
Changes

Version 1.2.3
December 1, 2001

Abstract

This documents gives a brief overview of the changes between different Mozart versions.
In particular, it lists the changes from Oz 2.0 (and its implementation DFKI Oz) to Oz 3.0
(and its implementation Mozart).

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Mozart 1.2.3 1

2 Mozart 1.2.2 3

3 Changes between Mozart 1.2.0 and Mozart 1.2.1 5

3.1 Important Issues . 5

3.2 Changes . 5

3.3 Bug Fixes in Detail . 5

3.4 Miscellaneous . 6

4 Changes between Mozart 1.1.0 and Mozart 1.2.0 7

4.1 Changes in Oz, Mozart libraries and UI 7

4.1.1 Loops . 7

4.1.2 ‘Failed’ Futures and Module Manager 8

4.1.3 Spaces . 8

4.1.4 Distribution Subsystem . 8

4.1.5 Constraint Systems . 8

4.1.6 Port Improvements . 8

4.1.7 Pickling Format . 9

4.1.8 ‘ozl –rewrite’ . 9

4.2 Changes in the implementation that affect usability and perfor-
mance . 9

4.2.1 Bugs . 9

4.2.2 2GB of Live Data . 9

4.2.3 New Supported Platforms 9

4.2.4 Improved Distribution Subsystem 9

4.2.5 No Fast Inter-Site Communication 10

4.3 Changes in the implementation that affect maintainability and
portability . 10

4.3.1 Accessing Oz Data Structures 10

4.3.2 Redesign of the Distribution Subsystem 10

5 Changes between Mozart 1.0.1 and Mozart 1.1.0 13

5.1 Changes . 13

5.1.1 Pickling . 13

5.1.2 Constraint Programming 13

5.1.3 Distribution . 14

5.1.4 Documentation . 14

5.1.5 Support for loops . 14

5.1.6 Compiler Macro Names 15

5.1.7 URL Support . 15

5.2 Fixes . 15

5.2.1 All Platforms . 15

5.2.2 Windows . 16

5.2.3 Linux . 16

5.2.4 Other Platforms . 16

6 Changes between Mozart 1.0.0 and Mozart 1.0.1 17

7 Changes between DFKI Oz and Mozart 1.0.0 19

7.1 General Changes . 19

7.1.1 Functors and Modules . 19

7.1.2 Applications . 19

7.2 Syntax Improvements . 19

7.2.1 Conditionals . 20

7.2.2 Functors . 20

7.2.3 Exceptions . 20

7.2.4 Keywords . 20

7.2.5 Core Expansion . 21

7.3 Base . 21

7.3.1 Classes with Multiple Inheritance 21

7.3.2 The Modules Class and Object 21

7.3.3 Chunks . 22

7.4 System Modules . 22

7.4.1 Search Engines renamed 22

7.4.2 Scheduling support moved 22

7.4.3 System.get and System.set 22

7.4.4 System.valueToVirtualString and System.virtualStringToValue 22

7.5 Tools . 22

7.5.1 New Tools . 22

7.5.2 Compiler . 23

7.5.3 Gump . 23

1

Mozart 1.2.3

Mozart 1.2.3 is primarily a bug-fix release addressing recently discovered memory
leaks. It also contains enhancements and is fully backward compatible with 1.2.2

• Fixed a memory leak in the regex contrib: memory occupied by a compiled
regex was not properly released during finalization.

• Fixed a memory leak in the unpickler. The leak affected particularly applications
that performed:

– numerous loading of compiled functors

– numerous retrieval of values from a GDBM database

• Windows: setting environment variable OZ_TRACE_LOAD caused the system to
misbehave. This was actually due to forgetting to copy the value returned by the
environment variable lookup out of a static buffer.

• Many holes have been filled in the compiler documentation. In particular, the
main chapters are all complete; only the appendices lack explanation.

• Constraint Programming: FD.atLeast and FD.atMost performed incorrect prop-
agation when their first argument was a FD variable. The implementation was
completely overhauled. All of FD.exactly, FD.atLeast and FD.atMost are
now implemented as instantiations of the same template class.

• The Application module now exports Application.processArgv which per-
mits to invoke argument processing on a list of strings explicitly provided as a
parameter.

• The compiler’s Gump support was modified so that generated native functor and
parser state description are placed in by default in the directory of the source file.
This can be explicitly overridden by option gumpDirectory, or by command-
line option -gumpdirectory.

• Standard Library: Mozart 1.2.3 is the first release to include the Mozart Standard
Library. At present the latter contains only QTk available at URI x-oz://system/wp/QTk.ozf.

2 Chapter 1. Mozart 1.2.3

2

Mozart 1.2.2

Mozart 1.2.2 is an improvement release and is fully backward compatible with Mozart
1.2.1

• Improved debugging support for for loops: they now provide meaningful debug
info and can be stepped in

• Reference documentation added to TkTools

• Windows:

– Release 1.2.1 for Windows omitted file cache/x-oz/contrib/os/mode.ozf
which is required by the GDBM contrib. This is now included.

– OS.uName now correctly fills machine, release and version fields; Be-
fore, they always contained "unknown", and provides more information in
the sysname field. Before, the sysname field always contained "WIN32";
it is now "win32s", "win32_windows" or "win32_nt".

4 Chapter 2. Mozart 1.2.2

3

Changes between Mozart 1.2.0 and
Mozart 1.2.1

The release of Mozart 1.2.1 is an important bug-fix release, with some enhancements,
and is fully backward compatible with Mozart 1.2.0.

3.1 Important Issues

• A severe bug in record unification that has been introduced in 1.2.0 is fixed.

• Fixed incorrect variable aliasing detection on Windows (resulted in weaker prop-
agation, therefore in different and larger search trees).

• Many improvements in the Windows port, in particular for subprocesses, finally
correctly enabling oztool and ozmake.

• Both domain- and bounds-consistent variants of the alldifferent constraint for
finite domains are available.

3.2 Changes

• Inspector replaces Browser as default viewer in Explorer and Ozcar

• The verbosity of printing variables can be controlled by the property ’print.verbose’

• Mozart uses sorting in many important places (record construction, dictionaries,
finite domains, many finite domain propagators). All uses of sorting now share
a single, efficient and robust implementation.

• Documented FD.distinctD (domain-consistent alldifferent) and added FD.distinctB
(bounds-consistent alldifferent, naive quadratic version)

3.3 Bug Fixes in Detail

record unification an invalid optimization was introduced in 1.2.0 that affected speculative unification
of records

6 Chapter 3. Changes between Mozart 1.2.0 and Mozart 1.2.1

variable aliasing detection (Windows) variable aliasing detection was inoperative. As a result propa-
gation was weaker. This could be observed with the SEND+MORE=MONEY example
which produced a larger search tree

oztool (Windows)

oztool ld now also works under Cygwin (not only Mingw32). Furthermore, options
are now accepted in any order, and options -I, -l, -L and -s are supported for gcc and
Microsoft Visual C++

OS.system and Open.pipe (Windows)

OS.system was broken in 1.2.0 and has now been repaired; bug fixes in inheritance
and closing of handles

failed futures

(dis)equality testing now correctly passes up exceptions. Value.byNeedFail is now
careful to be non-requesting.

IO problems (Windows 2000 Service Pack 2)

system would freeze if ws2_32.dll was not loaded

Entailment of propagators

propagators are now again included in the suspension count

Combinator.reify

fixed bug related to merging

Schedule.cumulative

fixed bug related to sorting task intervals

3.4 Miscellaneous

Cross-compilation is no longer necessary to build Mozart for Windows. The entire
system can now be natively compiled on Windows under the Cygwin environment.

4

Changes between Mozart 1.1.0 and
Mozart 1.2.0

Mozart 1.2.0 is primarily a maintenance release with improved usability, maintainabil-
ity and performance. The changes in the language, Mozart libraries and the implemen-
tation are summarized in the following sections.

4.1 Changes in Oz, Mozart libraries and UI

4.1.1 Loops

* patterns are now supported:

for X#Y in L do ... end

* iterator expressions with a bit of a C-flavor are supported:

for X in Init;Cond;Next do ... end

for example:

for I in 1;I<5;I+1 do ... end

also iterators of the form E1..E2, E1..E2;E3, E1;E3 as before.

* nullary break and continue procedures can be obtained using loop features, e.g:

for break:B X in L do ...{B}... end

* EXPERIMENTAL: loops can be used as expressions using a hidden accumulator, e.g.:

{Show

for collect:C

L in Ls

do

for X in L do

if {IsOdd X} then {C X} end

end

end}

8 Chapter 4. Changes between Mozart 1.1.0 and Mozart 1.2.0

This experimental facility uses loop features collect, append, prepend, minimize,
maximize, count, sum, multiply, return, default. For more information check the
documentation (“Loop Support”).

4.1.2 ‘Failed’ Futures and Module Manager

• {Value.byNeedFail E ?V} binds V to the new notion of a ‘failed future’. Any
attempt to synchronize on V raises E as an exception.

• The module manager was updated to use ‘failed futures’: when a module cannot
be successfully linked its value becomes a failed future (instead of a record)
which raises the exception which caused linking to fail each time the module
is subsequently accessed. Thus, programmers have a chance of catching and
recovering from linking errors.

4.1.3 Spaces

• Space.askVerbose returns suspended rather than blocked

• An exception is raised, if the argument to Space.commit refers to a non-existing
alternative

• The control condition for application of space operations have been unified and
extended, see the documentation

• Space.kill kills a space by injecting fail into it

A full treatment of spaces is available in the Christian Schulte’s doctoral dissertation
"Programming Constraint Services", from the Mozart publications page.

4.1.4 Distribution Subsystem

• The Oz programmer interface to the distributed subsystem has been extended.
Parameters like buffer size and timeouts can now be specified at runtime.

• The family of tools for monitoring the behavior of the Mozart system has been
extended with a new member, the Distribution Panel. The tool displays in-
formation about known remote Mozart sites, amount of communication, mea-
sured round-trip and exported/imported entities. Possibilities to remotely moni-
tor other Mozart processes does also exist.

4.1.5 Constraint Systems

Constraint systems (finite domains, finite sets) have undergone, as usual, various im-
provements and bug fixes. Check the documentation.

4.1.6 Port Improvements

• Ability to send from a subordinated space to a superordinated space (provided
that no local variables and names are referred to).

• SendRecv does a send and returns an answer. For details, see doc. This again
works across spaces.

4.2. Changes in the implementation that affect usability and performance 9

4.1.7 Pickling Format

Unfortunately, old pickles cannot be read by this new system. We do plan to have a
generic conversion tool, but face a lack of human resources.

4.1.8 ‘ozl –rewrite’

The Oz linker (ozl) now supports a new command-line option, ‘–rewrite’, which allows
to transform the import URLs used by the output functor. Check the documentation
for details.

4.2 Changes in the implementation that affect usability and
performance

4.2.1 Bugs

Bug fixes, including, but not limited to:

• the core (centralized) system

• distribution subsystem

• constraint solving facilities

• Oz debugger (ozcar)

• the Windows port

• various memory leaks

All in all, a lot of them. Really a lot.. The system is used now for a series of our
projects, as well as for projects outside the Mozart consortium, and also for teach-
ing at all our three sites. Have also a look at http://www.mozart-oz.org/cgi-bin/oz-
bugs/FIXED

4.2.2 2GB of Live Data

Oz programs can reference now up to 2GB of live data on a computer with the 32bit
address space, compared to .5GB for all the previous releases.

4.2.3 New Supported Platforms

New supported platforms - linux ppc & pentium 4.

4.2.4 Improved Distribution Subsystem

The distribution subsystem has been improved, in particular, as the traffic between
Mozart sites increases. In extreme cases the win is up to orders of magnitude.

10 Chapter 4. Changes between Mozart 1.1.0 and Mozart 1.2.0

4.2.5 No Fast Inter-Site Communication

Unfortunately, the inter-site communication over shared memory (property ’distribution.virtualsites’,
see also Chapter Spawning Computations Remotely: Remote, (System Modules) is
currently inoperable. We are working on bringing it back in the next release. This is
caused by extensive changes in the implementation of the distribution subsystem, as
outlined in Section 4.3.

4.3 Changes in the implementation that affect maintainability
and portability

4.3.1 Accessing Oz Data Structures

Mozart 1.2.0 features the new design and implementation of the part of the run-time
system (engine) that deals with allocation and accessing Oz data structures. This not
only allows 2GB of live data, as mentioned in Section 4.1, but also:

* Greatly enhanced portability Mozart does not impose anymore any constraints on where the "C"
data regions are mapped, which is different across different flavors of Un*x. This also
simplified the Windows port.

* Is THE prerequisite for clean 64bit ports while this release still does not support 64 Bit machines
such as Alphas, etc, this change is the first – and quite big – step towards that goal.

4.3.2 Redesign of the Distribution Subsystem

Distribution subsystem has undergone a principle overhaul.

• The distribution subsystem is cleanly divided into a protocol layer and a message-
passing layer, with interfaces between them explicitly specified.

• Flexible connection establishment. A pair of Mozart sites connect now by exe-
cution of dedicated, replaceable Mozart functors. This enables customization of
connection protocols for creation of closed subdomains or traversal of fire-walls.
Currently there is no user interface to this facility, but we plan to introduce one.

• The message-passing layer has been redesigned and re-implemented. The new
design is featured by:

– better resource utilization, both in terms of memory and system resources
(e.g file descriptors).

– improved balance between the (centralized) engine and the distribution
subsystem in terms of run time. In particular, large messages sent between
Mozart sites do not lock out the engines on either side.

– an open architecture enabling introduction of new transportation mediums.

– higher throughput by better pipelining of messages.

– caching of TCP channels reworked.

4.3. Changes in the implementation that affect maintainability and portability 11

– automatic round trip calculation.

– failure detection on measured round trips rather than by TCP.

A document describing the Distributed Subsystem added to the documentation tree.

12 Chapter 4. Changes between Mozart 1.1.0 and Mozart 1.2.0

5

Changes between Mozart 1.0.1 and
Mozart 1.1.0

Mozart 1.1.0 is a maintenance release that features a completely new and improved
implementation of pickling and a major improvement of the constraint programming
primitives.

5.1 Changes

5.1.1 Pickling

Due to some redesign of the instruction set and the pickling algorithm, the pickle for-
mat changed between Mozart 1.0.1 and Mozart 1.1.0. A conversion tool has been
made available however, see Chapter Conversion of Pickles: convertTextPickle,
(Oz Shell Utilities) for documentation.

5.1.2 Constraint Programming

General improvements One of the main achievements in the 1.1.0 release is a fairly complete over-
haul of the constraint programming functionality in Mozart. This makes the system
leaner with respect to both code size and memory requirements and several even se-
vere bugs have been fixed. In average, the refurbishment buys you a 20% speedup on
constraint applications (up to 40% in rare cases).

Constructive disjunction removed That’s basically just for the records: nobody used it. Since it was
complicated and a constant source of problems it has been removed. In the rare case
that you used constructive disjunction, contact us for help.

FD and FS synchronization behavior corrected

All FD and FS propagators now conform to their documentation as it comes to synchro-
nization on their arguments. Mozart 1.0.0 and 1.0.1 were buggy in that execution did
not block even though the propagators required their arguments to be finite domain or
finite set variables. Watch out! In case your scripts that use finite domain or finite set
propagators just block (they show a light (ugly) green color in the Oz Explorer) this is
a likely cause! Fixing is easy: just make sure that all variables supplied to propagators
are in fact constrained to be finite domains or finite sets.

14 Chapter 5. Changes between Mozart 1.0.1 and Mozart 1.1.0

Space and RecordC are system modules

To achieve better factorization of constraint programming support in Mozart all con-
straint programming modules are system modules rather than modules in the base en-
vironment. This results in a much smaller memory footprint of the Mozart engine in
case the constraint programming facilities are not needed.

5.1.3 Distribution

The distribution layer of Mozart has problems with fire-walls. From our point of view
fire-walls defines all sub nets that restrict their traffic in some way. It has been impos-
sible to connect to oz sites through any kind of fire-walls up till now. A naive solution
is included in this release. It will only enable connections through the simplest of fire
walls, but that is better than nothing. We are working on a more general solution that
will enable our sites to work over more complex fire-walls.

There were problems related to the shortcoming of fire-walls. When a Mozart sites
needs to communicate it will try to open a connection. If it fails to reach the desired
site it will time-out and retry unless it can deduce that the destination site is dead. The
site will continue trying to open the connection until it succeeds or finds the site dead.
This behavior can disturb fire-walls a lot. The time-out is now growing with a growth
factor. There is now a way to alter the start time-out value, the growth factor and the
timeout ceiling.

5.1.4 Documentation

Global Index The online documentation has been provided with a new index that encompasses all
index entries from the individual documents. It can be reached from the main doc-
umentation page, either using the link in the margin or the link under the Getting
Started/Documentation header. Caveat: Not all documents have a useful index yet!

Postscript and PDF Is available now.

5.1.5 Support for loops

In order to provide convenient syntax for loops, 2 new keywords have been introduced:
for and do. This is an incompatible change. Check your code: you must now quote
every occurrence of ‘for’ and ‘do’. Support for loops is still preliminary. The general
syntax is:

for Iterators do ... end

where Iterators is a sequence of 1 or more iterators. Supported iterators are e.g.

X in L

for iterating over the elements of a list

X in I..J

for iterating from integer I to J. The loop terminates as soon as one iterator runs out.
The complete documentation is available in “Loop Support”

5.2. Fixes 15

5.1.6 Compiler Macro Names

The Mozart compiler defines macro names to identify the version of the system that is
running (see Section The Compiler’s State, (The Mozart Compiler)). These used to be

Oz_1 Oz_1_0 Oz_1_0_1

for Mozart 1.0.1, but to avoid clashes with the macro names provided by DFKI Oz,
they are now

Mozart_1 Mozart_1_1 Mozart_1_1_0

5.1.7 URL Support

The format of URL records has changed incompatibly. It is now simpler: feature
absolute is a boolean indicating whether the url is absolute and feature path is now
just a list of strings representing the components of the path. An empty component
is now simply omitted when converting to a string using cache syntax: thus the bug
involving a // in the middle of a path has now disappeared. Parsing urls is also faster.

5.2 Fixes

5.2.1 All Platforms

• Return methods for classes in Tk.menuentry added.

• Added Class.getAttr to straightforwardly resolve multiple inheritance con-
flicts.

• Fixed printing of ’~’ for floats in virtual strings (bug 390).

• Code garbage collection bug fixed (bug 389).

• Bug in Record.dropWhile fixed, thanks to Benko Tamas (bug 383).

• Bug in FD.exactly fixed, thanks again to Benko Tamas (bug 378)

• Bug in documentation of Append fixed (bugs 331, 372)

• Bug fix in ByNeed returning a variable (bugs 340, 370)

• Several bug fixes for networked file systems (aka interrupted system calls) (bug
360)

• Bug fix in handling X=X|X during garbage collection (bug 359)

• Bug fix in IsDet for distributed variables (bug 357)

• Added Pickle.pack and Pickle.unpack for pickling and unpickling from/to
byte strings.

• Fixed bug for doing large number of http requests (bug 350)

16 Chapter 5. Changes between Mozart 1.0.1 and Mozart 1.1.0

• Bug fix for binding faulty distributed variables (bug 348)

• Several compiler bug fixes (bugs 304, 305, 306, 344, 339)

• Bug fix in raising distributed programming exception (bug 341)

• Several fixes in unification (bugs 337)

• Some quirks in documentation fixed (bugs 257, 295, 302, 322, 327)

5.2.2 Windows

• Executable functors are now fully supported under Windows.

• More contributions have been made available. In particular the native functors
for the regex and gdbm modules have now been built.

• Subprocesses started from Mozart do not open new console windows.

• Mozart is no longer confused by other programs such as fortify by a com-
plete redesign of the communication between Mozart and Tk (bug 338).

• Temporary files are put under C:\TEMP by default (instead of C:\). Creating
many files directly under C:\ made Windows NT freeze.

• ozd now looks in the registry to see whether it can figure out where Emacs is
installed. Furthermore, ozd depended upon bash as command interpreter to
start Emacs–now it also works with command.com and cmd.exe.

5.2.3 Linux

• Memory management for Linux 2.2.x fixed (bugs 391, 403).

5.2.4 Other Platforms

• Initial support for Mac OS X.

• Compiles under FreeBSD (Bug 393).

6

Changes between Mozart 1.0.0 and
Mozart 1.0.1

This is a minor improvement release to fix some small bugs and offer some improve-
ments. You can judge yourself whether you should upgrade to 1.0.1 by reading the list
of fixes and improvements. If you have suffered from any of the problems mentioned,
you should definitely download the new version.

General fixes

• Obsolete menu entries in OPI removed (Bug 276)

• Argument parsing made even more POSIX compliant (Bug 278)

• Error messages pop up right buffer in OPI (Bug 243)

• OPI connects correctly to engine during startup

• Module managers resolve user names ’~name’ in file names (Bug 219) Many
small fixes

Windows fixes

• Blanks in URLs work now: Mozart can now be installed into a directory whose
path has blanks in it (for example C:\Program Files\Mozart) (Bug 255)

• Default contributions available

• Performance improvements for Graphics

• Improved installation under Windows (Increased Mozart awareness for Microsoft
Internet Explorer and Netscape Communicator)

Unix fixes

• OZHOME can be adapted in oz startup script

• Linear solver packages excluded by default

Linux RPM fixes

• Version numbering scheme fixed such that upgrades become possible

Other platform fixes

18 Chapter 6. Changes between Mozart 1.0.0 and Mozart 1.0.1

• Configure problems for FreeBSD 3.0 (freebsd*-i486) fixed

• Ports to Irix (irix6-mips), OSF-Alpha (osf1-alpha), HPUX (hpux-700) improved

Improvements

• Remote module managers support arbitrary fork methods (in particular ssh)

• Parallel search engines allow specification of fork methods

• Example programs included in all distributions (not only rpms)

• Open.pipe allows brute force shutdown via close method

7

Changes between DFKI Oz and
Mozart 1.0.0

7.1 General Changes

7.1.1 Functors and Modules

Mozart now comes with a powerful internet-based module system that supports lazy
loading, native modules and more. For an introduction see “Application Program-
ming” .

To make best use of the new module system, the previous Oz Standard Modules have
been split into the base environment and the system modules. The compiler always
provides the base environment, it contains all operations working on data structures
like records, lists, and so on. For more information see “The Oz Base Environment” .

All remaining modules (including the constraint programming support) are now pro-
vided as system modules that are subject to import in functor definitions. The system
modules are described in “System Modules” .

The Oz Programming Environment however still follows the design to ease explorative
development. For that reason all system modules are still available in the Oz Program-
ming Environment. The Environment nicely exemplifies the merits of the new module
system: while providing all system modules the Environment starts in a fraction of a
second by taking advantage of dynamic linking.

7.1.2 Applications

The rudimentary standalone application support available in DFKI Oz has been re-
placed by powerful abstractions and command line tools (see “Oz Shell Utilities”) to
support different aspects of application programming. In fact, a new tutorial (see “Ap-
plication Programming”) is entirely devoted to application programming with Oz and
Mozart.

7.2 Syntax Improvements

Mozart implements the language Oz 3, as opposed to DFKI Oz 2, which implemented
Oz 2. This chapter summarizes language changes between Oz 2 and Oz 3, of which
most are only of syntactical nature.

20 Chapter 7. Changes between DFKI Oz and Mozart 1.0.0

7.2.1 Conditionals

The case keyword used to introduce one of two conditionals: the boolean or the pattern
matching conditional. To adapt to common intuitions, the syntax and semantics have
been changed.

Boolean Conditionals The boolean conditional is now written as

if E then SE1 else SE2 end

If the construct is statement position, the else SE2 part is optional and defaults to
else skip.

Since the if keyword is now used for boolean conditionals, the former (and seldom
used) if conditional has been renamed to cond. There is no elsecond to replace
elseif.

Pattern-Matching The case E of ... end conditional retains its syntax but changes
its semantics. Where formerly logic (dis-)entailment was used to match the value
against a pattern, now a series of sequential tests is performed. This makes no dif-
ference if the match is entailed. Disentailment, however, may remain undiscovered
and the thread block, e.g., in:

case f(a b) of f(X X) then ... end

Furthermore, the box [] separating pattern-matching clauses now also has sequential
semantics, and is thus equivalent to the now deprecated, though still allowed, elseof.

elseif and elsecase may still be freely intermixed within if and case conditionals.

7.2.2 Functors

To accomodate modular application development, a module system has been designed.
The language itself supports the definition of functors, from which modules can be
obtained via linking.

7.2.3 Exceptions

The construct raise E1 with E2 end has been removed. This was an experimental
feature that has been found to be rarely used.

7.2.4 Keywords

New Keywords Due to syntax changes, Oz 3 has the following keywords, which
thus cannot be used as unquoted atoms any more:

at cond define export

functor import prepare require

7.3. Base 21

Removed Keywords The following keywords have been returned atom status and
do not count as keywords any more:

with

7.2.5 Core Expansion

The core expansion of Oz 3 as defined in “The Oz Notation” does not give core vari-
ables (written without backquotes) normal variable status any more, but considers them
variables statically bound within a runtime library environment. This means that the
used backquote variables are not part of the Base Environment.

This was necessary because the old design compromised language security.

7.3 Base

This chapter documents the changes that have taken place in the Base Environment
(formerly Standard Modules) and base language.

7.3.1 Classes with Multiple Inheritance

Multiple inheritance does not provide for automatic conflict resolution. If a conflict-
ing method definition arises in multiple inheritance, the conflict must be resolved by
overriding the method. Otherwise, an exception is raised.

A conflicting method definition arises if a method is defined by more than one class.
For example,

class A meth m skip end end

class B meth m skip end end

class C from A B end

raises an exception (the old model would silently pick the method from B), since both
A and B define the method m. The only way to fix this is by overriding m when creating
class C:

class C from A B meth m skip end end

Features and attributes are handled identically. For a more thorough discussion see
Chapter Classes and Objects, (Tutorial of Oz) .

7.3.2 The Modules Class and Object

The modules Class and Object underwent a major redesign and re-implementation.
The redesign became necessary because the old modules compromised both system
and application security. Programming abstractions that support common patterns of
object oriented programming are described in the module ObjectSupport (see Chap-
ter Support Classes for Objects: ObjectSupport, (System Modules)).

22 Chapter 7. Changes between DFKI Oz and Mozart 1.0.0

7.3.3 Chunks

The procedures Chunk.hasFeature and Chunk.getFeature are gone. Just use HasFeature
and Value.’.’ (see Chapter Values, (The Oz Base Environment)).

7.4 System Modules

7.4.1 Search Engines renamed

The engines that used to be available by SearchOne, SearchAll, and SearchBest are
now available under Search.base.one, Search.base.all, and Search.base.best

(for more information see Chapter Search Engines: Search, (System Modules)). How-
ever in the Oz Programming Interface SearchOne, SearchAll, and SearchBest are
still available for convenience.

7.4.2 Scheduling support moved

Scheduling support is now provided by the system module Schedule rather than FD.schedule.
See also Chapter Scheduling, (Finite Domain Constraint Programming in Oz. A Tuto-
rial.) and Chapter Scheduling Support: Schedule, (System Modules) .

7.4.3 System.get and System.set

System.get and System.set have been replaced by more powerful procedures that
are available in the module Property, which is described in Chapter Emulator Prop-
erties: Property, (System Modules) .

7.4.4 System.valueToVirtualString and System.virtualStringToValue

System.valueToVirtualString and System.virtualStringToValue are now avail-
able as Value.toVirtualString (see Chapter Values, (The Oz Base Environment))
and Compiler.virtualStringToValue (see Section The Compiler Module, (The
Mozart Compiler)). In particular, Compiler.virtualStringToValue is a full fea-
tured and stable replacement for the ad-hoc System.virtualStringToValue.

7.5 Tools

7.5.1 New Tools

Mozart comes with (improved) versions of the tools that came with DFKI Oz. Addi-
tionally, it has:

• a profiler, described in “The Mozart Profiler” , and

• a source-level debugger called Ozcar, described in “The Mozart Debugger” .

7.5. Tools 23

7.5.2 Compiler

The compiler has been reimplemented in Oz. This means that an arbitrary number of
compiler objects may be instantiated on the same VM. Linguistic reflection is thus fully
supported through an API that offers unrestricted access to the compiler’s functionality,
documented in “The Mozart Compiler” .

7.5.3 Gump

Gump, the frontend generator for Oz, is no longer a stand-alone tool that must be
invoked on a file, but is closely integrated into the Oz compiler. It is now sufficient to
set a switch:

\switch +gump

and full Gump functionality as described in “Gump–A Front-End Generator for Oz”
is available within the language. Furthermore, support for Gump under Windows has
been greatly improved.

