
The local file then is used by the graphics engine.

In Section 8.4 an abstraction is presented that eases the handling of images consider-
ably.

Reference information on images can be found in image7.

3.7 Messages

aspect and justify Message widgets display text extending over several lines.
How the text is distributed over several lines is determined by one of the options width
and aspect. Each of the line is justified according to the value of the option justify.
Possible values are left (the default value), center, and right. Figure 3.8 shows the
result of different combinations of aspect and justification.

Figure 3.8: Messages with justify and aspect options.

S =’Text extending over several lines.’

Ms={Map [left#200 center#100 right#50]

fun {$ J#A}

{New Tk.message tkInit(parent:W text:S justify:J aspect:A)}

end}

{Tk.send pack(b(Ms) side:left padx:2#m pady:2#m)}

7../tcltk/TkCmd/image.htm

3.7. Messages 17

aspect and width If the option width is present, the value (a screen distance, see
Section 3.3.2) gives the length of each line. If no width option is present, the aspect
ratio between height and width of the text is given by the option aspect. The value
specifies the aspect as

100 * width / height

For example a value of 100 means that the text is as high as wide, a value of 200 means
that the text is twice as wide as high.

Reference information on message widgets can be found in message8.

8../tcltk/TkCmd/message.htm

18 Chapter 3. Widgets

4

Geometry Managers

This chapter explains geometry managers. Geometry managers compute how much
space widgets occupy and at which position they appear on the screen. Last but not
least they make widgets appear on the screen with the geometry computed previously.

4.1 Widgets and Parcels

A geometry manager computes the size and location of widgets, that is the geometry,
and displays the widgets on the screen. The geometry manager computes the geometry
according to the widget hierarchy. During computation of the geometry, the manager
takes the following three things into account:

1. The geometry requested by slave widgets. Widgets like labels and messages
request just enough space to displays their text or bitmap.

2. The geometry requested by master widgets. Usually master widgets do not re-
quest an explicit geometry. But for example, if a frame widget is initialized with
explicit values for width and height, the geometry manager takes these values
into account.

3. The options given to the geometry manager.

parcels The geometry manager computes for each slave of a master widget a so-
called parcel. The parcel is a rectangle and describes the space and the position com-
puted for the slave. From the slaves’ parcels the manager computes the parcel for the
master. If the master does not request a specific geometry on its own, the manager
will assign the master a parcel that encloses all slave parcels. Otherwise the geometry
manager distributes the space in the parcel for the master to the slave parcels. This may
shrink or grow the parcels for the slaves.

Options to the geometry manager affect usually the way how parcels are computed and
how widgets are put into their parcels, if the parcels are larger (or smaller) than the
parcel initially requested by the widget.

In the following we will show the two most important geometry managers which are
provided in Tk. One is the packer, which can be used for simple arrangements, like
placing several widgets in a row or in a line. The other geometry manager we will dis-
cuss is implemented by the grid command. As the name suggests, the grid command
allows for arranging widgets in a grid-like fashion.

20 Chapter 4. Geometry Managers

It is perfectly possible to mix geometry managers in a single toplevel widget provided
that all slaves of a master are managed by the same manager. For example, suppose
a toplevel widget that contains two frames which contain widgets themselves. Both
frames must be managed by the same manager. The widgets in the frames can be
managed by two different managers.

We discuss only the most important options these two managers provide, a complete
description can be found in pack1 and grid2. More information on the packer can
also be found in John Ousterhout’s book[2] in Chapter 17.

4.2 The Packer

The packer supports simple arrangements of widgets in rows and columns. Arranging
widgets nicely usually also means that some vertical and horizontal space has to be
inserted, either designed to provide for additional space or to fill up space not occupied
by the widget’s original size.

The different ways how to affect the geometry we will study by means of examples.
For this, let us assume we are dealing with three label widgets. The following function
creates a toplevel widget with background color white for better visibility, and returns
a list of three labels.

fun {NewLabels}

W={New Tk.toplevel tkInit(background:white)}

in

{Map [’label’ ’Second label widget’ ’3rd label’]

fun {$ A}

{New Tk.label tkInit(parent:W text:A)}

end}

end

To display the labels in the toplevel widget, the packer can be invoked as follows:

[L1 L2 L3] = {NewLabels}

{Tk.send pack(L1 L2 L3)}

This computes and displays a geometry for the toplevel widget as shown in Figure 4.1.
Rather than giving a tickle which contains each of the labels as field we can give a
batch tickle. A batch tickle is a tuple with label b where its single argument must be a
list of tickles. By using a batch tickle, we can rewrite our example from above to

{Tk.send pack(b({NewLabels}))}

where the list of tickles is the list of labels as returned by the function NewLabels.
1../tcltk/TkCmd/pack.htm
2../tcltk/TkCmd/grid.htm

4.2. The Packer 21

Figure 4.1: Plain geometry computed by the packer.

4.2.1 Side Options

The label widgets in the previous examples were placed from the top to the bottom of
the toplevel widget. The side where the widgets are packed against can be determined
with the side option. The default value for this option is top. The examples in Fig-
ure 4.2 show the geometry which is computed when left and bottom are given as
values for the side option. Valid values for the side option are top, bottom, left, and
right.

Figure 4.2: Geometries computed by the packer according to side option.

{Tk.send pack(b({NewLabels}) side:left)}

{Tk.send pack(b({NewLabels}) side:bottom)}

4.2.2 Padding

The geometry computed for widgets by the packer can be given additional space in
two different ways: either externally or internally. Additional external space can be
specified with the options padx and pady. The values for these options must be valid
screen distances (see Section 3.3.2), specifying how much additional space should be
provided by the master widget around the packed widgets. The internal space can be
specified by the ipadx and ipady options, where the values must be screen distances
as well. These values determine by how much space the packed widgets are expanded

22 Chapter 4. Geometry Managers

in each of their four borders. The examples in Figure 4.3 show the effects on the
geometries computed by the packer for both internal and external padding.

Figure 4.3: Additional space provided by the packer.

{Tk.send pack(b({NewLabels}) padx:1#m pady:1#m)}

{Tk.send pack(b({NewLabels}) ipadx:2#m ipady:2#m)}

4.2.3 Anchors

With the anchor option it can be specified where in a widget’s parcel the packer places
the widget. If no anchor option is given, the packer places the widget in the center of
its parcel. Otherwise, the widget is placed according to the option’s value, which can
be one of center, n, s, w, e, nw, ne, sw, and se. The Figure 4.4 shows the geometry
computed when w is used as anchor.

4.2.4 Filling and Expansion

For pleasant overall geometry it is imported that widgets have similar geometries. The
packer employs two different schemes how widgets can be arranged to have similar
geometries. One is filling: the widget extends over its entire parcel. The other one is
expansion: the widget’s parcel is extended such that the parcels of all slaves in a master
occupy the master’s parcel entirely.

Figure 4.5 shows the geometry computed when the option fill with value x is used.
Possible values for the fill option are x, y, both, and none (which is the default).

Expansion is only significant when the parcels of the slave do not fill the master’s parcel
completely. In all our previous examples, the parcel of the master was computed by the

4.3. The Grid Geometry Manager 23

Figure 4.4: Using the anchor option for packing.

{Tk.send pack(b({NewLabels}) anchor:w padx:1#m pady:1#m)}

Figure 4.5: Using the fill option for packing.

{Tk.send pack(b({NewLabels}) fill:x)}

packer to be just large enough to contain the slave’s parcels. So there was no additional
space in the master’s parcel to be filled by expansion of slave parcels.

Figure 4.6 shows three toplevel widgets which have been resized manually by dragging
with the mouse. The top most example shows that when the parcel of the toplevel
widget grows, the remaining space is filled by the label widgets. In the example in the
middle, only the parcels of the label widget’s are expanded. At the bottom, the parcels
are expanded and then filled up in both horizontal and vertical direction by the label
widgets.

4.3 The Grid Geometry Manager

The grid geometry arranges widgets in a grid-like fashion. For each widget to be
managed by the grid command, a row and a column number is given. The manager
computes parcels for the widgets such that all parcels in the same column have the
same width and all parcels in the same row have the same height.

Figure 4.7 shows how eight labels are placed by the grid command. Note that it is
not necessary that all positions in the grid are occupied by a widget. In our example in
Figure 4.7, the position at row and column 2 does not contain a widget.

24 Chapter 4. Geometry Managers

Figure 4.6: Resizing effects for filling and expansion.

{Tk.send pack(b({NewLabels}) fill:x)}

{Tk.send pack(b({NewLabels}) expand:true)}

{Tk.send pack(b({NewLabels}) fill:both expand:true)}

4.3. The Grid Geometry Manager 25

Figure 4.7: Using the grid command.

proc {GL W R C S}

L={New Tk.label tkInit(parent:W text:S)}

in

{Tk.send grid(L row:R column:C padx:4 pady:4)}

end

{GL W 1 1 nw} {GL W 1 2 north} {GL W 1 3 ne}

{GL W 2 1 west} {GL W 2 3 east}

{GL W 3 1 sw} {GL W 3 2 south} {GL W 3 3 sw}

4.3.1 Padding

The grid command supports padding in the same way as the packer does. In the above
example we used external padding by giving padx and pady options. It is also possible
to use internal padding with the options ipadx and ipady.

4.3.2 Span Options

The grid command can also compute geometries where widgets occupy more than
a single row or column. In the example shown in Figure 4.8 the label widget L is
managed by the grid command to occupy both two rows and two columns. How
much rows and columns a widget’s parcel spans is specified with the columnspan and
rowspan options.

4.3.3 Sticky Options

The grid command combines the anchor and fill options from the packer in a single
sticky option. The value given for a sticky option determines both the side the widget
is placed in its parcel, and how the widget is to be stretched to fill its parcel.

Valid values for the sticky option are all combinations of the letters n, s, w, and e

in any order. Giving one of n and s (or of w and e) specifies the anchor position of a
widget. Giving both n and s (or both w and e) requests that the widget should fill its
parcel horizontally (or vertically). For an example see Figure 4.9.

26 Chapter 4. Geometry Managers

Figure 4.8: Using the columnspan and rowspan options.

{Tk.send grid({New Tk.label tkInit(parent:W text:’Upper left’)}

row:1 rowspan:2

column:1 columnspan:2

padx:4 pady:4)}

{GL W 1 3 ne} {GL W 2 3 east}

{GL W 3 1 sw} {GL W 3 2 south} {GL W 3 3 sw}

Figure 4.9: Using the sticky option with the grid command.

{Tk.send grid({New Tk.label tkInit(parent:W text:’Upper left’)}

row:1 rowspan:2

column:1 columnspan:2

sticky: nse

padx:4 pady:4)}

4.4. Using Anchors for Widgets 27

4.3.4 Weight Options

The grid geometry manager employs a different scheme for expansion of parcels than
the packer. Rows and columns in the grid can be assigned an integer weight. Additional
space available in the master of the grid is distributed between the rows and columns
according to their relative weight.

For example, if we take the last example and want that all additional space is given to
the third row and third column, we can do this by

{Tk.batch [grid(rowconfigure W 3 weight:1)

grid(columnconfigure W 3 weight:1)]}

Figure 4.10 shows the result of resizing the window.

Figure 4.10: Result of resizing a window.

4.4 Using Anchors for Widgets

The anchor option for the packer and the sticky option for the grid geometry manager
determine where the widget is placed in its parcel. In the same way several kind of
widgets, e.g., message and label widgets, take an anchor option, which determines
where the displayed item, e.g., the text or bitmap, is placed within the widget.

Figure 4.11 shows an example for the three label widgets used throughout Section 4.2.
The possible values for the anchor options are the same as described in Section 4.2.3.

28 Chapter 4. Geometry Managers

Figure 4.11: Widgets with anchor options.

[L1 L2 L3]={NewLabels}

{Tk.send pack(L1 L2 L3 fill:x)}

{L1 tk(configure anchor:w)}

{L3 tk(configure anchor:e)}

5

More Widgets

This chapters presents widgets which are intended to be interactive: buttons to invoke
actions, entries to enter text, scales to enter numbers, and listboxes to choose elements
of lists.

5.1 Buttons and Actions

actions Button widgets are similar to label widgets: they display text, bitmaps, or
images. Additionally, they provide for actions: pressing the mouse button over the
button widget, invokes an action. An action is either a procedure or a pair of object
and message. If the action is a procedure, pressing the widget button creates a thread
in which the procedure is applied. Otherwise, a thread is created that applies the object
to the message provided. Actions are discussed in more detail in Section 5.6.

Figure 5.1 shows a program which creates two buttons and attaches actions to them.
Pressing button B1 browses the atom pressed, whereas pressing button B2 closes the
toplevel widget object T.

action values The action option is different from other options in that it has not
a generic translation as explained in Section 3.2. Valid values for this option are not
tickles, but as already mentioned, procedures or object message pairs.

Internally, an object providing for the action option, creates a Tcl script which when
executed invokes the Oz procedure or object. This script is used then as value for the
configuration option command. All widgets which provide for the command option in
Tk, provide for the action option in Oz.

changing actions Actions can be deleted or changed by the method tkAction.
For example, deleting the action for button B1 and changing the action for B2 can be
done by executing:

{B1 tkAction}

{B2 tkAction(action: B1 # tkClose)}

More information on buttons can be found in button1.
1../tcltk/TkCmd/button.htm

30 Chapter 5. More Widgets

Figure 5.1: Buttons with attached actions.

B1={New Tk.button tkInit(parent: W

text: ’Press me!’

action: proc {$}

{Browse pressed}

end)}

B2={New Tk.button tkInit(parent: W

bitmap: error

action: W#tkClose)}

{Tk.send pack(B1 B2 fill:x padx:1#m pady:1#m)}

5.2 Checkbuttons, Radiobuttons, and Variables

checkbuttons Checkbutton widgets are used for binary choices. An indicator to
the left shows whether the button is ‘on’ or ‘off’. The state of the indicator is given by
a tickle variable. A tickle variable is a tickle object that provides messages to set and
to query the value of the variable.

radiobuttons Radiobuttons are used for non-binary choices. Several radiobuttons
are linked together to a group. Selecting a radio button de-selects all buttons belonging
to the same group and displays a mark in an indicator to the left. Radiobuttons are
linked together by tickle variables: all buttons belonging to the same group share the
same variable.

Figure 5.2 shows an example of a checkbutton and a group of three radiobuttons. The
value with which the variable V1 is initialized determines whether the checkbutton
initially is selected. The value of the variable V2 determines which of the radiobuttons
is selected initially.

state To query the state of the radiobutton and of the checkbuttons we query the
state of the corresponding variables. Feeding the following expression

{Browse state(bold: {V1 tkReturnInt($)}==1

family: {V2 tkReturnAtom($)})}

displays the values of the variables in the browser. See the next section (page 31) for a
detailed explanation of the tkReturnInt and tkReturnAtom messages.

5.3. Querying Tickle Objects 31

Figure 5.2: A checkbutton and three radiobuttons.

V1={New Tk.variable tkInit(false)}

C ={New Tk.checkbutton tkInit(parent:W variable:V1

text:’Bold’ anchor:w)}

V2={New Tk.variable tkInit(’Helvetica’)}

Rs={Map [’Times’ ’Helvetica’ ’Courier’]

fun {$ F}

{New Tk.radiobutton tkInit(parent:W

variable:V2 value:F

text:F anchor:w)}

end}

{Tk.batch [grid(C padx:2#m columnspan:3)

grid(b(Rs) padx:2#m)]}

actions Very often selecting a checkbutton or a radiobutton must show immediate
effect. For this purpose it is possible to attach actions to checkbuttons and radiobuttons
in the same way as for buttons. Figure 5.3 shows an example where the checkbutton
and the radiobuttons configure the font of a label widget. Note that the options used
for initialization of the checkbutton and radiobuttons are the same as in the example
shown in Figure 5.2.

Reference information on radiobuttons and checkbuttons can be found in radiobutton2

and checkbutton3.

5.3 Querying Tickle Objects

In the previous section we queried a Tk-variable’s state with the methods tkReturnInt
and tkReturnAtom. In fact it is possible to query the state of all tickle objects, in
particular to query the state of widgets.

All tickle objects provide a method tkReturn. This method is similar to the tk method
in that it sends a message to the graphics engine. After the message has been executed
by the graphics engine, however, the tkReturn method returns a string, whereas the
tk method ignores this string.

synchronization The field of the tkReturn message with the largest integer fea-
ture is constrained to the string returned. The method tkReturn is asynchronous: it

2../tcltk/TkCmd/radiobutton.htm
3../tcltk/TkCmd/checkbutton.htm

32 Chapter 5. More Widgets

Figure 5.3: Actions for radiobuttons and checkbuttons.

fun {GetWeight}

if {V1 tkReturnInt($)}==1 then bold else normal end

end

F={New Tk.font tkInit(size:24

family: {V2 tkReturn($)}

weight: {GetWeight})}

L={New Tk.label tkInit(parent:W text:’A test text.’ font:F)}

{C tkAction(action: proc {$}

{F tk(configure weight:{GetWeight})}

{L tk(configure font:F)}

end)}

{List.forAllInd [’Times’ ’Helvetica’ ’Courier’]

proc {$ I Family}

{{Nth Rs I} tkAction(action: proc {$}

{F tk(configure family:Family)}

{L tk(configure font:F)}

end)}

end}

sends the message to the graphics engine but does not block the thread until the return
string is available. Eventually the graphics engine writes the return string to the store.

The tkReturn message is sent asynchronously for efficiency reasons. One can start
another calculation without having to wait for tkReturn’s result. One can send several
tkReturn messages consecutively, and they will be sent immediately. The messages
will be handled by the graphics agent in the same order as they are sent.

If you want to be sure that you have received the return value, say X, of tkReturn
before continuing, then you must use a {Wait X} statement.

illegal return values Similar to the method tkReturn tickle objects provide meth-
ods that return atoms, integers, floats and lists of strings, atoms, integers, and floats.
Rather than writing a string to the store they write a value to the store which is obtained
by transforming the string to the particular type. If it is not possible to transform the
string into a value of that type, the boolean value false is written to the store.

5.3. Querying Tickle Objects 33

The methods that return a list of strings, atoms, integers, or floats split the string into
substrings separated by space characters. For instance, the return string "a b c" is
transformed into the list [a b c] by the method tkReturnListAtom. Figure 5.4 lists
the return methods and how the methods transform strings. Note that a string "1.0" is
transformed by tkReturnInt to the integer 1.

Figure 5.4: Returns methods and examples of return values.

Method Example string Return value
tkReturn "red 1 1.0" "red 1 1.0"

tkReturnAtom "red 1 1.0" ’red 1 1.0’

tkReturnInt "1" 1

tkReturnFloat "1.0" 1.0

tkReturnList "red 1 1.0" ["red" "1" "1.0"]

tkReturnListAtom "red 1 1.0" [red ’1’ ’1.0’]

tkReturnListInt "red 1 1.0" [false 1 1]

tkReturnListFloat "red 1 1.0" [false 1.0 1.0]

string handling procedures The Tk Module provides also for a set of procedures
that can transform strings into atoms, integers, floats and lists of these three types. With
these procedures it is possible to transform return strings in a user defined fashion. For
more information see Section Strings, (System Modules) .

5.3.1 Querying Configuration Options

The values of configuration options of a widget can be queried with the configure

command. Instead of giving a value to which the option is to be set, we give the tickle
unit as value. The tickle unit expands to just nothing, meaning that the value is not to
be set but to be queried. For example, to query the value of the bg option of a widget T,
we can feed

{T tkReturnListAtom(configure bg:unit $)}

This displays a list of atoms, usually it suffices to know that the current value of the
option is the fifth element of the list, whereas its default value is the fourth element of
the list.

5.3.2 Querying Widget Parameters

The command winfo is helpful to query parameters of widgets. For instance, to query
the position and geometry of a widget T, we can use the following:

{Browse {Map [rootx width rooty height]

fun {$ A}

{Tk.returnInt winfo(A T)}
end}}

34 Chapter 5. More Widgets

The winfo command provides more options than those used above, for the details
please consult winfo4.

5.4 Menus, Menuitems, and Menubuttons

Menu widgets serve as containers for menu entries. A menu entry can be one of the
following:

separator displays a horizontal line
command similar to button widgets
radiobutton similar to radiobutton widgets
checkbutton similar to checkbutton widgets
cascade displays sub menus

Menu entries are not widgets. In particular, menu entries are not managed by a ge-
ometry manager. Instead as soon as a menu entry is created it is displayed in its par-
ent menu. To configure a menu entry after it has been created, one needs to use the
entryconfigure command rather than the configure command.

tear off entry The program shown in Figure 5.5 creates two menu widgets M1 and
M2. The first cascade entry of the menu widget M1 is configured such that it displays
the menu M2 when the menu is traversed. The option tearoff determines that the first
default so-called ‘tear off’ entry is not created. Selecting a tear off entry displays the
menu in a window on its own.

posting menus Usually menus are not visible. Only when needed a menu appears
on the screen, we say that it is posted. After the user has traversed the menu and has
selected an entry, the menu is made invisible again: it is unposted. Posting the menu
M1 at the upper left edge of the screen can be done by

{M1 tk(post 0 0)}

menubuttons From menus one can compose menu bars and popup menus. A menu
bar consists of several menubutton widgets. A menubutton widget can display text,
bitmaps, or images. To a menubutton a menu can be attached such that pressing the
button makes the menu widget appear on the screen. We do not discuss menu bars here
in detail, since the TkTools module provides an abstraction that supports the creation
of menu bars (see Section 8.3).

popup menus The command tk_popup can be used to display popup menus. It
takes as arguments the menu widget and the coordinates where the widget should ap-
pear on the screen. Ideally, we want the menu widget to appear after pressing the
mouse button when the mouse pointer is over some widget. The next section (page 35)
introduces events which allows to mattach actions to abitrary widgets.

Reference information can be found in menu5 and menubutton6.
4../tcltk/TkCmd/winfo.htm
5../tcltk/TkCmd/menu.htm
6../tcltk/TkCmd/menubutton.htm

5.5. Events 35

Figure 5.5: A menu with entries, including a cascaded sub menu.

Cs =[’Wheat’ ’Firebrick’ ’Navy’ ’Darkorange’]

M1 ={New Tk.menu tkInit(parent:W tearoff:false)}

M2 ={New Tk.menu tkInit(parent:M1 tearoff:false)}

E1 ={New Tk.menuentry.cascade

tkInit(parent:M1 label:’Background Color’ menu:M2)}

E2 ={New Tk.menuentry.separator tkInit(parent:M1)}

E3 ={New Tk.menuentry.command

tkInit(parent:M1 label:’Quit’ action: W#tkClose)}

V ={New Tk.variable tkInit(Cs.1)}

CEs={Map Cs fun {$ C}

{New Tk.menuentry.radiobutton

tkInit(parent:M2 label:C var:V val:C

action: W#tk(configure bg:C))}

end}

5.5 Events

binding to events Button widgets allow to specify an action which is invoked
when the button is pressed. This is only one particular example of attaching an action
to an event. The Tk toolkit allows to attach actions to any widget with the method
tkBind. To attach an action to an event we refer to as binding the action to the event.
The action is invoked when some event occurs. Examples for events are to move the
mouse pointer within a widget, or to press a mouse button when the mouse pointer is
over a widget. Actions can be given arguments. The arguments depend on the type of
the event, e.g., arguments can be the coordinates of the mouse pointer.

Let us look to the example from the previous section. There we created a menu widget
M1 and a toplevel widget T. Now we want that the menu widget is posted if the mouse
button is pressed over the toplevel widget T. Additionally, we want the menu to get
posted at the position of the mouse pointer when the mouse button was pressed.

event patterns The program in Figure 5.6 does what we want: ’<Button-1>’ for
the event option is the so-called event pattern. The value for the args option describes
that the action should invoked with two arguments. The first (second) one should be
an integer giving the x (y) coordinate of the mouse pointer within the widget when the

36 Chapter 5. More Widgets

mouse button has been pressed. The action procedure pops up the menu widget at
exactly the screen coordinates. These are computed from the coordinates of the upper
left edge of the toplevel widget and the event arguments.

Figure 5.6: Action to popup menu.

{W tkBind(event: ’<Button-1>’

args: [int(x) int(y)]

action: proc {$ X Y}

TX={Tk.returnInt winfo(rootx W)}

TY={Tk.returnInt winfo(rooty W)}

in

{Tk.send tk_popup(M1 X+TX Y+TY)}

end)}

5.5.1 Event Patterns

An event pattern is either a string consisting of a single character, where the charac-
ter must be different from the space character and <. This event pattern matches a
KeyPress event for that character.

Otherwise, an event pattern must be a string

’<’#Modifier#’-’#Modifier#’-’#Type#’-’#Detail#’>’

where only one of either Type or Detail is mandatory. This means, for example
that also

’<’#Type#’>’

or

’<’#Detail#’>’

are valid event patterns.

event modifiers and types Figure 5.7 shows common event modifiers and event
types. Multiple entries separated by commas can be used as synonyms. The full set of
modifiers and types is described in bind7.

For example, the event pattern

’<Shift-Double-Button>’

7../tcltk/TkCmd/bind.htm

5.5. Events 37

Figure 5.7: Some event modifiers and types.

Event Modifier
Control Shift Lock Meta Alt

Button1, B1 Button2, B2 Button3, B3 Button4, B4 Button5, B5
Double Triple

Event Type Description
Key, KeyPress key has been pressed
KeyRelease key has been released
Button, ButtonPress mouse button has been pressed
ButtonRelease mouse button has been released
Enter mouse pointer has entered a widget
Leave mouse pointer has left a widget
Motion mouse pointer has been moved within widget

matches the event that a mouse button is double-clicked while the shift key is pressed.

If the event is ButtonPress or ButtonRelease, Detail may be the number of a
mouse button. The number must be between 1 and 5, where 1 is the leftmost button.
The number as detail means that only events from pressing or releasing this particular
button match. If no detail is given, pressing or releasing any button matches the event.
If a number is given as detail, ButtonPress can be omitted, e.g., <ButtonPress-1>
and <1> match the same events.

If the event is KeyPress or KeyRelease, Detail may be the specification of a key-
symbol, e.g., comma for the , key. For more information please consult bind8.

5.5.2 Event Arguments

The args option of the tkBind method takes a list of argument specifications. An
argument specification describes the type of the argument and the argument itself. Fig-
ure 5.8 shows the valid types and some arguments. The types mean the same as the
types for the different return methods as discussed in Section 5.3.

5.5.3 Invoking Actions

When an event matches an event pattern to which an action has been bound by tkBind,
a new thread is created in which the action is executed. If the action is a procedure the
arity of the procedure has to be equal to the length of the argument list specified in
tkBind.

If the action is a pair of object and message, the object is applied to message with the
arguments appended. For example, after creating an event binding by

{T tkBind(event: ’<1>’

args: [int(x)]

action: O # invoke(button))}

8../tcltk/TkCmd/bind.htm

38 Chapter 5. More Widgets

Figure 5.8: Event arguments.

Argument Type
string(A), A atom(A) int(A) float(A)

list(string(A)), list(A) list(atom(A) list(int(A) list(float(A)

Event Argument Description
x x coordinate
y y coordinate
K string describing the symbol of the key pressed
A character describing the key pressed

pressing the leftmost button at x-coordinate 42 creates a thread that executes the state-
ment

{O invoke(button 42)}

5.5.4 Appending and Deleting Event Bindings

If tkBind is used as before, any other existing binding for the event pattern specified
is overwritten. If no action is specified any existing binding for the event pattern is
deleted.

For a single event pattern there may be more than one binding. To create an event bind-
ing that does not overwrite already existing bindings, we can give the option append

with value true. For instance, if we do not only want to popup the menu but also to
display pop in the Browser, we can create an additional binding by

{W tkBind(event: ’<1>’

append: true

action: proc {$} {Browse pop} end)}

5.6 More on Actions: Listeners

In previous sections we used procedures or pairs of object and message as actions.
Each time an action is invoked, a new thread is created. While this is fine as it comes
to efficiency (threads in Oz are light weight), it may cause trouble in that the order in
which actions are invoked might be lost: the threads are created in the right order but
there is no guarantee that they will run in that order.

The class Tk.listener fixes this. An instance of a subclass of Tk.listener has
a thread of its own in which it serves action messages in order of invocation. For
example, in

L ={New class $ from Tk.listener

meth b1 {Browse b1} end

meth b2 {Browse b2} end

5.7. Entries and Focus 39

end tkInit}

B1={New Tk.button tkInit(parent:W text:’One’ action: L#b1)}

B2={New Tk.button tkInit(parent:W text:’Two’ action: L#b2)}

{Tk.send pack(B1 B2 side:left)}

the methods b1 and b2 are always executed in the same order in which the correspond-
ing buttons are pressed.

When the tkInit method of the class Tk.listener is executed, a new thread together
with a message stream is created. Whenever an action is invoked, where the object O
of an object message pair O#M is an instance of Tk.listener, no new thread is created
but M is appended at the end of the message stream. The thread then serves the message
M as soon as all previous messages on the stream have been served completely. It serves
M by executing the object application {O M}.

An additional message M to be served can be given to a listener by the method tkServe.
For example, by

{L tkServe(b1)}

the message b1 is served by L.

5.7 Entries and Focus

An entry widget lets the user enter a single line of text into the widget. An example
is shown in Figure 5.9. The initialization message for the entry widget specifies the
width of the entry in characters. The same holds true for the width of label widgets
displaying text: a value for the width without an unit appended is taken as width in
characters and not in pixels.

Figure 5.9: An entry widget to enter text.

L={New Tk.label tkInit(parent:W text:’File name:’)}

E={New Tk.entry tkInit(parent:W width:20)}

{Tk.batch [pack(L E side:left pady:1#m padx:1#m)

focus(E)]}

focus To be able to enter text into an entry, the entry needs to have the focus. If a
widget has the focus, all input from the keyboard is directed to that widget. A widget
that has the focus is drawn with a frame around it. To give the focus to widget, we can
use the focus command as in the above example.

40 Chapter 5. More Widgets

An entry widget can be given the focus also by clicking it with the mouse button. It
is also possible to give the focus to button widgets. That allows to invoke actions with
keys, and to move the focus between several widgets by pressing keys. For more on
this, see focus9.

returning entered text To query the string entered in a widget the command get

is provided. To display the entered string in the Browser we can execute

{Browse {E tkReturnAtom(get $)}}

The string entered in an entry can be deleted, additional characters can be inserted, and
so on. More on entry widgets you can find in entry10.

5.8 Scales

A scale widget allows to select a number from a certain range by moving a slider.
Each time the slider is moved, an action attached to the slider is invoked with a single
argument giving the current number value of the slider.

In Figure 5.10 an example is shown which allows to display a color determined by three
sliders for the intensity of the base colors red, green, and blue. The object F stores the
intensity for each base color in an attribute. Whenever the method bg is executed it
changes the intensity for one of the base colors and changes the background color to
the combination of all three base colors.

The sliders are configured with the label option to display the name of the base color
as their labels. The other options besides of action and args are self explanatory,
more information on them can be found in scale11.

The value for the args option must be a type specification similar to that used for
the specification of argument types in event bindings (see Section 5.5.2. The only
difference is that no event argument specification is required. Invoking the action is
also similar. For instance, if the scale for the color red changes its value to 10, the
message bg(red 10) will eventually be served by the listener L.

5.9 Listboxes and Scrollbars

scanning A listbox displays a list of strings and allows the user to select one or
more of them. If the listbox contains more lines than it can display at once, the user can
select the strings to be displayed by scanning the listbox. The listbox can be scanned
by pressing the second mouse button and moving the mouse pointer up or down while
the button is still being pressed.

A more convenient way than scanning is to use scrollbar widgets. A scrollbar wid-
gets allows the user to determine the portion of strings displayed by moving a slider.

9../tcltk/TkCmd/focus.htm
10../tcltk/TkCmd/entry.htm
11../tcltk/TkCmd/scale.htm

5.9. Listboxes and Scrollbars 41

Figure 5.10: Scales to configure a frame’s background color.

L ={New class $ from Tk.listener

attr red:0 green:0 blue:0

meth bg(C I)

C <- I {F tk(configure bg:c(@red @green @blue))}

end

end tkInit}

F ={New Tk.frame tkInit(parent:W height:2#c)}

Ss={Map [red green blue]

fun {$ C}

{New Tk.scale tkInit(parent:W orient:horizontal length:8#c

label:C ’from’:0 to:255

action: L # bg(C)

args: [int])}

end}

{Tk.send pack(b(Ss) F fill:x)}

42 Chapter 5. More Widgets

Scrollbars are independent of a particular widget type: they can be also attached to
other widgets including entries.

Figure 5.11 shows a program that allows to select a color from a list of colors. The
list of colors is provided by some external file inserted at the beginning of the program.
The listbox object is initialized and creates an event binding for pressing the left mouse
button as follows. First the currently selected index I is retrieved (the strings in the list
box are indexed). Then the string C at this index is retrieved and used as background
color of the listbox widget.

Figure 5.11: A listbox together with a vertical scrollbar.

L={New Tk.listbox tkInit(parent:W height:6)}

{L tkBind(event: ’<1>’

action: proc {$}

I={L tkReturn(curselection $)}

C={L tkReturn(get(I) $)}

in

{L tk(configure bg:C)}

end)}

S={New Tk.scrollbar tkInit(parent:W)}

{ForAll 〈Color names 69b〉
proc {$ C}

{L tk(insert ’end’ C)}

end}

{Tk.addYScrollbar L S}

{Tk.send pack(L S fill:y side:left)}

attaching scrollbars To attach a scrollbar to a widget we use the predefined proce-
dure Tk.addYScrollbar. It creates event bindings for the scrollbar such that moving
the scrollbar’s slider affects the visible strings of the listbox. Also it creates event
bindings for the listbox such that scanning the listbox is reflected by the scrollbar.

More information on listboxes can be found in listbox12 and more information on
12../tcltk/TkCmd/listbox.htm

5.10. Toplevel Widgets and Window Manager Commands 43

scrollbars in scrollbar13.

5.10 Toplevel Widgets and Window Manager Commands

To manipulate toplevel widgets which are managed by the window manager similar to
how other widgets are managed by a geometry manager, Tcl/Tk provides for the wm

command.

For example, by

{Tk.send wm(iconify T)}

the toplevel widget T is iconified whereas by

{Tk.send wm(deiconify T)}

it is deiconified. For more information see wm14.

Two important forms of the wm command are supported such that they can be given as
options to the tkInit method of the Tk.toplevel class.

titled toplevel For example

W={New Tk.toplevel tkInit(title:’Something different’)}

creates a toplevel widget with the title Something different.

withdrawn toplevels Sometimes it is important to create a toplevel widget in a
withdrawn state: the toplevel widget does not appear on the screen. This can be used
to first create all widgets to be contained in the toplevel widget, invoke a geometry
manager for them, and only then make the toplevel widget appear on the screen. A
toplevel widget can be created in withdrawn state by

W={New Tk.toplevel tkInit(withdraw:true)}

To make the toplevel widget appear, the window manager command

{Tk.send wm(deiconify W)}

can be used.

Reference information on the window manager command can be found in wm15.

44 Chapter 5. More Widgets

Figure 5.12: Selecting files.

case {Tk.return tk_getOpenFile}

of nil then skip

elseof S then {Browse file({String.toAtom S})}

end

5.11 Selecting Files

Tk provides for predefined dialogs to select files for being opened or for being saved.

Selecting a file to be opened can be done with the command tk_getOpenFile. For
example, an arbitrary file can be selected as shown in Figure 5.12. If the command re-
turns the empty string (that is nil), the selection dialog has been canceled. Otherwise,
the string S gives the filename of the file to be opened.

The visual appearance of the file selector depends on the operating system Oz runs on.
For example, the file selector for Unix based operating systems is shown in Figure 5.12.
Running Oz under Windows uses the Windows specific file selector dialog.

To select filenames for saving the command tk_getSaveFile can be used in the same
way as above. The difference is that this command does not require that a file with the
selected filename already exists.

Reference information on both commands can be found in tk_getOpenFile16.
13../tcltk/TkCmd/scrollbar.htm
14../tcltk/TkCmd/wm.htm
15../tcltk/TkCmd/wm.htm
16../tcltk/TkCmd/tk_getOpenFile.htm

5.12. Example: Help Popups 45

5.12 Example: Help Popups

In the following we want to look at a small example which provides for a generic
interactive help popup window. The idea is that if the mouse pointer stays over a
widget for some time without pressing a mouse button, a small help text is displayed.
The help text should disappear if the mouse pointer leaves the screen area covered by
the widget.

We will build a procedure AttachHelp such that help texts are enabled by application
of the procedure to a widget and a help text. We proceed in three steps, the first is to
create a function to create a toplevel widget that displays the help text, the second is a
listener class (that is, a subclass of Tk.listener), and the last step is the definition of
AttachHelp itself.

5.12.1 Displaying Help

The procedure MakePopup shown in Figure 5.13 takes a widget and the help text as
its argument and returns a function to create a toplevel widget containing the text at a
position relative to the widget on the screen.

Figure 5.13: Creating a help window.

45a 〈Definition of MakePopup 45a〉≡
fun {MakePopup Parent Text}

fun {$}

[X Y H]={Map [rootx rooty height]

fun {$ WI}

{Tk.returnInt winfo(WI Parent)}

end}

W={New Tk.toplevel tkInit(withdraw:true bg:black)}

M={New Tk.message

tkInit(parent:W text:Text bg:khaki aspect:400)}

in

{Tk.batch [wm(overrideredirect W true)

wm(geometry W ’+’#X+10#’+’#Y+H)

pack(M padx:2 pady:2)

wm(deiconify W)]}

W

end

end

The returned function creates a toplevel widget in withdrawn state and configures the
toplevel widget such that it:

1. is not equipped with a frame from the window manager. This is done by using
the window manager command overrideredirect: the window manager is
advised to not ‘redirect’ the toplevel widget into a frame.

2. appears at a position relative to X and Y coordinates of the widget parent, which
done by the geometry window manager command.

46 Chapter 5. More Widgets

3. appears on the screen by deiconifying it.

5.12.2 The Listener Class

The listener class HelpListener is shown in Figure 5.14. The method init initializes
an instance of this class by creating a procedure for creation of the popup widget.

Figure 5.14: The listener class HelpListener.

46a 〈Definition of HelpListener 46a〉≡
class HelpListener from Tk.listener

attr

cancel: unit

popup: unit

meth init(parent:P text:T)

popup <- {MakePopup P T}

Tk.listener,tkInit

end

meth enter

C

in

cancel <- C

thread A={Alarm 1000} in

{WaitOr C A}

if {IsDet A} then W={@popup} in

{Wait C} {W tkClose}

end

end

end

meth leave

@cancel=unit

end

end

When the mouse pointer enters the parent widget, the method enter gets executed.
This method stores a new variable C in the attribute cancel which serves as flag
whether the help popup must be closed. The newly created thread waits until either
one second has elapsed (A gets bound after 1000 milliseconds) or the widget has been
left (C gets bound). Then possibly the widget for the help text is created, which gets
closed when the parent widget is left. Note that if both A and C happen to be bound at
the same time, the popup will be created and then closed immediately.

The leave method signals that the help popup must be closed by binding the variable
stored in cancel.

5.12.3 AttachHelp

The definition of AttachHelp is shown in Figure 5.15. It creates a listener and creates
event bindings that are served by that listener.

5.12. Example: Help Popups 47

local

〈Definition of MakePopup 45a〉
〈Definition of HelpListener 46a〉

in

proc {AttachHelp Widget Text}

L={New HelpListener init(parent:Widget text:Text)}

in

{Widget tkBind(event:’<Enter>’ action:L#enter append:true)}

{Widget tkBind(event:’<Leave>’ action:L#leave append:true)}

{Widget tkBind(event:’<Button>’ action:L#leave append:true)}

end

end

Figure 5.15:

5.12.4 Using Help Popups

A small example that shows how to use help popups is shown in Figure 5.16.

48 Chapter 5. More Widgets

Figure 5.16: Demo of the HelpPopup class.

Bs={Map [’Okay’ # ’Do nothing meaningful.’

’Cancel’ # ’Do nothing at all.’

’Quit’ # ’Close the window.’]

fun {$ Text # Help}

B={New Tk.button tkInit(parent:W text:Text)}

in

{AttachHelp B Help} B

end}

{Tk.send pack(b(Bs) side:left padx:2#m pady:2#m)}

6

Canvas Widgets

Canvas widgets allow to create and manipulate graphical items. In particular, arbitrary
widgets can be embedded within canvas widgets. Reference information on canvas
widgets can be found in canvas1.

6.1 Getting Started

items A canvas widget displays items. An item is created with the create com-
mand, followed by coordinates and options. The number of coordinates and the options
depend on the particular type of item to be created. An item is of one the following
types:

arc

An arc item displays a piece of a circle.

bitmap

A bitmap item displays a bitmap with a given name.

image

Displays an image.

line

A line item consists of several connected segments. It is possible to configure line
items such that Bézier splines are used.

oval

An oval can either be a circle or an ellipsis.

polygon

A polygon is described by three or more line segments. As with line items, it is possible
to use Bézier splines.

rectangle

Displays a rectangle.
1../tcltk/TkCmd/canvas.htm

50 Chapter 6. Canvas Widgets

text

Displays text consisting of a single or several lines.

window

Displays a widget in the canvas where the canvas widget serves as geometry manager
for the widget.

For example,

C={New Tk.canvas tkInit(parent:W)}

{Tk.send pack(C)}

{C tk(create rectangle 10 10 1#c 1#c fill:red outline:blue)}

creates a red rectangle with a blue outline near to the upper left corner of the canvas
widget C. More information on the different items can be found in canvas2.

6.2 Example: Drawing Bar Charts

As a more interesting example let us consider a program to draw bar charts. The
definition of a class to display barcharts is shown in Figure 6.1. Before any item is
created in the canvas by the method bars, the canvas widget is configured such that
the scrollable region is just large enough for the barchart to be drawn.

The method DrawBars creates for each element of the list Ys a rectangle item as well
as a text item, which both correspond to the value of the particular item. The value
of O is used as option for the rectangle items. This value depends on Tk.isColor

which is true if the screen is a color screen, and false otherwise. For a color screen
the rectangle items are filled with the color wheat. For a black and white screen, the
rectangle items are drawn in a stippled fashion: only those pixels are drawn with the
fill color (that is black) where the stipple bitmap contains a pixel.

Figure 6.2 shows how the bar chart canvas is used in order to display data.

6.3 Canvas Tags

Each item in a canvas is identified by a unique integer. This integer can be returned
by using the tkReturnInt method for creating items rather than the tk method. The
returned integer can then be used to manipulate the corresponding item. However,
returning values from the graphics engine involves latency. But there are some good
news here, since it is not necessary to refer to items by numbers.

tags Canvas widgets offer a more powerful and easier method to manipulate single
items or even groups of items. Items can be referred to by tags. A single item can be
referred to by as many tags as you like to. Tags are provided as objects in Oz. Before an
item can be added to a tag, a tag object must be created from the class Tk.canvasTag
and initialized with respect to a particular canvas.

To add an item to a tag, the option tags is used when creating the item. For instance,
2../tcltk/TkCmd/canvas.htm

6.3. Canvas Tags 51

Figure 6.1: A canvas for displaying bar charts.

local

O=if Tk.isColor then o(fill:wheat)

else o(stipple:gray50 fill:black)

end

D=10 D2=2*D B=10

in

class BarCanvas from Tk.canvas

meth DrawBars(Ys H X)

case Ys of nil then skip

[] Y|Yr then

{self tk(create rectangle X H X+D H-Y*D2 O)}

{self tk(create text X H+D text:Y anchor:w)}

{self DrawBars(Yr H X+D2)}

end

end

meth configure(SX SY)

{self tk(configure scrollregion:q(B ~B SX+B SY+B))}

end

meth bars(Ys)

WY=D2*({Length Ys}+1) HY=D2*({FoldL Ys Max 0}+1)

in

{self configure(WY HY)}

{self DrawBars(Ys HY D)}

end

end

end

R={New Tk.canvasTag tkInit(parent:C)}

{C tk(create rectangle 10 10 40 40 fill:red tags:R)}

creates a new rectangle item and adds it to the tag R.

A second oval item can be added to the tag R by

{C tk(create oval 20 20 40 40 tags:R)}

All items referred to by a tag can be manipulated simultaneously. The following moves
all items 40 pixels to the right:

{R tk(move 40 0)}

Figure 6.3 shows a small program that creates items interactively. Pressing the mouse
button over the canvas widget creates either a rectangle item or an oval item at the
position of the mouse pointer. All rectangle items created are added to the tag R, and
all oval items are added to the tag O.

52 Chapter 6. Canvas Widgets

Figure 6.2: Using a canvas for drawing barcharts.

C={New BarCanvas tkInit(parent:W bg:white width:300 height:120)}

H={New Tk.scrollbar tkInit(parent:W orient:horizontal)}

V={New Tk.scrollbar tkInit(parent:W orient:vertical)}

{Tk.addXScrollbar C H} {Tk.addYScrollbar C V}

{Tk.batch [grid(C row:0 column:0)

grid(H row:1 column:0 sticky:we)

grid(V row:0 column:1 sticky:ns)]}

{C bars([1 3 4 5 3 4 2 1 7 2 3 4 2 4

5 6 7 7 8 4 3 5 6 7 7 8 4 3])}

configuring items Items can be configured with the command itemconfigure,
which is similar to the command configure for widgets. The color of all rectangle
and oval items in our previous example can be changed by:

{R tk(itemconfigure fill:wheat)}

{O tk(itemconfigure fill:blue)}

Besides of the move command there are other commands for manipulating items. For
instance, executing the following statement

{O tk(delete)}

deletes all oval items attached to the tag O. Other commands allow to scale items, to
change the coordinates of items and so on. More information on possible commands
are available from canvas3.

6.3.1 Event Bindings

Similar to widgets, event bindings can be created for tags. Creating an event binding
for a tag means to create the binding for all items referred to by the tag. The following
example creates an event binding for all oval items.

3../tcltk/TkCmd/canvas.htm

6.3. Canvas Tags 53

Figure 6.3: A canvas for creating rectangles and ovals.

C={New Tk.canvas tkInit(parent:W width:300 height:200 bg:white)}

R={New Tk.canvasTag tkInit(parent:C)}

O={New Tk.canvasTag tkInit(parent:C)}

{C tkBind(event: ’<1>’

args: [int(x) int(y)]

action: proc {$ X Y}

{C tk(create rectangle X-10 Y-10 X+10 Y+10

tags:R fill:steelblue)}

end)}

{C tkBind(event: ’<2>’

args: [int(x) int(y)]

action: proc {$ X Y}

{C tk(create oval X-10 Y-10 X+10 Y+10

tags:O fill:orange)}

end)}

{Tk.send pack(C)}

54 Chapter 6. Canvas Widgets

Colors={New class $ from BaseObject

attr cs:(Cs=red|green|blue|yellow|orange|Cs

in

Cs)

meth get(?C)

Cr in C|Cr = (cs <- Cr)

end

end noop}

{O tkBind(event: ’<3>’

action: proc {$}

{O tk(itemconfigure

fill:{Colors get($)})}

end)}

Clicking with the right mouse button on an oval item, configures all items referred to
by O to employ a different color. The Colors object serves as color generator. Each
time the method get is invoked, it returns a color from the circular list of colors stored
in the attribute cs.

6.4 Example: An Animated Time Waster

In this section we want to program a procedure that signals to the user that a particular
computation is still running and entertains the user by some animation.

Figure 6.4 shows a subclass of Tk.canvasTag that creates a bitmap item showing
a magnifying glass and starts a thread to move that bitmap randomly. The random
movement can be stopped by binding the variable D given as value for the feature
done. If the animation has stopped indeed, the variable S gets bound, as you can see in
method move.

The procedure WaitDone shown in Figure 6.5 takes a variable Done which is used for
signalling when the computation we are waiting for is finished. It creates a randomly
moving magnifier item and as soon as the magnifier signals that it has been stopped
(by Stopped) the toplevel windows is closed.

For example,

declare Done

{WaitDone Done}

creates a waiting dialog which disappears by binding Done

Done=unit

6.4. Example: An Animated Time Waster 55

Figure 6.4: An animated time waster class.

local

fun {RandCoord} {OS.rand} mod 20 + 15 end

in

class RandMag from Tk.canvasTag

meth init(parent:P done:D stopped:S)

{self tkInit(parent:P)}

{P tk(create bitmap 0 0

bitmap:’@’#{Property.get ’oz.home’}#

’/doc/wp/magnifier.xbm’

tags:self foreground:blue)}

thread {self move(D S)} end

end

meth move(D S)

{WaitOr {Alarm 400} D}

if {IsDet D} then S=unit else

{self tk(coords {RandCoord} {RandCoord})}

{self move(D S)}

end

end

end

end

56 Chapter 6. Canvas Widgets

Figure 6.5: A procedure for creating wait dialogs.

proc {WaitDone Done}

W={New Tk.toplevel tkInit(withdraw:true)}

L={New Tk.label tkInit(parent:W text:’Computing...’)}

C={New Tk.canvas tkInit(parent:W width:50 height:50)}

Stopped

in

{Tk.batch [wm(overrideredirect W true)

pack(L C side:left pady:2#m padx:2#m)

wm(deiconify W)]}

_={New RandMag init(parent:C done:Done stopped:Stopped)}

thread {Wait Stopped} {W tkClose} end

end

7

Text Widgets

Text widgets display (as suggested by the name) one or more lines of text, where the
text can be edited. It offers commands to manipulate segments of text and to embed
other widgets into the flow of text. This chapter attempts to give a short overview on
text widgets, for the details consult text1.

7.1 Manipulating Text

Let us start with a very simple example where we want to display a given text in a text
widget. Figure 7.1 shows a program that does the job.

Figure 7.1: Displaying text.

T={New Tk.text tkInit(parent:W width:28 height:5 bg:white)}

{T tk(insert ’end’ "The quick brown fox jumps over the lazy dog.")}

scanning Similar to listboxes (page 40), a text widget supports scanning: The text
can be scanned by pressing the second mouse button and moving the mouse pointer
while the button is still being pressed. And of course, in the same way as canvas
widgets scrollbars can be attached to a text widget.

text wrapping The text is wrapped where word boundaries (that is, spaces) are not
taken into account. Changing the wrapping such that word boundaries are preserved
can be done as follows:

1../tcltk/TkCmd/text.htm

58 Chapter 7. Text Widgets

{T tk(configure wrap:word)}

positions Positions in the displayed text can be referred to by positions. A position
can be denoted by a tickle p(L C), where L gives the line (starting from one) and C
the position in that line (also starting from zero). Positions also can take modifiers, for
more details on this issue see text2. Another helpful position is ’end’ which refers
to the position after the last character.

getting text Portions of the text can be retrieved. For example,

{T tkReturnAtom(get p(1 4) p(1 9) $)}

returns the atom quick.

inserting text Positions also specify where to insert text, for example

{T tk(insert p(1 4) "very very ")}

inserts the text directly before quick.

deleting text In the same way text can also be deleted. For example

{T tk(delete p(1 4) p(1 14))}

deletes again the text "very very ".

disabling input We do not discuss here how to employ a text widget as a powerful
editor, please see again text3. If you try to place a cursor inside the text widget
and make some character strokes, you will notice that by default a text widget accepts
input. To prevent a user from altering the text in a display only situation the widget can
be configured as follows:

{T tk(configure state:disabled)}

7.2 Text Tags and Marks

creating tags In the same way as canvas widgets, text widgets support tags. While
canvas tags refer to sets of items (see Section 7.2), text tags refer to sets of characters
and allow to configure and manipulate the set of characters. For example, the following

B={New Tk.textTag tkInit(parent:T foreground:brown)}

creates a new tag, where the tag is configured such that all characters that will be
referred to by this tag (initially, no characters) are displayed in brown color.

2../tcltk/TkCmd/text.htm
3../tcltk/TkCmd/text.htm

7.2. Text Tags and Marks 59

adding text Already inserted text can be added to a tag by defining the text portion
to be added with positions. The following

{B tk(add p(1 10) p(1 15))}

adds the text part "brown" to the tag B, which changes the color of that text to brown.

configuring tags Changing the configuration of a tag takes effect on all characters
that are referred to by that tag. For example, if the tag B is configured for a larger font
as follows

{B tk(configure font:{New Tk.font tkInit(size:18)})}

the text portion "brown" now appears in that larger font.

inserting and adding text The insert command also supports tags directly. The
following

{T tk(insert ’end’ "\nDogs are ")}

{T tk(insert ’end’ "brown" B)}

{T tk(insert ’end’ " as well.")}

adds three portions of text to the text widget, where the text "brown" is both inserted
and added to the tag B, which makes it appear both in brown color and with a large
font. Now the text widget looks as shown in Figure 7.2.

Figure 7.2: Using tags with text widgets.

In the same way as described in Section 6.3 for canvas tags, events can be attached to
text tags. We will exemplify this in the next section (page 60).

In addition to tags, text widgets also support marks. Marks refer to positions in the
text rather than to particular characters as tags do. They are supported by the class
Tk.textMark. For their use, see again text4.

4../tcltk/TkCmd/text.htm

60 Chapter 7. Text Widgets

7.3 Example: A ToyText Browser

In the following we discuss a tiny ToyText browser that supports following of links
in the text and going back to previously displayed pages. A ToyText hypertext is a
record, where the features are the links and the fields describe pages. For an example,
see (page 70). A page consists out of head and body, where the body is a list of
elements. An element is either a virtual string or a record a(ref:R Es), where R is a
feature of the record and Es is a list of elements.

Figure 7.3 shows the main routine to display a ToyText page in a text widget T. The
procedure Display takes a list of references Rs as input, and displays the page that is
referred to by its first element.

Figure 7.3: Displaying a ToyText page.

60a 〈Definition of Display 60a〉≡
proc {Display Rs}

case Rs of nil then skip

[] R|Rr then

{T tk(delete p(0 0) ’end’)}

{Head ToyText.R.head Rr} {Body ToyText.R.body Rs}

end

end

Figure 7.4 shows how the head of a ToyText page is displayed, where E is the virtual
string to be displayed and Rs is the list of current references without its first element.
The tag HT is configured such that clicking it displays the previous page.

Figure 7.4: Displaying the head of a ToyText page.

60b 〈Definition of Head 60b〉≡
local

HF={New Tk.font tkInit(family:helvetica size:18 weight:bold)}

HT={New Tk.textTag tkInit(parent:T font:HF foreground:orange)}

in

proc {Head E Rs}

{T tk(insert p(0 0) E#’\n’ HT)}

{HT tkBind(event: ’<1>’

action: proc {$} {Display Rs} end)}

end

end

Figure 7.5 shows how the body of a ToyText page is displayed, where Es is the list of
elements, CT is the current tag to which inserted text is added, and Rs are the current
references, including a reference to the page currently under display as first element.
To display a reference element, a new tag RT is created that carries as action a procedure
that displays the referred page.

7.3. Example: A ToyText Browser 61

Figure 7.5: Displaying the body of a ToyText page.

61a 〈Definition of Body 61a〉≡
local

BF={New Tk.font tkInit(family:helvetica size:12 weight:normal)}

BT={New Tk.textTag tkInit(parent:T font:BF)}

proc {Do Es CT Rs}

case Es of nil then skip

[] E|Er then

case E

of a(ref:R Es) then

RT={New Tk.textTag tkInit(parent:T font:BF

foreground:blue underline:true)}

in

{RT tkBind(event: ’<1>’

action: proc {$} {Display R|Rs} end)}

{Do Es RT Rs}

else

{T tk(insert ’end’ E CT)}

end

{Do Er CT Rs}

end

end

in

proc {Body Es Rs}

{Do Es BT Rs}

end

end

Figure 7.6 shows the complete ToyText browser and how it looks when displaying
pages.

62 Chapter 7. Text Widgets

Figure 7.6: A ToyText browser.

proc {ToyBrowse ToyText Root}

W={New Tk.toplevel tkInit}

T={New Tk.text tkInit(parent:W width:40 height:8 bg:white wrap:word)}

〈Definition of Head 60b〉
〈Definition of Body 61a〉
〈Definition of Display 60a〉

in

{Tk.send pack(T)}

{Display [Root]}

end

{ToyBrowse 〈Sample ToyText 70a〉 canvas}

8

Tools for Tk

This chapter presents some common graphical abstractions you might find useful when
building graphical user interfaces in Oz. The graphical abstractions are provided by the
module TkTools and are built on top of the functionality provided by the Tk module.

8.1 Dialogs

A dialog displays some graphical information and several buttons. A simple abstraction
to build dialogs is provided by the class TkTools.dialog.

Figure 8.1 shows an example dialog for deleting a file. The class TkTools.dialog is
a subclass of Tk.frame. Creating and initializing an instance of this class creates a
toplevel widget together with buttons displayed at the bottom of the toplevel widget.
The instance itself serves as container for user-defined widgets that are displayed at the
top of the dialog (as the label and the entry widget in our example).

The initialization message for a dialog must contain the title option, which gives the
title of the dialog. The buttons to be displayed are specified by a list of pairs, where the
first pair in the list describes the leftmost button. The pair consists of the label of the
button and the action for the button. The action can be also the atom tkClose, which
means that the action of the button sends a tkClose message to the dialog. In a similar
manner, the action can be a unary tuple with label tkClose, which means that first the
action specified by the tuple’s argument is executed and then the dialog is closed. The
default option specifies which button should be the default one. The default button is
marked by a sunken frame drawn around the button.

In the above example, pressing the ’Okay’ button executes an rm command to remove
the file with the name as given by the entry widget E. Only if execution of this command
returns 0, the dialog is closed.

The class TkTools.dialog is a subclass of Tk.frame. In particular it allows to wait
until the dialog object gets closed. For example, the execution of

{Wait D.tkClosed}

blocks until the dialog in the above example is closed.

64 Chapter 8. Tools for Tk

Figure 8.1: A dialog to remove files.

D={New TkTools.dialog

tkInit(title: ’Remove File’

buttons: [’Okay’ #

proc {$}

try

{OS.unlink {E tkReturn(get $)}}

{D tkClose}

catch _ then skip

end

end

’Cancel’ # tkClose]

default: 1)}

L={New Tk.label tkInit(parent:D text:’File name:’)}

E={New Tk.entry tkInit(parent:D bg:wheat width:20)}

{Tk.batch [pack(L E side:left pady:2#m) focus(E)]}

8.2 Error Dialogs

A dialog to display error messages is provided by the class TkTools.error, which
is a sub class of TkTools.dialog. Figure 8.2 shows an example of how to use
TkTools.error.

transient widgets All dialogs provide for the option master. By giving a toplevel
widget as value for master, the dialog appears as a transient widget: depending on the
window manager the widget appears with less decoration, e.g., no title, on the screen.
Moreover, when the master widget is closed, the dialog is closed as well.

8.3 Menubars

keyboard accelerators A menubar is a frame widget containing several menubut-
ton widgets. To each of the menubutton widgets a menu is attached. The menu con-
tains menuitems being either radiobutton entries, checkbutton entries, command entries
(similar to button widgets), separator entries or cascade entries to which sub menus are
attached. The menu entries can be equipped with keyboard accelerators describing key

8.3. Menubars 65

Figure 8.2: A transient error dialog.

E={New TkTools.error

tkInit(master:W

text: ’Error in system configuration: ’#

’too much memory.’)}

event bindings that can be used to invoke the action of the menu entry. A keyboard
accelerator must be added to the menu entry and the right event binding needs to be
created.

Creating a menubar by hand has to follow this structure and is inconvenient due to
the large numbers of different kinds of widgets and menu entries that are to be cre-
ated. To ease the creation of a menubar, the TkTools module provides the procedure
TkTools.menubar that creates to a given specification a menubar and creates keyboard
accelerators with the right event bindings. The specification of a menubar consists of
messages used to initialize the necessary widgets and entries, where the label deter-
mines the kind of entry to be created.

Figure 8.3 shows an example for menubar creation. The procedure TkTools.menubar
takes two widgets and two menubar specifications as input and returns a frame contain-
ing the widgets for the menubar. The widget given as first argument serves as parent
for the menubar’s frame, whereas the widget given as second argument receives the
key bindings for the accelerators. The specification given as third (fourth) argument
describe the left (right) part of the menubar.

A menubar specification consists of a list of menubutton messages. The valid options
are those for the tkInit method of a menubutton widget object, where the parent
field is not necessary, and the additional options menu and feature. The value for the
menu option must be a list of specifications for the menu entries. The menu entries
are specified similar to the menubuttons, the allow for the additional options feature,
key, and event.

The value for the key describes the keyboard accelerator and event binding to be cre-
ated. They can be used as follows:

66 Chapter 8. Tools for Tk

Figure 8.3: A menubar.

V={New Tk.variable tkInit(0)}

B={TkTools.menubar W W

[menubutton(text:’Test’ underline:0

menu: [command(label: ’About test’

action: Browse#about

key: alt(a)

feature: about)

separator

command(label: ’Quit’

action: W#tkClose

key: ctrl(c)

feature: quit)]

feature: test)

menubutton(text:’Options’ underline:0

menu: [checkbutton(label: ’Incremental’

var: {New Tk.variable tkInit(false)})

separator

cascade(label: ’Size’

menu: [radiobutton(label:’Small’

var:V value:0)

radiobutton(label:’Middle’

var:V value:1)

radiobutton(label:’Large’

var:V value: 2)])])]

nil}

F={New Tk.frame tkInit(parent:W width:10#c height:5#c bg:ivory)}

{Tk.send pack(B F fill:x)}

8.4. Handling Images 67

key option value accelerator event binding
a a a
ctrl(a) C-a <Control-a>
alt(a) A-a <Alt-a>
alt(ctrl(a)) A-C-a <Alt-Control-a>
ctrl(alt(a)) C-A-a <Control-Alt-a>

In case one wants to use different event bindings than those generated from the key

option value, one can specify the event pattern as value for the option event.

The feature options for menubuttons and menu entries attach features to the created
objects such that the object get accessible by these features. For instance, to disable
the ‘About test’ entry is possible with

{B.test.about tk(entryconfigure state:disabled)}

The menus attached to menubuttons or to cascade entries can be accessed under the
feature menu. For instance the first tear off entry from the ‘Test’ menu can be removed
with

{B.test.menu tk(configure tearoff:false)}

It is possible to extend a menubar created with TkTools.menubar with further entries.
The following statement adds a menu entry just before the Quit entry:

A={New Tk.menuentry.command tkInit(parent:B.test.menu

before:B.test.quit

label: ’Exit’)}

which can be deleted and removed from the menu again by:

{A tkClose}

8.4 Handling Images

A convenient way to create images is given by TkTools.images. It takes a list of
URLs as input and returns a record of images, where the fields are atoms derived
naturally from the URLs. The type and format of images is handled according to the
extension of the URL.

For example,

U=’http://www.mozart-oz.org/home-1.1.0/doc/wp/’

I={TkTools.images [U#’wp.gif’

U#’queen.xbm’

U#’truck-left.ppm’]}

binds I to a record with features wp, queen, and ’truck-left’, where the fields are
the corresponding images.

First the basename of the URL is computed by taking the last fragment of the URL
(that is, ’wp.gif’ for example). The extension (the part following the period, ’gif’ for
example), determines the type and format of the image. The part of the basename that
precedes the period yields the feature.

68 Chapter 8. Tools for Tk

A

Data and Program Fragments

The following appendix features some program fragments and data specifications omit-
ted in the chapters’ text.

A.1 Getting Started

69a 〈Change capitalization 69a〉≡
fun {$ I}

case {Char.type I}

of lower then {Char.toUpper I}

[] upper then {Char.toLower I}

else I

end

end

A.2 More on Widgets

69b 〈Color names 69b〉≡
[aliceblue antiquewhite aquamarine

azure beige bisque

black blanchedalmond blue

blueviolet brown burlywood

cadetblue chartreuse chocolate

coral cornflowerblue cornsilk

cyan darkblue darkcyan

darkgoldenrod darkgray darkgreen

darkgrey darkkhaki darkmagenta

darkolivegreen darkorange darkorchid

darkred darksalmon darkseagreen

darkslateblue darkslategray darkslategrey

darkturquoise darkviolet deeppink

deepskyblue dimgray dimgrey

dodgerblue firebrick floralwhite

forestgreen gainsboro ghostwhite

gold goldenrod gray

green greenyellow grey

70 Appendix A. Data and Program Fragments

honeydew hotpink indianred

ivory khaki lavender

lavenderblush lawngreen lemonchiffon

lightblue lightcoral lightcyan

lightgoldenrod lightgoldenrodyellow lightgray

lightgreen lightgrey lightpink

lightsalmon lightseagreen lightskyblue

lightslateblue lightslategray lightslategrey

lightsteelblue lightyellow limegreen

linen magenta maroon

mediumaquamarine mediumblue mediumorchid

mediumpurple mediumseagreen mediumslateblue

mediumspringgreen mediumturquoise mediumvioletred

midnightblue mintcream mistyrose

moccasin navajowhite navy

navyblue oldlace olivedrab

orange orangered orchid

palegoldenrod palegreen paleturquoise

palevioletred papayawhip peachpuff

peru pink plum

powderblue purple red

rosybrown royalblue saddlebrown

salmon sandybrown seagreen

seashell sienna skyblue

slateblue slategray slategrey

snow springgreen steelblue

tan thistle tomato

turquoise violet violetred

wheat white whitesmoke

yellow yellowgreen]

A.3 Text Widgets

70a 〈Sample ToyText 70a〉≡
hyper(canvas:

e(head:’Canvas’

body:[’A canvas widget displays items. ’

’An item is of one the following types: ’

a(ref:arc [’arc’]) ’, ’

a(ref:bitmap [’bitmap’]) ’, ’

a(ref:image [’image’]) ’, ’

a(ref:line [’line’]) ’, ’

a(ref:oval [’oval’]) ’, ’

a(ref:polygon [’polygon’]) ’, ’

a(ref:rectangle [’rectangle’]) ’, ’

a(ref:text [’text’]) ’, and ’

a(ref:window [’window’]) ’.’])

arc:

e(head:’Arc’

A.3. Text Widgets 71

body:[’An arc item displays a piece of a ’

’circle.’])

bitmap:

e(head:’Bitmap’

body:[’A bitmap item displays a bitmap ’

’with a given name.’])

image:

e(head:’Image’

body:[’Displays an image.’])

line:

e(head:’Line’

body:[’A line item consists of several ’

’connected segments.’])

oval:

e(head:’Oval’

body:[’An oval can either be a circle or ’

’an ellipsis.’])

polygon:

e(head:’Polygon’

body:[’A polygon is described by three or ’

’more ’ a(ref:line [’line’])

’ segments.’])

rectangle:

e(head:’Rectangle’

body:[’Displays a rectangle.’])

text:

e(head:’Text’

body:[’Displays text consisting of a single ’

’or several lines.’])

window:

e(head:’Window’

body:[’Displays a widget in the canvas where ’

’the canvas widget serves as geometry ’

’manager for the widget. ’

’See also ’

a(ref:canvas [’the canvas widget’]) ’.’]))

72 Appendix A. Data and Program Fragments

Bibliography

[1] Mark Harrison and Michael McLennan. Effective Tcl/Tk Programming: Writ-
ing Better Programs with Tcl and Tk. Professional Computing Series. Addison-
Wesley, Reading, MA, USA, 1998.

[2] John K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series.
Addison-Wesley, Reading, MA, USA, 1994.

Index

action, 4
anchor, 22

background color, 7
bar chart, 50
bitmap, 13, 14

canvas
canvas, tag, 50

canvas, 49

documentation, 1

entryfield, 3
examples, 1

font
font, family, 13
font, name, 13
font, size, 13
font, weight, 13

format, 14

geometry, 4
gif, 14
graphics engine, 5
grid, 19, 23

height, 7

image, 14
image format, 14
image type, 14
item

item, arc, 49
item, bitmap, 49
item, configuration, 52
item, image, 49
item, line, 49
item, oval, 49
item, polygon, 49
item, rectangle, 49
item, text, 50
item, window, 50

option

option, abbreviation, 11
option, anchor, 22, 27
option, aspect, 16
option, borderwidth, 10
color

option, color, numerical, 11
option, color, symbolic, 11

option, color, 11
option, columnspan, 25
option, expand, 22
fill

option, fill, both, 22
option, fill, none, 22
option, fill, x, 22
option, fill, y, 22

option, fill, 22
option, font, 13
option, ipadx, 21, 25
option, ipady, 21, 25
justify

option, justify, center, 16
option, justify, left, 16
option, justify, right, 16

option, justify, 16
option, padx, 21, 25
option, pady, 21, 25
relief

option, relief, flat, 10
option, relief, groove, 10
option, relief, raised, 10
option, relief, ridge, 10
option, relief, sunken, 10

option, relief, 10
option, rowspan, 25
option, screen distance, 11
side

option, side, bottom, 21
option, side, left, 21
option, side, right, 21
option, side, top, 21

option, side, 21
option, sticky, 25
option, weight, 27

74

INDEX 75

pack, 20
pack, 19
packer, 19
padding, 21, 25
photo, 14
ppm, 14
Property

Property, get, 13

scanning, 57

text
text, deleting, 58
text, disabling input, 58
text, getting, 58
text, inserting, 58
text, mark, 59
text, position, 58
text, tag, 58
text, wrapping, 57

text, 57
tickle

tickle, special, 9
tickle, translation to strings, 9

Tk
Tk, addXScrollbar, 42
Tk, addYScrollbar, 42
Tk, batch, 8
Tk, button, 4, 30
Tk, canvas, 50
Tk, canvasTag, 50
Tk, checkbutton, 31
Tk, entry, 4, 39
Tk, font, 13
Tk, frame, 10
Tk, image, 15
Tk, isColor, 51
Tk, label, 12
Tk, listbox, 42
Tk, listener, 38, 41
Tk, menu, 35
menuentry
Tk, menuentry, cascade, 35
Tk, menuentry, command, 35
Tk, menuentry, separator, 35

Tk, menuentry, 67
Tk, message, 16
Tk, radiobutton, 31
Tk, returnInt, 33
Tk, scale, 41

Tk, scrollbar, 42, 52
Tk, send, 4, 5, 8, 10
Tk, textMark, 59
Tk, textTag, 58
Tk, toplevel, 4, 7, 43
Tk, variable, 31

tk, 5, 7, 8
Tk module, 8
tk_getOpenFile, 44
tk_popup, 36
tkAction, 32
tkBind, 36, 52
tkClose, 8
tkInit, 5, 7, 8
tkReturn, 4
TkTools

TkTools, dialog, 63
TkTools, error, 64
TkTools, images, 67
TkTools, menubar, 66

TkTools, 63
toplevel widget, 7

URL, 16

widget
widget, close, 8
widget, frame, 10
widget, text, 57
widget, toplevel, 8

widget, 1, 3
widget hierarchy, 4
width, 7
window, 1

