
Distributed Programming in Mozart - A
Tutorial Introduction

Peter Van Roy
Seif Haridi
Per Brand

Version 1.2.3
December 1, 2001

Abstract

This tutorial shows how to write efficient and robust distributed applications with the
Mozart programming system. We first present and motivate the distribution model and
the basic primitives needed for building distributed applications. We then progressively
introduce examples of distributed applications to illustrate servers, agents, mobility, col-
laborative tools, fault tolerance, and security.

The tutorial is suitable for Oz programmers who want to be able to quickly start writing
distributed programs. The document is deliberately informal and thus complements the
other Oz tutorials and the research papers on distribution in Oz.

The Mozart programming system has been developed by researchers from DFKI (the Ger-
man Research Center for Artificial Intelligence), SICS (the Swedish Institute of Computer
Science), the University of the Saarland, UCL (the Université catholique de Louvain), and
others.

The material in this document is still incomplete and subject to change from day to day.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 Distribution Model 3

2.1 Language entities . 3

2.1.1 Objects . 3

2.1.2 Other stateful entities . 4

2.1.3 Single-assignment entities 5

2.1.4 Stateless entities . 6

2.1.5 Sited entities . 7

2.2 Sites . 8

2.2.1 Controlled system shutdown 8

2.2.2 Distributed memory management 8

2.3 Bringing it all together . 8

3 Basic Operations and Examples 11

3.1 Global naming . 11

3.1.1 Connecting applications by means of tickets 12

3.1.2 Persistent data structures by means of pickles 12

3.1.3 Remote computations and functors 13

3.2 Servers . 14

3.2.1 The hello server . 14

3.2.2 The hello server with stationary objects 15

3.2.3 Making stationary objects 15

3.2.4 A compute server . 16

3.2.5 A compute server with functors 17

3.2.6 A dynamically-extensible server 18

3.3 Practical tips . 19

3.3.1 Timing and memory problems 19

3.3.2 Avoiding sending useless data 20

3.3.3 Avoiding sending classes 20

4 Mobile Agents 23

4.1 An example agent . 24

4.1.1 Installing the agent servers 24

4.1.2 Programming agents . 25

4.1.3 There and back again . 26

4.1.4 Round and round it goes, where it stops nobody knows . 26

4.1.5 Barrier synchronization . 26

4.1.6 Definition of AgentServer 26

5 Failure Model 29

5.1 Fault states . 29

5.1.1 Temporary faults . 30

5.1.2 Remote problems . 30

5.2 Basic model . 31

5.2.1 Enabling exceptions on faults 31

5.2.2 Binding logic variables . 32

5.2.3 Exception formats . 33

5.2.4 Levels of fault detection 34

5.2.5 Levels and sitedness . 34

5.3 Advanced model . 35

5.3.1 Lazy detection with handlers 35

5.3.2 Eager detection with watchers 36

5.4 Fault states for language entities 36

5.4.1 Eager stateless data . 36

5.4.2 Sited entities . 37

5.4.3 Ports . 37

5.4.4 Logic variables . 37

5.4.5 Cells and locks . 38

5.4.6 Objects . 38

6 Fault-Tolerant Examples 41

6.1 A fault-tolerant hello server . 41

6.1.1 Definition of SafeSend and SafeWait 42

6.1.2 Definition of FOneOf and FSomeOf 44

6.2 Fault-tolerant stationary objects 44

6.2.1 Using fault-tolerant stationary objects 45

6.2.2 Guard-based fault tolerance 46

6.2.3 Exception-based fault tolerance 48

6.3 A fault-tolerant broadcast channel 50

6.3.1 Sample use (no fault tolerance) 51

6.3.2 Definition (no fault tolerance) 52

6.3.3 Sample use (with fault tolerance) 55

6.3.4 Definition (with fault tolerance) 55

7 Limitations and Modifications 59

7.1 Performance limitations . 59

7.2 Functionality limitations . 60

7.3 Modifications . 60

1

Introduction

Fueled by the explosive development of the Internet, distributed programming is be-
coming more and more popular. The Internet provides the first steps towards a global
infrastructure for distributed applications: a global namespace (URLs) and a global
communications protocol (TCP/IP). Both platforms based on the Java language and on
the CORBA standard take advantage of this infrastructure and have become widely-
used. On first glance, one might think that distributed programming has become a
solved problem. But this is far from the case. Writing efficient, open, and robust dis-
tributed applications remains much harder than writing centralized applications. Mak-
ing them secure increases the difficulty by another quantum leap. The abstractions
offered by Java and CORBA, for example the notion of distributed object, provide
only rudimentary help. The programmer must still keep distribution and fault-tolerance
strongly in mind.

The Mozart platform is the result of three years of research into distributed program-
ming and ten years of research into concurrent constraint programming. The driving
goal is to separate the fundamental aspects of programming a distributed system: ap-
plication functionality, distribution structure, fault tolerance, security, and open com-
puting.

The current Mozart release completely separates application functionality from dis-
tribution structure, and provides primitives for fault-tolerance, open computing, and
partial support for security. Current research is focused on completing the separation
for fault tolerance and open computing, which will be offered in upcoming releases.
Future research will focus on security and other issues.

This tutorial presents many examples of practical programs and techniques of dis-
tributed programming and fault-tolerant programming. The tutorial also gives many
examples of useful abstractions, such as cached objects, stationary objects, fault-tolerant
stationary objects, mobile agents, and fault-tolerant mobile agents, and shows how easy
it is to develop new abstractions in the Mozart platform.

Essentially all the distribution abilities of Mozart are given by four modules:

• The module Connection1 provides the basic mechanism (known as tickets) for
active applications to connect with each other.

1Chapter Connecting Computations: Connection, (System Modules)

2 Chapter 1. Introduction

• The module Remote2 allows an active application to create a new site (local or
remote operating system process) and connect with it. The site may be on the
same machine or a remote machine.

• The module Pickle3 allows an application to store and retrieve arbitrary state-
less data from files and URLs.

• The module Fault4 gives the basic primitives for fault detection and handling.

The first three modules, Connection5, Remote6, and Pickle7, are extremely simple
to use. In each case, there are just a few basic operations. For example, Connection8

has just two basic operations: offering a ticket and taking a ticket.

The fourth module, Fault9, is the base on which fault-tolerant abstractions are built.
The current module provides complete fault-detection ability for both site and network
failures and has hooks that allow to build efficient fault-tolerant abstractions within the
Oz language. This release provides a few of the most useful abstractions to get you
started. The development of more powerful ones is still ongoing research. They will
be provided in upcoming releases.

This tutorial gives an informal but precise specification of both the distribution model
and the failure model. The tutorial carefully indicates where the current release is in-
complete with respect to the specification (this is called a limitation) or has a different
behavior (this is called a modification). All limitations and modifications are explained
where they occur and they are also listed together at the end of the tutorial (see Chap-
ter 7).

We say two or more applications are connected if they share a reference to a language
entity that allows them to exchange information. For example, let Application 1 and
Application 2 reference the same object. Then either application can call the object. All
low-level data transfer between the two applications is automatic; from the viewpoint
of the system, it’s just one big concurrent program where one object is being called
from more than one thread. There is never any explicit message passing or encoding
of data.

The Mozart platform provides much functionality in addition to distribution. It pro-
vides an interactive development environment with incremental compiler, many tools
including a browser, debugger, and parser-generator, a C++ interface for developing
dynamically-linked libraries, and state-of-the-art constraint and logic programming
support. We refer the reader to the other tutorials and the extensive system documen-
tation.

2Chapter Spawning Computations Remotely: Remote, (System Modules)
3Chapter Persistent Values: Pickle, (System Modules)
4Chapter Detecting and Handling Distribution Problems: Fault, (System Modules)
5Chapter Connecting Computations: Connection, (System Modules)
6Chapter Spawning Computations Remotely: Remote, (System Modules)
7Chapter Persistent Values: Pickle, (System Modules)
8Chapter Connecting Computations: Connection, (System Modules)
9Chapter Detecting and Handling Distribution Problems: Fault, (System Modules)

2

Distribution Model

The basic difference between a distributed and a centralized program is that the former
is partitioned among several sites. We define a site as the basic unit of geographic dis-
tribution. In the current implementation, a site is always one operating system process
on one machine. A multitasking system can host several sites. An Oz language entity
has the same language semantics whether it is used on only one site or on several sites.
We say that Mozart is network-transparent. If used on several sites, the language entity
is implemented using a distributed protocol. This gives the language entity a particular
distributed semantics in terms of network messages.

The distributed semantics defines the network communications done by the system
when operations are performed on an entity. The distributed semantics of the entities
depends on their type. The distribution model gives well-defined distributed semantics
to all Oz language entities.

The distributed semantics has been carefully designed to give the programmer full con-
trol over network communication patterns where it matters. The distributed semantics
does the right thing by default in almost all cases. For example, procedure code is trans-
ferred to sites immediately, so that sites never need ask for procedure code. For objects,
the developer can specify the desired distributed semantics, e.g., mobile (cached) ob-
jects, stationary objects, and stationary single-threaded objects. Section 2.1 defines the
distributed semantics for each type of language entity, Section 2.2 explains more about
what happens at sites, and Section 2.3 outlines how to build distributed applications.

2.1 Language entities

2.1.1 Objects

The most critical entities in terms of network efficiency are the objects. Objects have
a state that has to be updated in a globally-consistent way. The efficiency of this op-
eration depends on the object’s distributed semantics. Many distributed semantics are
possible, providing a range of trade-offs for the developer. Here are some of the more
useful ones:

• Cached object: Objects and cells are cached by default–we also call this "mo-
bile objects". Objects are always executed locally, in the thread that invokes the
method. This means that a site attempting to execute a method will first fetch
the object, which requires up to three network messages. After this, no further

4 Chapter 2. Distribution Model

messages are needed as long as the object stays on the site. The object will not
move as long as execution stays within a method. If many sites use the object,
then it will travel among the sites, giving everyone a fair share of the object use.

The site where the object is created is called its owner site. A reference to
an object on its owner site is called an owner or owner node. All other sites
referencing the object are proxy sites. A remote reference to an object is called
a proxy or a proxy node. A site requesting the object first sends a message to the
owner site. The owner site then sends a forwarding request to the site currently
hosting the object. This hosting site then sends the object’s state pointer to the
requesting site.

The class of a cached object is copied to each site that calls the object. This is
done lazily, i.e., the class is only copied when the object is called for the first
time. Once the class is on the site, no further copies are done.

• Stationary object (server): A stationary object remains on the site at which
it was created. Each method invocation uses one message to start the method
and one message to synchronize with the caller when the method is finished.

Exceptions are raised in the caller’s thread. Each method executes in a new
thread created for it on the object’s site. This is reasonable since threads in
Mozart are extremely lightweight (millions can be created on one machine).

• Sequential asynchronous stationary object: In this object, each method invoca-
tion uses one message only and does not wait until the method is finished. All
method invocations execute in the same thread, so the object is executed in a
completely sequential way. Non-caught exceptions in a method are ignored by
the caller.

Deciding between these three behaviors is done when the object is created from its
class. A cached object is created with New, a stationary object is created with NewStat,
and an sequential asynchronous stationary object is created with NewSASO. A station-
ary object is a good abstraction to build servers (see Section 3.2.3) and fault-tolerant
servers (see Section 6.2). It is easy to program other distribution semantics in Oz.
Chapter 3 gives some examples.

2.1.2 Other stateful entities

The other stateful language entities have the following distributed semantics:

• Thread: A thread actively executes a sequence of instructions. The thread is
stationary on the site it is created. Threads communicate through shared data
and block when the data is unavailable, i.e., when trying to access unbound logic
variables. This makes Oz a data-flow language. Threads are sited entities (see
Section 2.1.5).

• Port: A port is an asynchronous many-to-one channel that respects FIFO for
messages sent from within the same thread. A port is stationary on the site it is
created, which is called its owner site. The messages are appended to a stream
on the port’s site. Messages from the same thread appear in the stream in the
same order in which they were sent in the thread. A port’s stream is terminated
by a future (see Section 2.1.3).

2.1. Language entities 5

Sending to a local port is always asynchronous. Sending to a remote port is
asynchronous except if all available memory in the network layer is in use. In
that case, the send blocks. The network layer frees memory after sending data
across the network. When enough memory is freed, the send is continued. This
provides an end-to-end flow control.

Oz ports, which are a language concept, should not be confused with Unix
ports, which are an OS concept. Mozart applications do not need to use Unix
ports explicitly except to communicate with applications that have a Unix port
interface.

• Cell: A cell is an updatable pointer to any other entity, i.e., it is analogous to a
standard updatable variable in imperative languages such as C and Java. Cells
have the same distributed semantics as cached objects. Updating the pointer
may need up to three network messages, but once the cell is local, then further
updates do not use the network any more.

• Thread-reentrant lock: A thread-reentrant lock allows only a single thread to
enter a given program region. Locks can be created dynamically and nested
recursively. Locks have the same distributed semantics as cached objects and
cells. This implements a standard distributed mutual exclusion algorithm.

2.1.3 Single-assignment entities

An important category of language entities are those that can be assigned only to one
value:

• Logic variable: Logic variables have two operations: they can be bound (i.e.,
assigned) or read (i.e., wait until bound). A logic variable resembles a single-
assignment variable, e.g., a final variable in Java. It is more than that because
two logic variables can be bound together even before they are assigned, and
because a variable can be assigned more than once, if always to the same value.
Logic variables are important for three reasons:

– They have a more efficient protocol than cells. Often, variables are used as
placeholders, that is, they will be assigned only once. It would be highly
inefficient in a distributed system to create a cell for that case.

When a logic variable is bound, the value is sent to its owner site, namely
the site on which it was created. The owner site then multicasts the value
to all the proxy sites, namely the sites that have the variable. The current
release implements the multicast as a sequence of message sends. That is,
if the variable is on n sites, then a maximum of n+1 messages are needed
to bind the variable. When a variable arrives on a site for the first time, it
is immediately registered with the owner site. This takes one message.

– They can be used to improve latency tolerance. A logic variable can be
passed in a message or stored in a data structure before it is assigned a
value. When the value is there, then it is sent to all sites that need it.

– They are the basic mechanism for synchronization and communication in
concurrent execution. Data-flow execution in Oz is implemented with logic
variables. Oz does not need an explicit monitor or signal concept–rather,

6 Chapter 2. Distribution Model

logic variables let threads wait until data is available, which is 90% of the
needs of concurrency. A further 9% is provided by reentrant locking, which
is implemented by logic variables and cells. The remaining 1% are not so
simply handled by these two cases and must be programmed explicitly.
The reader is advised not to take the above numbers too seriously.

• Future: A future is a read-only logic variable, i.e., it can only be read, not bound.
Attempting to bind a future will block. A future can be created explicitly from a
logic variable. Futures are useful to protect logic variables from being bound by
unauthorized sites. Futures are also used to distribute constrained variables (see
Section 2.1.5).

• Stream: A stream is an asynchronous one-to-many communication channel. In
fact, a stream is just a list whose last element is a logic variable or a future. If the
stream is bound on the owner site, then the binding is sent asynchronously to all
sites that have the variable. Bindings from the same thread appear in the stream
in the same order that they occur in the thread.

A port together with a stream efficiently implement an asynchronous many-to-
many channel that respects the order of messages sent from the same thread. No
order is enforced between messages from different threads.

2.1.4 Stateless entities

Stateless entities never change, i.e., they do not have any internal state whatsoever.
Their distributed semantics is very efficient: they are copied across the net in a single
message. The different kinds of stateless entities differ in when the copy is done (eager
or lazy) and in how many copies of the entity can exist on a site:

• Records and numbers: This includes lists and strings, which are just particular
kinds of records. Records and numbers are copied eagerly across the network, in
the message that references them. The same record and number may occur many
times on a site, once per copy (remember that integers in Mozart may have any
number of digits). Since these entities are so very basic and primitive, it would
be highly inefficient to manage remote references to them and to ensure that they
exist only once on a site. Of course, records and lists may refer to any other kind
of entity, and the distributed semantics of that entity depends on its type, not on
the fact of its being inside a record or a list.

• Procedures, functions, classes, functors, chunks, atoms, and names: These
entities are copied eagerly across the network, but can only exist once on a given
site. For example, an object’s class contains the code of all the object’s methods.
If many objects of a given class exist on a site, then the class only exists there
once.

Each instance of all the above (except atoms) is globally unique. For example, if
the same source-code definition of a procedure is run more than once, then it will
create a different procedure each time around. This is part of the Oz language
semantics; one way to think of it is that a new Oz name is created for every
procedure instance. This is true for functions, classes, functors, chunks, and of
course for names too. It is not true for atoms; two atoms with the same print
name are identical, even if created separately.

2.1. Language entities 7

• Object-records: An object is a composite entity consisting of an object-record
that references the object’s features, a cell, and an internal class. The distribution
semantics of the object’s internal class are different from that of a class that is
referenced explicitly independent of any object. An object-record and an internal
class are both chunks that are copied lazily. I.e., if an object is passed to a site,
then when the object is called there, the object-record is requested if it is missing
and the class is requested if it is missing. If the internal class already exists on
the site, then it is not requested at all. On the other hand, a class that referenced
explicitly is passed eagerly, i.e., a message referencing the class will contain the
class code, even if the site already has a copy.

In terms of the language semantics, there are only two different stateless language
entities: procedures and records. All other entities are derived. Functions are syntactic
sugar for procedures. Chunks are a particular kind of record. Classes are chunks
that contain object methods, which are themselves procedures. Functors are chunks
that contain a function taking modules as arguments and returning a module, where a
module is a record.

2.1.5 Sited entities

Entities that can be used only on one site are called sited. We call this site their
owner site or home site. References to these entities can be passed to other sites, but
they do not work there (an exception will be raised if an operation is attempted). They
work only on their owner site. Entities that can be used on any site are called unsited.
Because of network transparency, unsited entities have the same language semantics
independent of where they are used.

In Mozart, all sited entities are modules, except for a few exceptional cases listed
below. Not all modules are sited, though. A module is a record that groups related
operations and that possibly has some internal state. The modules that are available in a
Mozart process when it starts up are called base modules. The base modules contain all
operations on all basic Oz types. There are additional modules, called system modules,
that are part of the system but loaded only when needed. Furthermore, an application
can define more modules by means of functors that are imported from other modules.
A functor is a module specification that makes explicit the resources needed by the
module.

All base modules are unsited. For example, a procedure that does additions can be used
on another site, since the addition operation is part of the base module Number. Some
commonly-used base modules are Number, Int, and Float (operations on numbers),
Record and List (operations on records and lists), and Procedure, Port, Cell, and
Lock (operations on common entities).

Due to limitations of the current release, threads, dictionaries, arrays, and spaces
are sited even though they are in base modules. These entities will become unsited in
future releases.

When a reference to a constrained variable (finite domain, finite set, or free record)
is passed to another site, then this reference is converted to a future (see Section 2.1.3).
The future will be bound when the constrained variable becomes determined.

8 Chapter 2. Distribution Model

We call resource any module that is either a system module or that imports directly or
indirectly from a system module. All resources are sited. The reason is that they con-
tain state outside of the Oz language. This state is either part of the emulator or external
to the Mozart process. Access to this state is limited to the machine hosting the Mozart
process. Some commonly-used system modules are Tk and Browser (system graph-
ics), Connection and Remote (site-specific distributed operations), Application and
Module (standalone applications and dynamic linking), Search and FD (constraint pro-
gramming), Open and Pickle (the file system), OS and Property (the OS and emula-
tor), and so forth.

2.2 Sites

2.2.1 Controlled system shutdown

A site can be stopped in two ways: normally or abnormally. The normal way is a
controlled shutdown initiated by {Application.exit I}, where I is the return status
(see the module Application). The abnormal way is a site crash triggered by an
external problem. The failure model (see Chapter 5) is used to survive site crashes.
Here we explain what a controlled shutdown means in the distribution model.

All language entities, except for stateless entities that are copied immediately, have an
owner site and proxy sites. The owner site is always the site on which the entity was
created. A controlled shutdown has no adverse effect on any distributed entity whose
owner is on another site. This is enforced by the distributed protocols. For example, if
a cell’s state pointer is on the shutting-down site, then the state pointer is moved to the
owner site before shutting down. If the owner node is on the shutting-down site, then
that entity will no longer work.

2.2.2 Distributed memory management

All memory management in Mozart is automatic; the programmer does not have to
worry about when an entity is no longer referenced. Mozart implements an efficient
distributed garbage collection algorithm that reclaims all unused entities except those
that form a cycle of references that exists on at least two different owner sites. For
example, if two sites each own an object that references the other, then they will not be
reclaimed. If the objects are both owned by the same site, then they will be reclaimed.

This means that the programmer must be somewhat careful when an application refer-
ences an entity on another site. For example, let’s say a client references a server and
vice versa. If the client wishes to disconnect from the server, then it is sufficient that
the server forget all references to the client. This will ensure there are no cross-site
cycles.

2.3 Bringing it all together

Does the Mozart distribution model give programmers a warm, fuzzy feeling when
writing distributed applications? In short, yes it does. The distribution model has been
designed in tandem with many application prototypes and numerous Gedankenexperi-
menten. We are confident that it is basically correct.

2.3. Bringing it all together 9

Developing an application is separated into two independent parts. First, the applica-
tion is written without explicitly partitioning the computation among sites. One can in
fact check the correctness and termination properties of the application by running it
on one site.

Second, the objects are given distributed semantics to satisfy the geographic constraints
(placement of resources, dependencies between sites) and the performance constraints
(network bandwidth and latency, machine memory and speed). The large-scale struc-
ture of an application consists of a graph of threads and objects, which access re-
sources. Threads are created initially and during execution to ensure that each site
does the desired part of the execution. Objects exchange messages, which may refer
to objects or other entities. Records and procedures, both stateless entities, are the
basic data structures of the application–they are passed between sites when needed.
Logic variables and locks are used to manage concurrency and data-flow execution.
See Section 3.3 for more information on how to organize an application.

Functors and resources are the key players in distributed component-based program-
ming. A functor specifies a software component. A functor is stateless, so it can be
transparently copied anywhere across the net and made persistent by pickling on a file
(see the module Pickle1). A functor is linked on a site by evaluating it there with the
site resources that it needs (see the modules Module2 and Remote3). The result is a
new resource, which can be used as is or to link more functors. Our goal is for functors
to be the core technology driving an open community of developers, who contribute to
a growing global pool of useful components.

1Chapter Persistent Values: Pickle, (System Modules)
2Chapter Module Managers: Module, (System Modules)
3Chapter Spawning Computations Remotely: Remote, (System Modules)

10 Chapter 2. Distribution Model

3

Basic Operations and Examples

3.1 Global naming

There are two kinds of global names in Oz:

• Internal references, i.e., that can exist only within an Oz computation space.
They are globally unique, even for references existing before connecting with
another application. All data structures in Oz are addressed through these refer-
ences; they correspond roughly to pointers and network pointers in mainstream
languages, but they are protected from abuse (as in Java). See Section 2.1 for
more information on the distribution semantics of these references. In most
cases, you can ignore these references since they don’t affect the language se-
mantics. In this section we will not talk any more of these references.

• External references, i.e., that can exist anywhere, i.e., both inside and outside of
an Oz computation space. They are also known as external global names. They
are represented as character strings, and can therefore be stored and communi-
cated on many different media, including Web pages, Oz computation spaces,
etc. They are needed when a Mozart application wants to interact with the exter-
nal world.

This section focuses on external global names. Oz recognizes three kinds, namely
tickets, URLs, and hostnames:

• A ticket is a string that references any language entity inside a running appli-
cation. Tickets are created within a running Oz application and can be used by
active applications to connect together (see module Connection1).

• A URL is a string that references a file across the network. The string follows
the standard URL syntax. In Mozart the file can be a pickle, in which case it can
hold any kind of stateless data–procedures, classes, functors, records, strings,
and so forth (see module Pickle2).

• A hostname is a string that refers to a host (another machine) across the net-
work. The string follows the standard DNS syntax. An application can use the
hostname to start up a Mozart process on the host (see module Remote3).

For maximum flexibility, all three kinds can be represented as virtual strings inside Oz.
1Chapter Connecting Computations: Connection, (System Modules)
2Chapter Persistent Values: Pickle, (System Modules)
3Chapter Spawning Computations Remotely: Remote, (System Modules)

12 Chapter 3. Basic Operations and Examples

3.1.1 Connecting applications by means of tickets

Let’s say Application 1 has a stream that it wants others to access. It can do this
by creating a ticket that references the stream. Other applications then just need to
know the ticket to get access to the stream. Tickets are implemented by the module
Connection4, which has the following three operations:

• {Connection.offer X T} creates a ticket T for X, which can be any language
entity. The ticket can be taken just once. Attempting to take a ticket more than
once will raise an exception.

• {Connection.offerUnlimited X T} creates a ticket T for X, which can be any
language entity. The ticket can be taken any number of times.

• {Connection.take T X} creates a reference X when given a valid ticket in T.
The X refers to exactly the same language entity as the original reference that
was offered when the ticket was created. A ticket can be taken at any site. If
taken at a different site than where the ticket was offered, then there is network
communication between the two sites.

Application 1 first creates a ticket for the stream as follows:

declare Stream Tkt in

{Connection.offerUnlimited Stream Tkt}

{Show Tkt}

The ticket is returned in Tkt. Application 1 then publishes the value of Tkt somewhere
so that other applications can access it. Our example uses Show to display the ticket in
the emulator window. We will use copy and paste to communicate the ticket to another
application. The ticket looks something like ’x-ozticket://193.10.66.30:9002:SpGK0:U4v/y:s:f:xl’.
Don’t worry about exactly what’s inside this strange atom. Users don’t normally see
tickets: they are stored in files or passed across the network, e.g., in mail messages.
Application 2 can use the ticket to get a reference to the stream:

declare Stream in

{Connection.take

’x-ozticket://193.10.66.30:9002:SpGK0:U4v/y:s:f:xl’

Stream}

{Browse Stream}

If Application 1 binds the stream by doing Stream=a|b|c|_ then Application 2’s
browse window will show the bindings.

3.1.2 Persistent data structures by means of pickles

An application can save any stateless data structure in a file and load it again from a
file. The loading may also be done from a URL, used as a file’s global name. The
module Pickle implements the saving and loading and the conversion between Oz
data and a byte sequence.

For example, let’s define a function and save it:
4Chapter Connecting Computations: Connection, (System Modules)

3.1. Global naming 13

declare

fun {Fact N}

if N=<1 then 1 else N*{Fact N-1} end

end

{Pickle.save Fact "~pvr/public_html/fact"}

Since the function is in a public_html directory, anyone can load it by giving a URL
that specifies the file:

declare

Fact={Pickle.load "http://www.info.ucl.ac.be/~pvr/fact"}

{Browse {Fact 10}}

Anything stateless can be saved in a pickle, including functions, procedures, classes,
functors, records, and atoms. Stateful entities, such as objects and variables, cannot be
pickled.

3.1.3 Remote computations and functors

An application can start a computation on a remote host that uses the resources of that
host and that continues to interact with the application. The computation is specified
as a functor, which is the standard way to define computations with the resources they
need. A functor is a module specification that makes explicit the resources that the
module needs (see Section 2.3).

First we create a new Mozart process that is ready to accept new computations:

declare

R={New Remote.manager init(host:"rainbow.info.ucl.ac.be")}

Let’s make the process do some work. We define a functor that does the work when
we evaluate it:

declare F M

F=functor export x:X define X={Fact 30} end

M={R apply(F $)}

{Browse M.x}

The result X is returned to the client site in the module M, which is calculated on the
remote site and returned to the application site. The module is a record and the result is
at the field x, namely M.x. The module should not reference any resources. If it does,
an exception will be raised in the thread doing the apply.

Any Oz statement S can be executed remotely by creating a functor:

F=functor import ResourceList export Results define S end

14 Chapter 3. Basic Operations and Examples

To evaluate this functor remotely, the client executes M={R apply(F $)}. The Re-
sourceList must list all the resources used by S. If not all are listed then an exception
will be raised in the thread doing the apply. The remote execution will use the re-
sources of the remote site and return a module M that contains all the fields mentioned
in Results. If S does not use any resources, then there is a slightly simpler way to
do remote computations. The next section shows how by building a simple compute
server.

A second solution is to use a functor with an external reference:

declare F M X in

F=functor define {Fact 30 X} end

M={R apply(F $)}

{Browse X}

This functor is not stateless, but it’s all right since we are not pickling the functor. In
fact, it’s quite possible for functors to have external references. Such functors are
called computed functors. They can only be pickled if the external references are to
stateless entities.

A third solution is for the functor itself to install the compute server on the remote
site. This is a more general solution: it separates the distribution aspect (setting up the
remote site to do the right thing) from the particular computations that we want to do.
We give this solution later in the tutorial.

3.2 Servers

A server is a long-lived computation that provides a service to clients. We will show
progressively how to build different kinds of servers.

3.2.1 The hello server

Let’s build a basic server that returns the string "Hello world" to clients. The first
step is to create the server. Let’s do this and also make the server available through a
URL.

% Create server

declare Str Prt Srv in

{NewPort Str Prt}

thread

{ForAll Str proc {$ S} S="Hello world" end}

end

proc {Srv X}

{Send Prt X}

end

% Make server available through a URL:

% (by using a filename that is also accessible by URL)

{Pickle.save {Connection.offerUnlimited Srv}

"/usr/staff/pvr/public_html/hw"}

3.2. Servers 15

All the above must be executed on the server site. Later on we will show how a client
can create a server remotely.

Any client that knows the URL can access the server:

declare Srv in

Srv={Connection.take {Pickle.load "http://www.info.ucl.ac.be/~pvr/hw"}}

local X in

{Srv X}

{Browse X}

end

This will show "Hello world" in the browser window.

By taking the connection, the client gets a reference to the server. This conceptually
merges the client and server computation spaces into a single computation space. The
client and server can then communicate as if they were in the same process. Later on,
when the client forgets the server reference, the computation spaces become separate
again.

3.2.2 The hello server with stationary objects

The previous section shows how to build a basic server using a port to collect messages.
There is in fact a much simpler way, namely by using stationary objects. Here’s how
to create the server:

declare

class HelloWorld

meth hw(X) X="Hello world" end

end

Srv={NewStat HelloWorld hw(_)} % Requires an initial method

The client calls the server as {Srv hw(X)}. The class HelloWorld can be replaced
by any class. The only difference between this and creating a centralized object is
that New is replaced by NewStat. This specifies the distributed semantics of the object
independently of the object’s class.

3.2.3 Making stationary objects

Stationary entities are a very important abstraction. Mozart provides two operations to
make entities stationary. The first is creating a stationary object:

declare

Object={NewStat Class Init}

When executed on a site, the procedure NewStat takes a class and an initial message
and creates an object that is stationary on that site. We define NewStat as follows.

16 Chapter 3. Basic Operations and Examples

16a 〈Stationary object 16a〉≡
declare

〈MakeStat definition 16b〉

proc {NewStat Class Init Object}

Object={MakeStat {New Class Init}}

end

A fault-tolerant version of NewStat is given in Section 6.2.2. NewStat is defined in
terms of MakeStat. The procedure MakeStat takes an object or a one-argument pro-
cedure and returns a one-argument procedure that obeys exactly the same language
semantics and is stationary. We define {MakeStat PO StatP} as follows, where in-
put PO is an object or a one-argument procedure and output StatP is a one-argument
procedure. 5

16b 〈MakeStat definition 16b〉≡
proc {MakeStat PO ?StatP}

S P={NewPort S}

N={NewName}

in

% Client side:

proc {StatP M}

R in

{Send P M#R}

if R==N then skip else raise R end end

end

% Server side:

thread

{ForAll S

proc {$ M#R}

thread

try {PO M} R=N catch X then R=X end

end

end}

end

end

StatP preserves exactly the same language semantics as PO. In particular, it has the
same concurrency behavior and it raises the same exceptions. The new name N is a
globally-unique token. This ensures that there is no conflict with any exceptions raised
by ProcOrObj.

3.2.4 A compute server

One of the promises of distributed computing is making computations go faster by ex-
ploiting the parallelism inherent in networks of computers. A first step is to create a
compute server, that is, a server that accepts any computation and uses its computa-
tional resources to do the computation. Here’s one way to create a compute server:

5One-argument procedures are not exactly objects, since they do not have features. For all practical
purposes not requiring features, though, one-argument procedures and objects are interchangeable.

3.2. Servers 17

declare

class ComputeServer

meth init skip end

meth run(P) {P} end

end

C={NewStat ComputeServer init}

The compute server can be made available through a URL as shown before. Here’s
how a client uses the compute server:

declare

fun {Fibo N}

if N<2 then 1 else {Fibo N-1}+{Fibo N-2} end

end

% Do first computation remotely

local F in

{C run(proc {$} F={Fibo 30} end)}

{Browse F}

end

% Do second computation locally

local F in

F={Fibo 30}

{Browse F}

end

This first does the computation remotely and then repeats it locally. In the remote case,
the variable F is shared between the client and server. When the server binds it, its
value is immediately sent to the server. This is how the client gets a result from the
server.

Any Oz statement S that does not use resources can be executed remotely by making a
procedure out of it:

P=proc {$} S end

To run this, the client just executes {C run(P)}. Because Mozart is fully network-
transparent, S can be any statement in the language: for example, S can define new
classes inheriting from client classes. If S uses resources, then it can be executed
remotely by means of functors. This is shown in the previous section.

3.2.5 A compute server with functors

The solution of the previous section is reasonable when the client and server are inde-
pendent computations that connect. Let’s now see how the client itself can start up a
compute server on a remote site. The client first creates a new Mozart process:

18 Chapter 3. Basic Operations and Examples

declare

R={New Remote.manager init(host:"rainbow.info.ucl.ac.be")}

Then the client sends a functor to this process that, when evaluated, creates a compute
server:

declare F C

F=functor

export cs:CS

define

class ComputeServer

meth init skip end

meth run(P) {P} end

end

CS={NewStat ComputeServer init}

end

C={R apply(F $)}.cs % Set up the compute server

The client can use the compute server as before:

local F in

{C run(proc {$} F={Fibo 30} end)}

{Browse F}

end

3.2.6 A dynamically-extensible server

Sometimes a server has to be upgraded, for example to add extra functionality or to fix
a bug. We show how to upgrade a server without stopping it. This cannot be done in
Java. In Mozart, the upgrade can even be done interactively. A person sits down at a
terminal anywhere in the world, starts up an interactive Mozart session, and upgrades
the server while it is running.

Let’s first define a generic upgradable server:

declare

proc {NewUpgradableStat Class Init ?Upg ?Srv}

Obj={New Class Init}

C={NewCell Obj}

in

Srv={MakeStat

proc {$ M} {{Access C} M} end}

Upg={MakeStat

proc {$ Class2#Init2} {Assign C {New Class2 Init2}} end}

end

This definition must be executed on the server site. It returns a server Srv and a sta-
tionary procedure Upg used for upgrading the server. The server is upgradable because
it does all object calls indirectly through the cell C.

3.3. Practical tips 19

A client creates an upgradable compute server almost exactly as it creates a fixed com-
pute server, by executing the following on the server site:

declare Srv Upg in

Srv={NewUpgradableStat ComputeServer init Upg}

Let’s now upgrade the compute server while it is running. We first define a new class
CComputeServer and then we upgrade the server with an object of the new class:

declare

class CComputeServer from ComputeServer

meth run(P Prio<=medium)

thread

{Thread.setThisPriority Prio}

ComputeServer,run(P)

end

end

end

Srv2={Upg CComputeServer#init}

That’s all there is to it. The upgraded compute server overrides the run method with
a new method that has a default. The new method supports the original call run(P)
and adds a new call run(P Prio), where Prio sets the priority of the thread doing
computation P.

The compute server can be upgraded indefinitely since garbage collection will remove
any unused old compute server code. For example, it would be nice if the client could
find out how many active computations there are on the compute server before deciding
whether or not to do a computation there. We leave it to the reader to upgrade the server
to add a new method that returns the number of active computations at each priority
level.

3.3 Practical tips

This section gives some practical programming tips to improve the network perfor-
mance of distributed applications: timing and memory problems, avoiding sending
data that is not used at the destination and avoiding sending classes when sending ob-
jects across the network.

3.3.1 Timing and memory problems

When the distribution structure of an application is changed, then one must be careful
not to cause timing and memory problems.

• When a reference X is exported from a site (i.e., put in a message and sent) and X

refers directly or indirectly to unused modules then the modules will be loaded
into memory. This is so even if they will never be used.

20 Chapter 3. Basic Operations and Examples

• Relative timings between different parts of a program depend on the distribution
structure. For example, unsynchronized producer/consumer threads may work
fine if both are on the same site: it suffices to give the producer thread a slightly
lower priority. If the threads are on different sites, the producer may run faster
and cause a memory leak.

• If the same record is sent repeatedly to a site, then a new copy of the record will
be created there each time. This is true because records don’t have global names.
The lack of global names makes it faster to send records across the network.

3.3.2 Avoiding sending useless data

When sending a procedure over the network, be sure that it doesn’t contain calculations
that could have been done on the original site. For example, the following code sends
the procedure P to remote object D:

declare

R={MakeTuple big 100000} % A very, very big tuple

proc {P X} X=R.2710 end % Procedure that uses tuple field 2710

{D addentry(P)} % Send P to D, where it is executed

If D executes P, then the big tuple R is transferred to D’s site, where field number 2710
is extracted. With 100,000 fields, this means 400KB is sent over the network! Much
better is to extract the field before sending P:

declare

R={MakeTuple big 100000}

F=R.2710 % Extract field 2710 before sending

proc {P X} X=F end

{D addentry(P)}

This avoids sending the tuple across the network. This technique is a kind of partial
evaluation. It is useful for almost any Oz entity, for example procedures, functions,
classes, and functors.

3.3.3 Avoiding sending classes

When sending an object across the network, it is good to make sure that the object’s
class exists at the destination site. This avoids sending the class code across the net-
work. Let’s see how this works in the case of a collaborative tool. Two sites have
identical binaries of this tool, which they are running. The two sites send objects back
and forth. Here’s how to write the application:

declare

class C

% ... lots of class code comes here

end

functor

define

3.3. Practical tips 21

Obj={New C init}

% ... code for the collaborative tool

end

This creates the class C for the functor to reference. This means that all copies of the
binary with this functor will reference the same class, so that an object arriving at a site
will recognize the same class as its class on the original site.

Here’s how not to write the application:

functor

define

class C

% ... lots of class code comes here

end

Obj={New C init}

% ... code for the collaborative tool

end

Do you see why? Think first before reading the next paragraph! For a hint read Sec-
tion 2.1.4.

In both solutions, the functor is applied when the application starts up. In the second
solution, this defines a new and different class C on each site. If an object of class C
is passed to a site, then the site will ask for the class code to be passed too. This can
be very slow if the class is big–for TransDraw it makes a difference of several minutes
on a typical Internet connection. In the first solution, the class C is defined before the
functor is applied. When the functor is applied, the class already exists! This means
that all sites have exactly the same class, which is part of the binary on each site.
Objects passed between the sites will never cause class code to be sent.

22 Chapter 3. Basic Operations and Examples

4

Mobile Agents

This chapter shows how to program mobile agents in Mozart. We call agent any dis-
tributed computation that is organized as a set of tasks. A task is a computation that
uses the resources of a single site. By resource we mean the technical definition given
in Section 2.1.5, for example, file system, peripherals, networking abilities, operating
system access, etc. A task can initiate tasks on other sites, with well-defined speci-
fications of what resources they should use. The distributed behavior of the agent is
therefore in first instance decided by the agent itself.

Agents are therefore just resource-aware distributed computations, which can exist on
one site or be spread out over more than one site. This definition of agent might seem
unnecessarily general, but it is natural in Mozart, where it is as easy for an application
to run on one site or a set of sites. For example, here’s an agent A that concurrently
delegates 10 tasks to remote sites and waits until all are done before continuing. The
agent servers are represented by AS0 and AS9 and the work is represented by functors
containing the one-argument procedures P0 to P9. Each procedure binds its argument
to the result of its calculation.

declare

A=functor

define

X0 ... X9

{AS0 functor define {P0 X0} end}

...

{AS9 functor define {P9 X9} end}

{Wait X0} ... {Wait X9}

...

end

This is efficient. As the distribution model makes clear (see Section 2.1.3), the ter-
mination of each remote task is signaled to the original task by exactly one network
message, which contains the result of the task’s calculation.

The Mozart vision of a universe of agents is a set of fixed places, the agent servers,
and a set of evolving computational “webs”, each potentially covering many places at
once. A web is what we call an “agent”.

24 Chapter 4. Mobile Agents

4.1 An example agent

Let’s start with a very simple example of an agent that goes somewhere, interrogates
the operating system, and then comes back. We show the example in two parts. First,
we show how to install agent servers so that the agent has somewhere to go. Then, we
will program the agents.

4.1.1 Installing the agent servers

To go to a site, there has to be something at the site that accepts the agent. We call
it an agent server. An agent server accepts functors (which represent agents or parts
of agents) and applies them on its site. To install an agent server on a site, we use the
functor AgentServer (see Section 4.1.6, below). When AgentServer is installed on
a site, then it creates an agent server module AS on that site along with the following
operations:

• The agent server is accessed by AS.server. A calculation is started asyn-
chronously on the agent server by invoking {AS.server F}, where F is a functor
that specifies the calculation and the resources it needs.

• The operation {AS.publishserver FN}, which when executed creates a file FN
that contains a ticket to the site’s agent server.

• The operation {AS.getserver UFN ?AS}, which when inputted an URL or file
name UFN to any agent server (even on other sites), gives as output a reference to
that agent server AS.

Let’s say that we know an URL "http://www.info.ucl.ac.be/~pvr/agents.ozf"

that references the functor AgentServer. Then the following code creates a local agent
server and makes it accessible through the URL "http://www.info.ucl.ac.be/~pvr/as1":

declare GetServer in

local

% Get the AgentServer:

AgentServer={Pickle.load "http://www.info.ucl.ac.be/~pvr/agents.ozf"}

% Install AgentServer locally: (this creates an agent server)

[AS1]={Module.apply [AgentServer]}

% Publish the agent server:

{AS1.publishserver "/usr/staff/pvr/public_html/as1"}

in

GetServer=AS1.getserver

end

This code also creates the procedure GetServer as defined above.

Let’s create a second agent server, a remote one, and make it accessible through the
URL "http://www.info.ucl.ac.be/~pvr/as2":

local

RF=functor import Pickle Module export done:D

4.1. An example agent 25

define

AgentServer={Pickle.load "http://www.info.ucl.ac.be/~pvr/agents.ozf"}

[AS2]={Module.apply [AgentServer]}

{AS2.publishserver "/usr/staff/pvr/public_html/as2"}

end

RM={New Remote.manager init}

M={RM apply(RF $)}

in

skip

end

In this case, the three lines of code that do the work of installing the agent server and
publishing it are put inside the functor RF, and RF is installed remotely.

Now let’s get access to both of these agent servers. We use the procedure GetServer

that is defined in the functor AgentServer. This procedure can get access to any agent
server, not just the one on its site:

declare

Server1={GetServer "http://www.info.ucl.ac.be/~pvr/as1"}

Server2={GetServer "http://www.info.ucl.ac.be/~pvr/as2"}

4.1.2 Programming agents

Now that the agent servers are installed, we’re ready to let the agents work.

A first example creates an agent on the remote site. The agent queries the operating
system and returns the value of the OS.time operation. Let’s first execute the agent
interactively:

declare D1 in

{Server2 functor import OS define D1={OS.time} end}

{Browse D1}

This first creates variable D1 and then executes an agent on the remote site. The agent
needs only one resource, OS, a module that gives access to some operating system
functions. The agent is created asynchronously, which means that D1 will usually still
be unbound when the Browse is called. In most cases this is not a problem. The
dataflow semantics of Oz mean that most operations that need D1 will wait before
continuing. If the caller wants to be sure that D1 is bound before continuing, it just
needs to do a {Wait D1}.

Now let’s slightly modify the first example to get a standalone agent, i.e., the agent is
itself a functor that can be compiled and executed standalone or by another application.
We assume that the functor AgentServer is available at a standard place.

functor

import System AgentServer

define

GetServer=AgentServer.getserver

Server2={GetServer "http://www.info.ucl.ac.be/~pvr/as2"}

26 Chapter 4. Mobile Agents

D1

{Server2 functor import OS define D1={OS.time} end}

{System.show D1}

end

This is almost the same as the previous example; it just extends it with a call to
GetServer to access the agent server. The agent first gets access to the remote agent
server Server2 and then starts a calculation there.

If the functor AgentServer is not available in a standard place, then the standalone
agent has to get it explicitly:

functor

import System Pickle Module

define

AgentServer={Pickle.load "http://www.info.ucl.ac.be/~pvr/agents.ozf"}

[AS]={Module.apply [AgentServer]}

GetServer=AS.getserver

Server2={GetServer "http://www.info.ucl.ac.be/~pvr/as2"}

D1

{Server2 functor import OS define D1={OS.time} end}

{System.show D1}

end

4.1.3 There and back again

We give an example of an agent that goes to a remote site, does a calculation there, and
comes back with the result. Surprise, surprise, the calculation takes almost no local
CPU time.

4.1.4 Round and round it goes, where it stops nobody knows

We give an example of an agent that visits a set of sites repeatedly. It chooses dynam-
ically the next site to visit. In fact, during its execution it can even get access to new
sites that it has never heard of before and visit them.

4.1.5 Barrier synchronization

An agent can delegate work by creating tasks dynamically, and then wait until all tasks
are done. This is easy by using logic variables to synchronize on the termination.

4.1.6 Definition of AgentServer

The basic tool giving agent functionality is the functor AgentServer, which is defined
as follows. When installed, this functor creates an agent server, a procedure to publish
the agent server, and a procedure to get access to any published agent server.

4.1. An example agent 27

functor

import Module Connection Pickle

export

server:AS

publishserver:PublishServer

getserver:GetServer

define

S P={NewPort S}

proc {InstallFunctors S}

case S

of F|S2 then

try

[_] = {Module.apply [F]}

catch _ then skip end

{InstallFunctors S2}

else skip end

end

thread {InstallFunctors S} end

proc {AS F} {Send P F} end

T={Connection.offerUnlimited AS}

% Make agent server available through file FN:

% Note that the agent server is asynchronous.

proc {PublishServer FN}

{Pickle.save T FN}

end

% Get access to a server that is at file/URL UFN:

proc {GetServer UFN AS}

try

T={Pickle.load UFN}

in

AS={Connection.take T}

catch _ then

raise serverUnavailable end

end

end

end

One way to use AgentServer is to compile it with the standalone compiler and make
the resulting ozf file globally-accessible by putting it in a public_html directory.
This can also be done in the interactive user interface:

declare

AgentServer=

functor

... (body of functor definition)

end

{Pickle.save AgentServer "/usr/staff/pvr/public_html/agents.ozf"}

28 Chapter 4. Mobile Agents

5

Failure Model

Distributed systems have the partial failure property, that is, part of the system can fail
while the rest continues to work. Partial failures are not at all rare. Properly-designed
applications must take them into account. This is both good and bad for application
design. The bad part is that it makes applications more complex. The good part is that
applications can take advantage of the redundancy offered by distributed systems to
become more robust.

The Mozart failure model defines what failures are recognized by the system and how
they are reflected in the language. The system recognizes permanent site failures
that are instantaneous and both temporary and permanent communication failures.
The permanent site failure mode is more generally known as fail-silent with failure
detection, that is, a site stops working instantaneously, does not communicate with
other sites from that point onwards, and the stop can be detected from the outside.
The system provides mechanisms to program with language entities that are subject to
failures.

The Mozart failure model is accessed through the module Fault1. This chapter ex-
plains and justifies this functionality, and gives examples showing how to use it. We
present the failure model in two steps: the basic model and the advanced model. To
start writing fault-tolerant applications it is enough to understand the basic model. To
build fault-tolerant abstractions it is often necessary to use the advanced model.

In its current state, the Mozart system provides only the primitive operations needed
to detect failure and reflect it in the language. The design and implementation of fault-
tolerant abstractions within the language by using these primitives is the subject of
ongoing research. This chapter and the next one give the first results of this research.
All comments and suggestions for improvements are welcome.

5.1 Fault states

All failure modes are defined with respect to both a language entity and a particular
site. For example, one would like to send a message to a port from a given site. The
site may or may not be able to send the message. A language entity can be in three
fault states on a given site:

• The entity works normally (local fault state ok).
1Chapter Detecting and Handling Distribution Problems: Fault, (System Modules)

30 Chapter 5. Failure Model

• The entity is temporarily not working (local fault state tempFail). This is be-
cause a remote site crucial to the entity is currently unreachable due to a network
problem. This fault state can go away. A limitation of the current release is that
temporary problems are indicated only after a long delay time.

• The entity is permanently not working (local fault state permFail). This is be-
cause a site crucial to the entity has crashed. This fault state is permanent.

If the entity is currently not working, then it is guaranteed that the fault state will be
either tempFail or permFail. The system cannot always determine whether a fault is
temporary or permanent. In particular, a tempFail may hide a site crash. However,
network failures can always be considered temporary since the system actively tries to
reestablish another connection.

5.1.1 Temporary faults

The fault state tempFail exists to allow the application to react quickly to temporary
network problems. It is raised by the system as soon as a network problem is recog-
nized. It is therefore fundamentally different from a time-out. For example, TCP gives
a time-out after some minutes. This duration has been chosen to be very long, approx-
imating infinity from the viewpoint of the network connection. After the time-out, one
can be sure that the connection is no longer working.

The purpose of tempFail is quite different from a time-out. It is to inform the ap-
plication of network problems, not to mark the end of a connection. For example, an
application might be connected to a given server. If there are problems with this server,
the application would like to be informed quickly so that it can try connecting to an-
other server. A tempFail fault state will therefore be relatively frequent, much more
frequent than a time-out. In most cases, a tempFail fault state will eventually go away.

It is possible for a tempFail state to last forever. For example, if a user disconnects
the network connection of a laptop machine, then only he or she knows whether the
problem is permanent. The application cannot in general know this. The decision
whether to continue waiting or to stop the wait can cut through all levels of abstraction
to appear at the top level (i.e., the user). The application might then pop up a window
to ask the user whether to continue waiting or not. The important thing is that the
network layer does not make this decision; the application is completely free to decide
or to let the user decide.

5.1.2 Remote problems

The local fault states ok, tempFail, and permFail say whether an entity operation can
be performed locally. An entity can also contain information about the fault states on
other sites. For example, say the current site is waiting for a variable binding, but the
remote site that will do the binding has crashed. The current site can find this out. The
following remote problems are identified:

• At least one of the other sites referencing the entity can no longer perform oper-
ations on the entity (fault state remoteProblem(permSome)). The sites may or
may not have crashed.

5.2. Basic model 31

• All of the other sites referencing the entity can no longer perform operations on
the entity (fault state remoteProblem(permAll)). The sites may or may not
have crashed.

• At least one of the other sites referencing the entity is currently unreachable
(fault state remoteProblem(tempSome)).

• All of the other sites referencing the entity are currently unreachable (fault state
remoteProblem(tempAll)).

All of these cases are identified by the fault state remoteProblem(I), where the ar-
gument I identifies the problem. A permanent remote problem never goes away. A
temporary remote problem can go away, just like a tempFail.

Even if there exists a remote problem, it is not always possible to return a remoteProblem
fault state. This happens if there are problems with a proxy that the owner site does not
know about. This also happens if the owner site is inaccessible. In that case it might
not be possible to learn anything about the remote sites.

The complete fault state of an entity consists of at most one element from the set
{tempFail, permFail} together with at most two elements from the set {remoteProblem(permSome),
remoteProblem(permAll), remoteProblem(tempSome), remoteProblem(tempAll)}.
Permanent remote problems mask temporary ones, i.e., if remoteProblem(permSome)
is detected then remoteProblem(tempSome) cannot be detected. If a (temporary or
permanent) problem exists on all remote sites (e.g., remoteProblem(permAll)) then
the problem also exists on some sites (e.g., remoteProblem(permSome)).

5.2 Basic model

We present the failure model in two steps: the basic model and the advanced model.
The simplest way to start writing fault-tolerant applications is to use the basic model.
The basic model allows to enable or disable synchronous exceptions on language enti-
ties. That is, attempting to perform operations on entities with faults will either block or
raise an exception without doing the operation. The fault detection can be enabled sep-
arately on each of two levels: a per-site level or a per-thread level (see Section 5.2.4).

Exceptions can be enabled on logic variables, ports, objects, cells, and locks. All other
entities, e.g., records, procedures, classes, and functors, will never raise an exception
since they have no fault states (see Section 5.4.1). Attempting to enable an exception
on such an entity is allowed but has no observable effect.

The advanced model allows to install or deinstall handlers and watchers on entities.
These are procedures that are invoked when there is a failure. Handlers are invoked
synchronously (when attempting to perform an operation) and watchers are invoked
asynchronously (in their own thread as soon as the fault state is known). The advanced
model is explained in Section 5.3.

5.2.1 Enabling exceptions on faults

By default, new entities are set up so that an exception will be raised on fault states
tempFail or permFail. The following operations are provided to do other kinds of
fault detection:

32 Chapter 5. Failure Model

fun {Fault.defaultEnable FStates}

sets the site’s default for detected fault states to FStates. Each site has a default that
is set independently of that of other sites. Enabling site or thread-level detection for
an entity overrides this default. Attempting to perform an operation on an entity with
a fault state in the default FStates raises an exception. The FStates can be changed
as often as desired. When the system starts up, the defaults are set up as if the call
{Fault.defaultEnable [tempFail permFail]} had been done.

fun {Fault.defaultDisable}

disables the default fault detection. This function is included for symmetry. It is exactly
the same as doing {Fault.defaultEnable nil}.

fun {Fault.enable Entity Level FStates}

is a more targeted way to do fault detection. It enables fault detection on a given entity
at a given level. If a fault in FStates occurs while attempting an operation at the
given level, then an exception is raised instead of doing the operation. The Entity is a
reference to any language entity. Exceptions are enabled only if the entity is an object,
cell, port, lock, or logic variable. The Level is site, ’thread’(this) (for the current
thread), or ’thread’(T) (for an arbitrary thread identifier T).2 More information on
levels is given in Section 5.2.4.

fun {Fault.disable Entity Level}

disables fault detection on the given entity at the given level. If a fault occurs, then the
system does nothing at the given level, but checks whether any exceptions are enabled
at the next higher level. This is not the same as {Fault.enable Entity Level nil},
which always causes the entity to block at the given level.

The function Fault.enable returns true if and only if the enable was successful, i.e.,
the entity was not already enabled for that level. The function Fault.disable returns
true if and only if the disable was successful, i.e., the entity was already enabled
for that level. The functions Fault.defaultEnable and Fault.defaultDisable

always return true. At its creation, an entity is not enabled at any level. All four
functions raise a type error exception if their arguments do not have the correct type.

5.2.2 Binding logic variables

A logic variable can be declared before it is bound. What happens to its enabled excep-
tions when it is bound? For example, let’s say variable V is enabled with FS_v and port
P is enabled with FS_p. What happens after the binding V=P? In this case, the binding
gives P, which keeps the enabled exceptions FS_p. The enabled exceptions FS_v are
discarded.

The following cases are possible. We assume that variable V is enabled with fault
detection on fault states FS_v.

• V is bound to a nonvariable entity X that has no enabled exceptions. In this case,
the enabled exceptions FS_v are transferred to X.

2Since thread is already used as a keyword in the language, it has to be quoted to make it an atom.

5.2. Basic model 33

• V is bound to a nonvariable entity X that already has enabled exceptions FS_x. In
this case, X keeps its enabled exceptions and FS_v is discarded.

• V is bound to another logic variable W that might have enabled exceptions. In this
case, the resulting variable keeps one set of enabled exceptions, either FS_v or
FS_w (if the latter exists). Which one is not specified.

These cases follow from three basic principles:

• A logic variable that is "observed", e.g., it has fault detection with enabled ex-
ceptions, will be "observed" at all instants of time. That is, it will keep some
kind of fault detection even after it is bound.

• A nonvariable entity is never bothered by being bound to a variable. That is, the
nonvariable’s fault detection (if there is any) can only be modified by explicit
commands from Fault, never from being bound to a variable.

• Any language entity that is set up with a set of enabled exceptions will have
exactly one set of enabled exceptions, even if it is bound. There is no attempt to
"combine" the two sets.

5.2.3 Exception formats

The exceptions raised have the format

system(dp(entity:E conditions:FS op:OP) ...)

where the four arguments are defined as follows:

• E is the entity on which the operation was attempted. A temporary limitation of
the current release is that if the entity is an object, then E is undefined.

• FS is the list of actual fault states occurring at the site on which the operation was
attempted. This list is a subset of the list for which fault detection was enabled.
Each fault state in FS may have an extra field info that gives additional infor-
mation about the fault. The possible elements of FS are currently the following:

– tempFail(info:I) and permFail(info:I), where I is in {state, owner}.
The info field only exists for objects, cells, and locks.

– remoteProblem(tempSome), remoteProblem(permSome), remoteProblem(tempAll),
and remoteProblem(permAll).

• OP indicates which attempted operation caused the exception. The possible val-
ues of OP are currently:

– For logic variables: bind(T), wait, and isDet, where T is what the vari-
able was attempted to be bound with.

– For cells: cellExchange(Old New), cellAssign(New), and cellAccess(Old),
where Old is the cell content before the attempted operation and New is the
cell content after the attempted operation.

34 Chapter 5. Failure Model

– For locks: ’lock’.3

– For ports: send(Msg), where Msg is the message attempted to be sent to
the port.

– For objects: objectExchange(Attr Old New), objectAssign(Attr New),
objectAccess(Attr Old), and objectFetch, where Attr is the name of
the object attribute, Old is the attribute value before the attempted opera-
tion, and New is the attribute value after the attempted operation. A lim-
itation of the current release is that the attempted operation cannot be re-
tried. The objectFetch operation exists because object-records are copied
lazily: the first time the object is used, the object-record is fetched over the
network, which might fail.

5.2.4 Levels of fault detection

There are three levels of fault detection, namely default site-based, site-based, and
thread-based. A more specific level, if it exists, overrides a more general level. The
most general is default site-based, which determines what exceptions are raised if the
entity is not enabled at the site or thread level. Next is site-based, which detects a
fault for a specific entity when an operation is tried on one particular site. Finally, the
most fine-grained is thread-based, which detects a fault for a specific entity when an
operation is tried in a particular thread.

The site-based and thread-based levels have to be enabled specifically for a given en-
tity. The function {Fault.enable Entity Level FStates} is used, where Level

is either site or ’thread’(T). The thread T is either the atom this (which means
the current thread), or a thread identifier. Any thread’s identifier can be obtained by
executing {Thread.this T} in the thread.

The thread-based level is the most specific; if it is enabled it overrides the two others
in its thread. The site-based level, if it is enabled, overrides the default. If neither a
thread-based nor a site-based level are enabled, then the default is used. Even if the
actual fault state does not give an exception, the mere fact that a level is enabled always
overrides the next higher level.

For example, assume that the cell C is on a site with default detection for [tempFail permFail]

and thread-based detection for [permFail] in thread T1. What happens if many
threads try to do an exchange if C’s actual fault state is tempFail? Then thread T1

will block, since it is set up to detect only permFail. All other threads will raise the
exception tempFail, since the default covers it and there is no enable at the site or
thread levels. Thread T1 will continue the operation when and if the tempFail state
goes away.

5.2.5 Levels and sitedness

The Fault module has both sited and unsited operations. Both setting the default
and enabling at the site level are sited. This protects the site from remote attempts to
change its settings. Enabling at the thread level is unsited. This allows fault-tolerant
abstractions to be network-transparent, i.e., when passed to another site they continue
to work.

3Since lock is already used as a keyword in the language, it has to be quoted to make it an atom.

5.3. Advanced model 35

To be precise, the calls {Fault.enable E site ...} and {Fault.install E site ...},
will only work on the home site of the Fault module. A procedure containing these
calls may be passed around the network at will, and executed anywhere. However,
any attempt to execute either call on a site different from the Fault module’s home
site will raise an exception.4 The calls {Fault.enable E ’thread’(T) ...} and
{Fault.install E ’thread’(T) ...} will work anywhere. A procedure contain-
ing these calls may be passed around the network at will, and will work correctly
anywhere. Of course, since threads are sited, T has to identify a thread on the site
where the procedure is executed.

5.3 Advanced model

The basic model lets you set up the system to raise an exception when an operation is
attempted on a faulty entity. The advanced model extends this to call a user-defined
procedure. Furthermore, the advanced model can call the procedure synchronously,
i.e., when an operation is attempted, or asynchronously, i.e., as soon as the fault is
known, even if no operation is attempted. In the synchronous case, the procedure is
called a fault handler, or just handler. In the asynchronous case, the procedure is called
watcher.

5.3.1 Lazy detection with handlers

When an operation is attempted on an entity with a problem, then a handler call re-
places the operation. This call is done in the context of the thread that attempted
the operation. If the entity works again later (which is possible with tempFail and
remoteProblem) then the handler can just try the operation again.

In an exact analogy to the basic model, a fault handler can be installed on a given
entity at a given level for a given set of fault states. The possible entities, levels, and
fault states are exactly the same. What happens to handlers on logic variables when
the variables are bound is exactly the same as what happens to enabled exceptions in
Section 5.2.2. For example, when a variable with handler H_v1 is bound to another
variable with handler H_v2, then the result has exactly one handler, say H_v2. The
other handler H_v1 is discarded. When a variable with handler is bound to a port with
handler, then the port’s handler survives and the variable’s handler is discarded.

Handlers are installed and deinstalled with the following two built-in operations:

fun {Fault.install Entity Level FStates HandlerProc}

installs handler HandlerProc on Entity at Level for fault states FStates. If an
operation is attempted and there is a fault in FStates, then the operation is replaced
by a call to HandlerProc. At most one handler can be installed on a given entity at a
given level.

fun {Fault.deInstall Entity Level}

deinstalls a previously installed handler from Entity at Level.
4Note that each site has its own Fault module.

36 Chapter 5. Failure Model

The function Fault.install returns true if and only if the installation was success-
ful, i.e., the entity did not already have an installation or an enable for that level. The
function Fault.deInstall returns true if and only if the deinstall was successful,
i.e., the entity had a handler installed for that level. Both functions raise a type error
exception if their arguments do not have the correct type.

A handler HandlerProc is a three-argument procedure that is called as {HandlerProc E FS OP}.
The arguments E, FS, and OP, are exactly the same as in a distribution exception.

A modification of the current release with respect to handler semantics is that handlers
installed on variables always retry the operation after they return.

5.3.2 Eager detection with watchers

Fault handlers detect failure synchronously, i.e., when an operation is attempted. One
often wants to be informed earlier. The advanced model allows the application to be
informed asynchronously and eagerly, that is, as soon as the site finds out about the
failure. Two operations are provided:

fun {Fault.installWatcher Entity FStates WatcherProc}

installs watcher WatcherProc on Entity for fault states FStates. If a fault in FStates
is detected on the current site, then WatcherProc is invoked in its own new thread. A
watcher is automatically deinstalled when it is invoked. Any number of watchers can
be installed on an entity. The function always returns true, since it is always possible
to install a watcher.

fun {Fault.deInstallWatcher Entity WatcherProc}

deinstalls (i.e., removes) one instance of the given watcher from the entity on the cur-
rent site. If no instance of WatcherProc is there to deinstall, then the function returns
false. Otherwise, it returns true.

A watcher WatcherProc is a two-argument procedure that is called as {WatcherProc E FS}.
The arguments E and FS are exactly the same as in a distribution exception or in a han-
dler call.

5.4 Fault states for language entities

This section explains the possible fault states of each language entity in terms of its
distributed semantics. The fault state is a consequence of two things: the entity’s
distributed implementation and the system’s failure mode. For example, let’s consider
a variable. There is one owner site and a set of proxy sites. If a variable proxy is on a
crashed site and the owner site is still working, then to another variable proxy this will
be a remoteProblem. If the owner site crashes, then all proxies will see a permFail.

5.4.1 Eager stateless data

Eager stateless data, namely records, procedures, functions, classes, and functors, are
copied immediately in messages. There are no remote references to eager stateless
data, which are always local to a site. So their only possible fault state is ok.

5.4. Fault states for language entities 37

In future releases, procedures, functions, and functors will not send their code immedi-
ately in the message, but will send only their global name. Upon arrival, if the code is
not present, then it will be immediately requested. This will guarantee that code is sent
at most once to a given site. This will introduce fault states tempFail and permFail

if the site containing the code becomes unreachable or crashes.

5.4.2 Sited entities

Sited entities can be referenced remotely but can only be used on their home site. At-
tempting to use one outside of its home site immediately raises an exception. Detecting
this does not need any network operations. So their only possible fault state is ok.

5.4.3 Ports

A port has one owner site and a set of proxy sites. The following failure modes are
possible:

• Normal operation (ok).

• Owner site down (permFail and remoteProblem(I) where I is both permSome

and permAll).

• Owner site unreachable (tempFail).

A port has a single operation, Send, which can complete if the fault state is ok. The
Send operation is asynchronous, that is, it completes immediately on the sender site
and at some later point in time it will complete on the port’s owner site. The fact that
it completes on the sender site does not imply that it will complete on the owner site.
This is because the owner site may fail.

Section 6.1.1 shows how to build a SafeSend abstraction that only completes on the
sender site if it completes on the owner site.

5.4.4 Logic variables

A logic variable has one owner site and a set of proxy sites. The following failure
modes are possible:

• Normal operation (ok).

• Owner site down (permFail and remoteProblem(I) where I is both permSome

and permAll).

• Owner site unreachable (tempFail).

• Some or all proxy sites down (remoteProblem(I) where I is both permSome

and permAll).

• Some or all proxy sites unreachable (remoteProblem(tempSome))). It is im-
possible to have remoteProblem(tempAll) in the current implementation.

38 Chapter 5. Failure Model

A logic variable has two operations, binding and waiting until bound. Bind operations
are explicit in the program text. Most wait operations are implicit since threads block
until their data is available. The bind operation will only complete if the fault state is
ok or remoteProblem.

If the application binds a variable, then its wait operation is only guaranteed to com-
plete if the fault state is ok. When it completes, this means that another proxy has
bound the variable. If the fault state is remoteProblem, then the wait operation may
not be able to complete if the problem exists at the proxy that was supposed to bind
the variable. This is not a tempFail or permFail, since a third proxy can successfully
bind the variable. But from the application’s viewpoint, it may still be important to
know about this problem. Therefore, the fault state remoteProblem is important for
variables.

A common case for variables is the client-server. The client sends a request containing
a variable to the server. The server binds the variable to the answer. The variable exists
only on the client and server sites. In this case, if the client detects a remoteProblem

then it knows that the variable binding will be delayed or never done.

5.4.5 Cells and locks

Cells and locks have almost the same failure behavior. A cell or lock has one owner site
and a set of proxy sites. At any given time instant, the cell’s state pointer or the lock’s
token is at one proxy or in the network. The following failure modes are possible:

• Normal operation (ok).

• State pointer not present and owner site down (permFail(info:owner) and
remoteProblem(permSome)).

• State pointer not present and owner site unreachable (tempFail(info:owner)).

• State pointer lost and owner site up (permFail(info:state), remoteProblem(permAll),
and remoteProblem(permSome)). This failure mode is only possible for cells.
If a lock token is lost then the owner recreates it.

• State pointer unreachable and owner site up (tempFail(info:state)).

• State pointer present and owner site down (remoteProblem(permAll) and remoteProblem(permSome)).

• State pointer present and owner site unreachable (remoteProblem(tempAll)
and remoteProblem(tempSome)).

A cell has one primitive operation, a state update, which is called Exchange. A lock
has two implicit operations, acquiring the lock token and releasing it. Both are imple-
mented by the same distributed protocol.

5.4.6 Objects

An object consists of an object-record that is a lazy chunk and that references the
object’s features, a cell, and a class. The object-record is lazy: it is copied to the site
when the object is used for the first time. This means that the following failure modes
are possible:

5.4. Fault states for language entities 39

• Normal operation (ok).

• Object-record or state pointer not present and owner site down (permFail(info:owner)
and remoteProblem(permSome)).

• Object-record or state pointer not present and owner site unreachable (tempFail(info:owner)).

• State pointer lost and owner site up (permFail(info:state), remoteProblem(permAll),
and remoteProblem(permSome)).

• State pointer unreachable and owner site up (tempFail(info:state)).

• Object-record and state pointer present and owner site down (remoteProblem(permAll)
and remoteProblem(permSome)).

• Object-record and state pointer present and owner site unreachable (remoteProblem(tempAll)
and remoteProblem(tempSome)).

Compared to cells, objects have two new failure modes: the object-record can be tem-
porarily or permanently absent. In both cases the object cannot be used, so we simply
consider the new failure modes to be instances of tempFail and permFail.

40 Chapter 5. Failure Model

6

Fault-Tolerant Examples

This chapter shows how to use the failure model to build robust distributed applications.
We first present basic fault-tolerant versions of common language operations. Then
we present fault-tolerant versions of the server examples. We conclude with a bigger
example: reliable objects with recovery.

6.1 A fault-tolerant hello server

Let’s take a fresh look at the hello server. How can we make it resistant to distribu-
tion faults? First we specify the client and server behavior. The server should continue
working even though there is a problem with a particular client. The client should be in-
formed in finite time of a server problem by means of a new exception, serverError.

We show how to rewrite this example with the basic failure model. In this model, the
system raises exceptions when it tries to do operations on entities that have problems
related to distribution. All these exceptions are of the form system(dp(conditions:FS ...) ...)

where FS is the list of actual fault states as defined before. By default, the system will
raise exceptions only on the fault states tempFail and permFail.

Assume that we have two new abstractions:

• {SafeSend Prt X} sends to a port and raises the exception serverError if this
is permanently impossible.

• {SafeWait X T}waits until X is instantiated and raises the exception serverError
if this is permanently impossible or if the time T is exceeded.

We first show how to use these abstractions before defining them in the basic model.
With these abstractions, we can write the client and the server almost exactly in the
same way as in the non-fault-tolerant case. Let’s first write the server:

declare Str Prt Srv in

{NewPort Str Prt}

thread

{ForAll Str

proc {$ S}

try

S="Hello world"

42 Chapter 6. Fault-Tolerant Examples

catch system(dp(...) ...) then skip end

end}

end

proc {Srv X}

{SafeSend Prt X}

end

{Pickle.save {Connection.offerUnlimited Srv}

"/usr/staff/pvr/public_html/hw"}

This server does one distributed operation, namely the binding S="Hello world". We
wrap this binding to catch any distributed exception that occurs. This allows the server
to ignore clients with problems and to continue working.

Here’s the client:

declare Srv

try X in

try

Srv={Connection.take {Pickle.load "http://www.info.ucl.ac.be/~pvr/hw"}}

catch _ then raise serverError end

end

{Srv X}

{SafeWait X infinity}

{Browse X}

catch serverError then

{Browse ’Server down’}

end

This client does two distributed operations, namely a send (inside Srv), which is re-
placed by SafeSend, and a wait, which is replaced by SafeWait. If there is a problem
sending the message or receiving the reply, then the exception serverError is raised.
This example also raises an exception if there is any problem during the startup phase,
that is during Connection.take and Pickle.load.

6.1.1 Definition of SafeSend and SafeWait

We define SafeSend and SafeWait in the basic model. To make things easier to
read, we use the two utility functions FOneOf and FSomeOf, which are defined just
afterwards. SafeSend is defined as follows:

declare

proc {SafeSend Prt X}

try

{Send Prt X}

catch system(dp(conditions:FS ...) ...) then

6.1. A fault-tolerant hello server 43

if {FOneOf permFail FS} then

raise serverError end

elseif {FOneOf tempFail FS} then

{Delay 100} {SafeSend Prt X}

else skip end

end

end

This raises a serverError if there is a permanent server failure and retries indefinitely
each 100 ms if there is a temporary failure.

SafeWait is defined as follows:

declare

local

proc {InnerSafeWait X Time}

try

cond {Wait X} then skip

[] {Wait Time} then raise serverError end

end

catch system(dp(conditions:FS ...) ...) then

if {FSomeOf [permFail remoteProblem(permSome)] FS} then

raise serverError end

if {FSomeOf [tempFail remoteProblem(tempSome)] FS} then

{Delay 100} {InnerSafeWait X Time}

else skip end

end

end

in

proc {SafeWait X TimeOut}

Time in

if TimeOut\=infinity then

thread {Delay TimeOut} Time=done end

end

{Fault.enable X ’thread’(this)

[permFail remoteProblem(permSome) tempFail remoteProblem(tempSome)] _}

{InnerSafeWait X Time}

end

end

This raises a serverError if there is a permanent server failure and retries each 100
ms if there is a temporary failure. The client and the server are the only two sites on
which X exists. Therefore remoteProblem(permFail:_ ...) means that the server
has crashed.

To keep the client from blocking indefinitely, it must time out. We need a time-out
since otherwise a client will be stuck when the server drops it like a hot potato. The
duration of the time-out is an argument to SafeWait.

44 Chapter 6. Fault-Tolerant Examples

6.1.2 Definition of FOneOf and FSomeOf

In the above example and later on in this chapter (e.g., in Section 6.2.3), we use the
utility functions FOneOf and FSomeOf to simplify checking for fault states. We specify
these functions as follows.

The call {FOneOf permFail AFS} is true if the fault state permFail occurs in the
set of actual fault states AFS. Extra information in AFS is not taken into account in the
membership check. The function FOneOf is defined as follows:

declare

fun {FOneOf F AFS}

case AFS of nil then false

[] AF2|AFS2 then

case F#AF2

of permFail#permFail(...) then true

[] tempFail#tempFail(...) then true

[] remoteProblem(I)#remoteProblem(I ...) then true

else {FOneOf F AFS2}

end

end

end

The call {FSomeOf [permFail remoteProblem(permSome)] AFS} is true if either
permFail or remoteProblem(permSome) (or both) occurs in the set AFS. Just like for
FOneOf, extra information in AFS is not taken into account in the membership check.
The function FSomeOf is defined as follows:

declare

fun {FSomeOf FS AFS}

case FS of nil then false

[] F2|FS2 then

{FOneOf F2 AFS} orelse {FSomeOf FS2 AFS}

end

end

6.2 Fault-tolerant stationary objects

To be useful in practice, stationary objects must have well-defined behavior when
there are faults. We propose the following specification for the stationary object (the
"server") and a caller (the "client"):

• The call C={NewSafeStat Class Init} creates a new server C.

• If there is no problem in the distributed execution then the call {C Msg} has
identical language semantics to a centralized execution of the object, including
raising the same exceptions.

• If there is a problem in the distributed execution preventing its successful com-
pletion, then the call {C Msg} will raise the exception remoteObjectError. It
is unspecified how much of the object’s method was executed before the failure.

6.2. Fault-tolerant stationary objects 45

• If there is a problem communicating with the client, then the server tries to com-
municate with the client during a short time period and then gives up. This does
not affect the continued execution of the server.

We present two quite different ways of implementing this specification, one based on
guards (Section 6.2.2) and the other based on exceptions (Section 6.2.3). The guard-
based technique is the shortest and simplest to understand. The exception-based tech-
nique is similar to what one would do in standard languages such as Java.

But first let’s see how easy it is to create and use a remote stationary object.

6.2.1 Using fault-tolerant stationary objects

We show how to use Remote and NewSafeStat to create a remote stationary object.
First, we need a class–let’s define a simple class Counter that implements a counter.

declare

class Counter

attr i

meth init i<-0 end

meth get(X) X=@i end

meth inc i<-@i+1 end

end

Then we define a functor that creates an instance of Counter with NewSafeStat. Note
that the object is not created yet. It will be created later, when the functor is applied.

declare

F=functor

import Fault

export statObj:StatObj

define

{Fault.defaultEnable nil _}

StatObj={NewSafeStat Counter init}

end

Do not forget the "import Fault" clause! If it’s left out, the system will try to use
the local Fault on the remote site. This raises an exception since Fault is sited (tech-
nically, it is a resource, see Section 2.1.5). The import Fault clause ensures that
installing the functor uses the Fault of the installation site.

It may seem overkill to use a functor just to create a single object. But the idea of func-
tors goes much beyond this. With import, functors can specify which resources to use
on the remote site. This makes functors a basic building block for mobile computations
(and mobile agents).

Now let’s create a remote site and make an instance of Counter called StatObj. The
class Remote.manager gives several ways to create a remote site; this example uses
the option fork:sh, which just creates another process on the same machine. The
process is accessible through the module manager MM, which allows to install functors
on the remote site (with the method "apply").

46 Chapter 6. Fault-Tolerant Examples

declare

MM={New Remote.manager init(fork:sh)}

StatObj={MM apply(F $)}.statObj

Finally, let’s call the object. We’ve put the object calls inside a try just to demonstrate
the fault-tolerance. The simplest way to see it work is to kill the remote process and to
call the object again. It also works if the remote process is killed during an object call,
of course.

try

{StatObj inc}

{StatObj inc}

{Show {StatObj get($)}}

catch X then

{Show X}

end

6.2.2 Guard-based fault tolerance

The simplest way to implement fault-tolerant stationary objects is to use a guard. A
guard watches over a computation, and if there is a distribution fault, then it gracefully
terminates the computation. To be precise, we introduce the procedure Guard with the
following specification:

• {Guard E FS S1 S2} guards entity E for fault states FS during statement S1,
replacing S1 by S2 if a fault is detected during S1. That is, it first executes S1.
If there is no fault, then S1 completes normally. If there is a fault on E in FS,
then it interrupts S1 as soon as a faulty operation is attempted on any entity.
It then executes statement S2. S1 must not raise any distribution exceptions.
The application is responsible for cleaning up from the partial work done in S1.
Guards are defined in Section 6.2.2.1.

With the procedure Guard, we define NewSafeStat as follows. Note that this definition
is almost identical to the definition of NewStat in Section 3.2.3. The only difference is
that all distributed operations are put in guards.

46a 〈Guard-based stationary object 46a〉≡
proc {MakeStat PO ?StatP}

S P={NewPort S}

N={NewName}

in

% Client interface to server:

〈Client side 47a〉
% Server implementation:

〈Server side 47b〉
end

proc {NewSafeStat Class Init Object}

Object={MakeStat {New Class Init}}

end

6.2. Fault-tolerant stationary objects 47

The client raises an exception if there is a problem with the server:

47a 〈Client side 47a〉≡
proc {StatP M}

R in

{Fault.enable R ’thread’(this) nil _}

{Guard P [permFail]

proc {$}

{Send P M#R}

if R==N then skip else raise R end end

end

proc {$} raise remoteObjectError end end}

end

The server terminates the client request gracefully if there is a problem with a client:

47b 〈Server side 47b〉≡
thread

{ForAll S

proc{$ M#R}

thread RL in

try {PO M} RL=N catch X then RL=X end

{Guard R [permFail remoteProblem(permSome)]

proc {$} R=RL end

proc {$} skip end}

end

end}

end

There is a minor point related to the default enabled exceptions. This example calls
Fault.enable before Guard to guarantee that no exceptions are raised on R. This can
be changed by using Fault.defaultEnable at startup time for each site.

6.2.2.1 Definition of Guard

Guards allow to replace a statement S1 by another statement S2 if there is a fault. See
Section 6.2.2 for a precise specification. The procedure {Guard E FS S1 S2} first
disables all exception raising on E. Then it executes S1 with a local watcher W (see
Section 6.2.2.2). If the watcher is invoked during S1, then S1 is interrupted and the
exception N is raised. This causes S2 to be executed. The unforgeable and unique
name N occurs nowhere else in the system.

declare

proc {Guard E FS S1 S2}

N={NewName}

T={Thread.this}

proc {W E FS} {Thread.injectException T N} end

in

{Fault.enable E ’thread’(T) nil _}

try

48 Chapter 6. Fault-Tolerant Examples

{LocalWatcher E FS W S1}

catch X then

if X==N then

{S2}

else

raise X end

end

end

end

6.2.2.2 Definition of LocalWatcher

A local watcher is a watcher that is installed only during the execution of a statement.
When the statement finishes or raises an exception, then the watcher is removed. The
procedure LocalWatcher defines a local watcher according to the following specifica-
tion:

• {LocalWatcher E FS W S} watches entity E for fault states FS with watcher W
during the execution of S. That is, it installs the watcher, then executes S, and
then removes the watcher when execution leaves S.

declare

proc {LocalWatcher E FS W S}

{Fault.installWatcher E FS W _}

try

{S}

finally

{Fault.deInstallWatcher E W _}

end

end

6.2.3 Exception-based fault tolerance

We show how to implement NewSafeStat by means of exceptions only, i.e., using
the basic failure model. First New makes an instance of the object and then MakeStat

makes it stationary. In MakeStat, we distinguish four parts. The first two implement
the client interface to the server.

48a 〈Exception-based stationary object 48a〉≡
declare

proc {MakeStat PO ?StatP}

S P={NewPort S}

N={NewName}

EndLoop TryToBind

in

% Client interface to server:

〈Client call to the server 49a〉
〈Client synchronizes with the server 49b〉
% Server implementation:

6.2. Fault-tolerant stationary objects 49

〈Main server loop 50a〉
〈Server synchronizes with the client 50b〉

end

proc {NewSafeStat Class Init ?Object}

Object={MakeStat {New Class Init}}

end

First the client sends its message to the server together with a synchronizing variable.
This variable is used to signal to the client that the server has finished the object call.
The variable passes an exception back to the client if there was one. If there is a
permanent failure of the send, then raise remoteObjectError. If there is a temporary
failure of the send, then wait 100 ms and try again.

49a 〈Client call to the server 49a〉≡
proc {StatP M}

R in

try

{Send P M#R}

catch system(dp(conditions:FS ...) ...) then

if {FOneOf permFail FS} then

raise remoteObjectError end

elseif {FOneOf tempFail FS} then

{Delay 100}

{StatP M}

else skip end

end

{EndLoop R}

end

Then the client waits for the server to bind the synchronizing variable. If there is a
permanent failure, then raise the exception. If there is a temporary failure, then wait
100 ms and try again.

49b 〈Client synchronizes with the server 49b〉≡
proc {EndLoop R}

{Fault.enable R ’thread’(this)

[permFail remoteProblem(permSome) tempFail remoteProblem(tempSome)] _}

try

if R==N then skip else raise R end end

catch system(dp(conditions:FS ...) ...) then

if {FSomeOf [permFail remoteProblem(permSome)] FS} then

raise remoteObjectError end

elseif {FSomeOf [tempFail remoteProblem(tempSome)] FS} then

{Delay 100} {EndLoop R}

else skip end

end

end

50 Chapter 6. Fault-Tolerant Examples

The following two parts implement the server. The server runs in its own thread and
creates a new thread for each client call. The server is less tenacious on temporary
failures than the client: it tries once every 2000 ms and gives up after 10 tries.

50a 〈Main server loop 50a〉≡
thread

{ForAll S

proc {$ M#R}

thread

try

{PO M}

{TryToBind 10 R N}

catch X then

try

{TryToBind 10 R X}

catch Y then skip end

end

end

end}

end

50b 〈Server synchronizes with the client 50b〉≡
proc {TryToBind Count R N}

if Count==0 then skip

else

try

R=N

catch system(dp(conditions:FS ...) ...) then

if {FOneOf tempFail FS} then

{Delay 2000}

{TryToBind Count-1 R N}

else skip end

end

end

end

6.3 A fault-tolerant broadcast channel

We can use the fault-tolerant stationary object (see Section 6.2) to define a simple open
fault-tolerant broadcast channel. This is a useful abstraction; for example it can be
used as the heart of a chat tool such as IRC. The service has a client/server structure
and is aware of permanent crashes of clients or the server. In case of a client crash,
the system continues to work. In case of a server crash, the service will no longer be
available. Clients receive notification of this.

Users access the broadcast service through a local client. The user creates the client
by using a procedure given by the server. The client is accessed as an object. It has a
method sendMessage for broadcasting a message. When the client receives a message
or is notified of a client or server crash, it informs the user by calling a user-defined
procedure with one argument. The following events are possible:

6.3. A fault-tolerant broadcast channel 51

• permServer: the broadcast channel server has crashed.

• permClient(UserID): the client identified by UserID has crashed.

• message(UserID Mess): receive the message Mess from client UserID.

• registered(UserID): the client identified by UserID has registered to the
channel.

• unregistered(UserID): the client identified by UserID has unregistered from
the channel.

We give an example of how the broadcast channel is used, and we follow this by
showing its implementation. We first show how to use and implement a non-fault-
tolerant broadcast channel, and then we show the small extensions needed for it to
detect client and server crashes.

6.3.1 Sample use (no fault tolerance)

First we create the channel server. To connect with clients, the server offers a ticket
with unlimited connection ability. The ticket is available through a publicly-accessible
URL.

local

S={NewStat ChannelServer init(S)}

in

{Pickle.save {Connection.offerUnlimited S}

"/usr/staff/pvr/public_html/chat"}

end

A client can be created on another site. We first define on the client’s site a proce-
dure HandleIncomingMessage that will handle incoming messages from the broad-
cast channel. Then we access to the channel by its URL. Finally, we create a local
client and give it our handler procedure.

local

proc {HandleIncomingMessage M}

{Show {VirtualString.toString

case M

of message(From Content) then From#’ : ’#Content

[] registered(UserID) then UserID#’ joined us’

[] unregistered(UserID) then UserID#’ left us’

end}}

end

S={Connection.take {Pickle.load "http://www.info.ucl.ac.be/~pvr/chat"}}

MakeNewClient={S getMakeNewClient($)}

C={MakeNewClient HandleIncomingMessage ’myNameAsID’}

in

{For 1 1000 1

proc {$ I}

52 Chapter 6. Fault-Tolerant Examples

{C sendMessage(’hello’#I)}

{Delay 800}

end}

{C close}

end

In this example we send 1000 messages of the form ’hello’#I, where I takes succes-
sive values from 1 to 1000. Then we close the client.

A nice property of this channel abstraction is that the client site only needs to know the
channel’s URL and its interface. All this can be stored in Ascii form and transmitted
to the client at any time. In particular, the syntax of the interfaces, i.e., the messages
understood by user, client, and server, is defined completely by a simple Ascii list of
the message names and their number of arguments. The client site does not need to
know any program code. When a client is created through a call to MakeNewClient,
then at that time the client code is transferred from the channel server to the client site.

6.3.2 Definition (no fault tolerance)

Since a fault-tolerant stationary object has well-defined behavior in the case of a per-
manent crash, we can show the service’s implementation in two steps. First, we show
how it is written without taking fault tolerance into account. Second, we complete
the example by adding fault handling code. This is easy; it amounts to catching
the remoteObjectError exception for each remote method call (client to server and
server to client).

The client and server are stationary objects with the following structure:

52a 〈Client and server classes 52a〉≡
class ChannelClient

feat

server selfStatic usrMsgHandler userID

〈Client interface to user 53b〉
〈Client interface to server 53a〉

end

local

〈Concurrent ForAll procedure 54a〉
in

class ChannelServer

prop locking

feat selfStatic

attr clientList

meth init(S)

lock

self.selfStatic=S

clientList<-nil

end

end

〈Server’s getMakeClient method 53c〉

6.3. A fault-tolerant broadcast channel 53

〈Server interface to client 54b〉
end

end

6.3.2.1 Client definition

The client provides two methods to the server. The first, put, for receiving broad-
casted message from registered clients. The second, init, for the client initialization
(remember that a client is created using a procedure defined by the server).

53a 〈Client interface to server 53a〉≡
meth put(Msg)

{self.usrMsgHandler Msg}

end

meth init(Server SelfReference UsrMsgHandler UserID)

self.server=Server

self.selfStatic=SelfReference

self.usrMsgHandler=UsrMsgHandler

self.userID=UserID

{self.server register(self.selfStatic self.userID)}

end

The client keeps a reference to the server, to itself for unregistering, to the user-defined
handler procedure, and to its user identification.

A user accesses the broadcast channel only through a client. The client provides the
user with a method for sending a message through the channel and a method for leaving
the channel.

53b 〈Client interface to user 53b〉≡
meth sendMessage(Msg)

{self.server broadcast(self.userID Msg)}

end

meth close

{self.server unregister(self.selfStatic self.userID)}

end

6.3.2.2 Server definition

The server’s getMakeClient method returns a reference to a procedure that creates
clients:

53c 〈Server’s getMakeClient method 53c〉≡
meth getMakeNewClient(MakeNewClient)

proc {MakeNewClient UserMessageHandler UserID StaticClientObj}

StaticClientObj={NewStat

ChannelClient

init(self.selfStatic StaticClientObj

54 Chapter 6. Fault-Tolerant Examples

UserID UserMessageHandler)}

end

end

The server uses a concurrent ForAll procedure that starts all sends concurrently and
waits until they are all finished. This is important for implementing broadcasts. With
the concurrent ForAll, the total time for the broadcast is the maximum of all client
round-trip times, instead of the sum, if the broadcast would sequentially send to each
client and wait for an acknowledgement before continuing. Concurrent broadcast is
efficient in Mozart due to its extremely lightweight threads.

54a 〈Concurrent ForAll procedure 54a〉≡
proc {ConcurrentForAll Ls P}

Sync

proc {LoopConcurrentForAll Ls PrevSync FinalSync}

case Ls

of L|Ls2 then

NewSync in

thread {P L} PrevSync=NewSync end

{LoopConcurrentForAll Ls2 NewSync FinalSync}

[] nil then

PrevSync=FinalSync

end

end

in

{LoopConcurrentForAll Ls unit Sync}

{Wait Sync}

end

The server provides three methods for the client, namely register, unregister, and
broadcast. A client can register to the broadcast channel by calling the register

method and unregister by calling the unregister method. Note that clients are identi-
fied uniquely by references to the client object Client, and not by the client’s user ID
UserID. This means that the channel will work correctly even if there are clients with
the same user ID. The users may get confused, but the channel will not.

A client can broadcast a message on the channel by calling the broadcastmethod. The
server will concurrently forward the message to all registered clients. The broadcast
call will block until the message has reached all the clients.

54b 〈Server interface to client 54b〉≡
meth register(Client UserID)

CL in

lock

CL=@clientList

clientList <- c(ref:Client id:UserID)|@clientList

end

{ConcurrentForAll CL

proc {$ Element} {Element.ref put(registered(UserID))} end}

end

6.3. A fault-tolerant broadcast channel 55

meth unregister(Client UserID)

CL in

lock

clientList <-

{List.filter @clientList

fun {$ Element} Element.ref\=Client end}

CL=@clientList

end

{ConcurrentForAll CL

proc {$ Element} {Element.ref put(unregistered(UserID))} end}

end

meth broadcast(SenderID Msg)

{ConcurrentForAll @clientList

proc {$ Element} {Element.ref put(message(SenderID Msg))} end}

end

6.3.3 Sample use (with fault tolerance)

The fault-tolerant channel can be used in exactly the same way as the non-fault-tolerant
version. The only difference is that the user-defined handler procedure can receive two
extra messages, permClient and permServer, to indicate client and server crashes:

proc {UserMessageHandler Msg}

{Show {VirtualString.toString

case Msg

of message(From Content) then From#’ : ’#Content

[] registered(UserID) then UserID#’ joined us’

[] unregistered(UserID) then UserID#’ left us’

[] permClient(UserID) then UserID#’ has crashed’

[] permServer then ’Server has crashed’

end}}

end

6.3.4 Definition (with fault tolerance)

The non-fault-tolerant version of Section 6.3.2 is easily extended to detect client and
server crashes. First, the server and all clients must be created by calling NewSafeStat

instead of NewStat. This means creating the server as follows:

S={NewSafeStat ChannelServer init(S)}

This makes the channel server a fault-tolerant stationary object. In addition, several
small extensions to the client and server definitions are needed. This section gives
these extensions.

56 Chapter 6. Fault-Tolerant Examples

6.3.4.1 Client definition

This definition extends the definition given in Section 6.3.2. We assume that the server
has been created with NewSafeStat. Two changes are needed to the client. First,
the client can detect a server crash by catching the remoteObjectError exception.
Second, the server can detect a client crash in the same way, when it calls the client’s
selfStatic reference. Both of these changes can be done by redefining the values of
self.server and self.selfStatic at the client.

meth init(Server SelfReference UsrMsgHandler UserID)

self.server =

proc {$ Msg}

try

{Server broadcast(self.userID Msg)}

catch remoteObjectError then

{self.usrMsgHandler permServ}

end

end

self.selfStatic =

proc {$ Msg}

try

{SelfReference Msg}

catch remoteObjectError then

{Server unregister(self.selfStatic self.userId)}

{Server broadcastCrashEvent(UserID)}

end

end

self.usrMsgHandler=UsrMsgHandler

self.userID=UserID

{self.server register(self.selfStatic self.userID)}

end

6.3.4.2 Server definition

The server has the new method broadcastCrashEvent.

meth broadcastCrashEvent(CrashID)

{ConcurrentForAll @clientList

proc {$ Element}

{Element.ref put(permClient(CrashID))}

end}

end

In the old method getMakeNewClient, the procedure MakeNewClient has to be changed
to call NewSafeStat instead of NewStat:

meth getMakeNewClient(MakeNewClient)

proc {MakeNewClient UserMessageHandler UserID StaticClientObj}

StaticClientObj={NewSafeStat

6.3. A fault-tolerant broadcast channel 57

ChannelClient

init(self.selfStatic StaticClientObj

UserID UserMessageHandler)}

end

end

58 Chapter 6. Fault-Tolerant Examples

7

Limitations and Modifications

The current release has the following limitations and modifications with respect to
the specifications of the distribution model and the failure model. A limitation is an
operation that is specified but is not possible or has lower performance in the current
release. A modification is an operation that is specified but behaves differently in the
current release.

Most of the limitations and modifications listed here will be removed in future releases.

7.1 Performance limitations

These reduce performance but do not affect language semantics. They can safely be
ignored if performance is not an issue.

• The following problems are related to the Remote module and virtual sites (see
also Chapter Spawning Computations Remotely: Remote, (System Modules)).

– On some platforms (in particular, Solaris), the operating system in its de-
fault configuration does not support virtual sites efficiently (see also Chap-
ter Spawning Computations Remotely: Remote, (System Modules)). This
is due to a system-wide limit on the number of shared memory pages. For
Solaris, the default is six shared pages per process and 100 system-wide.
Changing this limit requires rebooting the machine. Since at least two
pages are needed for efficient communication, the default value results in
poor performance if a site connects to more than three virtual sites.

– The Mozart system does its best to reclaim shared memory identifiers, even
upon process crashes, but it is still possible that some shared memory pages
become unaccounted for and thus stay forever in the operating system. If
this happens please use Unix utilities to get rid of them. On Solaris and
Linux there are two, namely ipcs and ipcrm.

• The code of functions, procedures, classes, and functors (but not objects) is al-
ways inserted in messages, even if the code is already present at the destination.
In future releases, the code will be copied across the network only if it is not
present on the destination site. In both current and future releases, at most a
single copy of the code can exist per site.

60 Chapter 7. Limitations and Modifications

• The distributed garbage collection algorithm reclaims all unused entities except
those forming a reference cycle that exists on at least two different owner sites
(a cross-site cycle). For example, if two sites each own an object that references
the other, then they will never be reclaimed. It is up to the programmer to break
the cycle by updating one of the objects to no longer reference the other.

• If a site crashes that has references to entities created on other sites, then these
entities are not garbage-collected. Future releases will incorporate a lease-based
or similar technique to recover such entities.

• The fault state tempFail is indicated only after a long delay. In future releases,
the delay will be very short and based on adaptive observation of actual network
behavior.

7.2 Functionality limitations

These affect what operations are available to the programmer. They document where
the full language specification is not implemented. We hope that the undergrowth of
limitations is sparse enough to let the flowers of Oz grow unwithered.1

• On Windows, the Remote module has limited functionality. Only a single option
is possible for fork, namely sh. Future releases will add more options.

• The Connection module does not work correctly for applications separated by
a firewall. This limitation will be addressed in a future release.

• Threads, dictionaries, arrays, and spaces are sited, even though they are in base
modules. In future releases, it is likely that dictionaries and arrays will be made
unsited. Threads and spaces will be made stationary entities that can be called
remotely (like ports).

• When a reference to a constrained variable (finite domain, finite set, or free
record) is passed to another site, then this reference is converted to a future.
The future will be bound when the constrained variable becomes determined.

• If an exception is raised or a handler or watcher is invoked for an object, then the
Entity argument is undefined. For handlers and watchers, this limitation can be
bypassed by giving the handler and watcher procedures a reference to the object.

• If an exception is raised or a handler is invoked for an object, then the attempted
object operation cannot be retried. This limitation can be bypassed by program-
ming the object so that it is known where in which method the error was detected.

7.3 Modifications

There is currently only one modification.

• A handler installed on a variable will retry the operation (i.e., bind or wait) after
it returns. That is, the handler is inserted before the operation instead of replacing
the operation.

1C. A. R. Hoare, The Emperor’s Old Clothes, 1980 Turing Award Lecture.

Bibliography

[1] Vijay Saraswat. Concurrent Constraint Programming. MIT Press, 1994.

Index

advanced failure model, 35
agent

agent, agent server, 24
agent, barrier synchronization ex-

ample, 23
agent, getting an agent server, 24
agent, publishing an agent server,

24
agent, resource, 23
agent, simple example, 25
agent, task, 23

agent, 23
agent server

agent server, definition, 26
agent server, 24
application

application, connected, 2
application, overall structure, 8

array
array, sited entity, 7

asynchronous failure detection, 36
asynchronous many-to-one channel, 4
atom, 6

base module, 7
basic failure model, 31

C language
C language, relation to Oz cell, 5

cached object, 3
cell

cell, analogy to C and Java, 5
cell, fault states, 38

centralized semantics, 3
channel

channel, port (asynchronous many-
to-one), 4

chunk, 6
class, 6
communication failure, 29
component-based programming, 9
compute server, 16
computed functor, 14
concurrency

concurrency, 90% rule, 6
connected applications, 2
Connection module

Connection module, example, 12
Connection module, 1
constrained variable, 7
CORBA, 1
cross-site cycle, 8
cycle, 8

data-flow, 4
default failure detection, 31
dictionary

dictionary, sited entity, 7
distributed semantics

distributed semantics, array, 7
distributed semantics, atom, 6
distributed semantics, chunk, 6
distributed semantics, class, 6
distributed semantics, definition, 3
distributed semantics, dictionary, 7
distributed semantics, function, 6
distributed semantics, functor, 6
distributed semantics, list, 6
distributed semantics, name, 6
distributed semantics, number, 6
distributed semantics, object, 7
distributed semantics, object-record,

7
distributed semantics, procedure, 6
distributed semantics, record, 6
distributed semantics, space, 7
distributed semantics, string, 6
distributed semantics, thread, 7

eager
eager, failure detection, 36
eager, stateless data, 36

example
example, client crash, 41
example, using Connection mod-

ule, 12
example, using Picklemodule, 12
example, using Remotemodule, 13

62

INDEX 63

exception
exception, format for failure excep-

tion, 33
exception, in failure model, 31

fail-silent assumption, 29
failure

failure, advanced model, 35
failure, basic model, 31
failure, binding logic variables, 32
detection

failure, detection, default, 31
failure, exception format, 33
failure, fail-silent, 29
failure, handler (synchronous de-

tection), 35
failure, partial failure property, 29
failure, permanent network prob-

lem, 29
failure, temporary network problem,

29
failure, watcher (asynchronous de-

tection), 36
fault detection

fault detection, level, 34
fault handler, 35
fault level

fault level, relation with sitedness,
34

fault level, 34
Fault module, 2
fault state

fault state, cell, 38
fault state, eager stateless data (records,

procedures,functions, classes,
functors), 36

fault state, exhaustive list, 31
fault state, lock, 38
fault state, logic variable, 37
fault state, object, 38
fault state, port, 37
fault state, sited entities, 37

fault state, 29
fault watcher, 36
feeling

feeling, warm, fuzzy, 8
finite domain variable, 7
finite set variable, 7
free record variable, 7

function, 6
functor

functor, computed, 14
functor, 6
future, 6, 7

garbage collection
garbage collection, distributed, 8
garbage collection, in a server, 19

geographic distribution, 3
global name

global name, external, 11
global name, hostname, 11
global name, internal, 11
global name, ticket, 11
global name, URL, 11

halt
halt, abnormal, 8
halt, normal, 8

handler, 35
home site, 7
hostname

hostname, definition, 11

Internet, 1

Java language
Java language, limitation, 18
Java language, relation to Oz cell,

5
Java language, 1

language entity
language entity, module, 7
language entity, sited, 7
language entity, unsited, 7

language semantics, 3
latency tolerance, 5
lazy

lazy, class, 4
lazy, failure detection, 35

level
level, relation with sitedness, 34

level of fault detection, 34
lightweight thread, 4
list, 6
lock

lock, fault states, 38
lock, thread-reentrant, 5

logic variable

64 INDEX

logic variable, binding in failure model,
32

logic variable, constrained, 7
logic variable, constrained variable,

7
logic variable, fault states, 37
logic variable, finite domain, 7
logic variable, free record, 7
logic variable, read-only (future),

6, 7
logic variable, 5

memory management, 8
mobile agent, 23
mobile object, 3
module

base
module, base, Cell, 7
module, base, definition, 7
module, base, Float, 7
module, base, Int, 7
module, base, List, 7
module, base, Lock, 7
module, base, Number, 7
module, base, Port, 7
module, base, Procedure, 7
module, base, Record, 7

module, definition, 7
system

module, system, Application,
8

module, system, Browser, 8
module, system, Connection, 1,

8
module, system, definition, 7
module, system, Fault, 2
module, system, FD, 8
module, system, Module, 8
module, system, Open, 8
module, system, OS, 8
module, system, Pickle, 2, 8
module, system, Property, 8
module, system, Remote, 2, 8
module, system, Search, 8
module, system, Tk, 8

multicast, 5
multitasking, 3

name, 6
network failure, 29

network-transparent, 3
number, 6

object
object, cached, 3
object, fault states, 38
object, mobile, 3
object, object-record, 7
object, sequential asynchronous sta-

tionary, 4
object, stationary, 4, 15

owner site, 4, 7

partial failure property, 29
pickle, 11
Pickle module

Pickle module, example, 12
Pickle module, 2
port

port, fault states, 37
port, Oz vs. Unix, 5

port, 4
procedure, 6
process, 3
programming

programming, component-based, 9
proxy site, 4

record
record, module, 7
record, object-record, 7

record, 6
remote computation

remote computation, example, 13
remote computation, of a statement

(needing resources), 13
remote computation, of a statement

(not needing resources), 17
Remote module

Remote module, example, 13
Remote module, 2
resource, 7

semantics
semantics, distributed, 3
semantics, language, 3

server
server, compute server, 16
server, dynamically-extensible, 18

server, 14

INDEX 65

shutdown
shutdown, abnormal, 8
shutdown, normal, 8

site
site, definition, 3
site, multitasking, 3
site, owner, 4
site, proxy, 4

sited entity
sited entity, array, 7
sited entity, definition, 7
sited entity, dictionary, 7
sited entity, resource, 7
sited entity, space, 7
sited entity, thread, 7

sitedness
sitedness, relation with fault detec-

tion, 34
space

space, sited entity, 7
stateless entity

stateless entity, pickle, 11
stationary object

stationary object, definition, 4, 15
stationary object, example, 15

stream, 6
string, 6
synchronous failure detection, 35
system module, 7

task, 23
thread

thread, data availability, 6
thread, lightweight, 4
thread, reentrant lock, 5
thread, sited entity, 7

thread, 4
thread-reentrant lock, 5
ticket

ticket, definition, 11
ticket, example, 12

time-out
time-out, difference with temporary

fault, 30

Unix port, 5
unsited entity, 7
URL

URL, definition, 11

variable
variable, final in Java, 5
variable, logic variable, 5

watcher, 36

