Window Programming in Mozart

Christian Schulte

December 1, 2001 m Y 14d rt

Abstract

This document is an introduction to window programming in Mozart. Mozart uses a high-
level object-oriented interface to Tk for window programming. The interface inherits from
Oz concurrency, objects and first-class procedures. From Tk the interface inherits a set of
powerful graphical abstractions. This document exemplifies both aspects: the basic usage
of the graphical abstractions and how to profit from Oz’s language features.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

[l Introduction| 1
P Getting Started 3
2.1 Our First Graphical Application 3
2.1.1 Widgets 4

.12 Geometry 4
............................. 4

2.2 The Architecturd 5
2.3 Implementation, 5

3 gets 7
B.1 Toplevel Widgets and Widget Objecty 7
B.2 The Graphics Engine, Tickles, and Widget Messagey 8
B.2.1 The GraphicsEngingl 8

3.2.2 Tickles and Widget Messagey 8

B.2.3 Translating Tickles 9

B.2.4 SpecialTickles 9
................................. 10
B.3.1 ReliefOptiony 10

B.3.2 Screen Distance Option§ 11

B.3.3 ColorOptiony 11

8.3.4 Abbreviationsand Synonymg 11

3.3.5 Additional Tk Information 11

B.4 The Widget Hierarchyf 12
B.5 LabelWidgety 12
B8.5.1 BitmapOptionyg 13

B.5.2 FontOptiony., 13

3 geq . . . e 14

B Geometry Managersy 19

B.1 Widgetsand Parcel§ 19
B2 ThePacken. 20
B.2.1 Side Optiong.« v v v i 21
M22 Padding 21
B.2.3 Anchorg 22
U.2.4 Filingand Expansion 22

U.3 The Grid Geometry Managell 23
B31 Padding 25
4.3.2 SpanOptiong 25
B.3.3 StickyOptions 25
U.3.4 WeightOptiong 27

#.4 Using Anchors for Widgety 27
b More Widgetg 29
6.1 Buttonsand Actiong. 29
b.2 Checkbuttons, Radiobuttons, and Variableg 30
6.3 Querying Tickle Objectd 31
p.3.1 Querying Configuration Optiony 33
b.3.2 Querying Widget Parametery 33

6.4 Menus, Menuitems, and Menubuttony 34
................................. 35
b.5.1 EventPattern§ 36
b.5.2 EventArguments 37
5.5.3 Invoking Actiong. 37
pb.5.4 Appending and Deleting EventBindingg 38

5.6 More on Actions: Listenery. 38
B.7 Entriesand FOCUY o v i i 39
................................. 40
6.9 Listboxesand Scrollbarg, 40
5.10 Toplevel Widgets and Window Manager Commandg 43
b.11 Selecting Filed 44
b.12 Example: Help Popupyg 45
5.12.1 DisplayingHelp 45
p.12.2 ThelListenerClasg 46
b.12.3 AttachHelp 46

5.12.4 Using Help Popupg 47

b Canvas Widgetq
.1 Getting Started

b.2 Example: DrawingBarChartd
6.3 CanvasTagy . - . . . v v e e

6.3.1 EventBindings
6.4 Example: An Animated Time Waster|

[/ Text Widgetd
[/.1 Manipulating Tex{
[7.2 TextTagsand Markg
7.3 Example: A ToylextBrowsed.

B Tools for TK

3 O . o o e e e
8.2 ErrorDialogq
B.3 Menubarg.
B.4 Handlinglmagey

A Data and Program Fragments
Al GettingStarted
A2 MoreonWidgety
A3 TextWidgetd

Introduction

This document is an introduction to window programming in Mozart. Window pro-
gramming means to build graphical and interactive interfaces for applications.

In Mozart, the basic building blocks for window programming are widgets: objects that
represent graphical entities like labels, buttons, and menus. Windows are described
compositionally by means of object hierarchies and are subject to dynamic and inter-
active modification. Other entities we will deal with are for example fonts and images.
The appearance of widgets is managed by geometry managers. Interaction events, such
as pressing a mouse button, trigger execution of procedures or methods.

Mozart uses an object-oriented interface to Tk for window programming. The inter-
face inherits from Oz concurrency, objects and first-class procedures. From Tk the
interface inherits a set of powerful graphical abstractions. This document introduces
both aspects: the basic usage of the graphical abstractions and how to profit from Oz’s
language features. The interface employs a simple generic mapping to Tk. People
familiar with Tk will get acquainted very soon.

The Examples

The documents features a large number of examples which are designed to be tried by
the reader. All examples are contained in a demo filef] to be used with the “The Oz
Programming Interface”.

Further Information

One particular advantage of using Tk as graphics engine for Mozart is the wealth of
excellent documentation for Tcl and Tk.

A must read (or at least see or browse) in this particular respect is the original book[f]
of John Ousterhout. A very fascinating account on how to employ the graphical prim-
itives in Tk for developing high-level graphical applications is [f].

The definitive entry point into the full collection of Tcl/Tk related resources and infor-
mations is the web page at Scripticsf, a company co-founded by John Ousterhout.

W ndowPr ogr ammi ng. oz
2http:// wwmv. scriptics. com

2 Chapter 1. Introduction

The details of all commands and widgets for Tcl and Tk can be found in the man-
pages that ship with the Tcl and Tk distributions. For convenience, the Mozart release
includes HTML versions of themf, which carry the following copyrightf].

Acknowledgements

I am grateful to Michael Mehl, who co-authored an earlier version of this document.
Peter Van Roy contributed the paragraph in Section p.3 that explains why t kRet ur n is
indeed asynchronous.

3. /tcltk/contents. htm
4 ./tcltk/ copyright.htm

Getting Started

This chapter shows a small graphical application from which we will identify the most
important concepts found in the window interface. The presentation is really designed
for identification of issues. An explanation of these issues follows in the remaining
chapters of this document.

2.1 Our First Graphical Application

Figure P.1] shows a screen dump of our first graphical application. It allows to enter
text into the entry field. Pressing the button toggles the capitalization of the text in that
entry field.

Figure 2.1: Our first graphical application.

Capitalization o =

|Mozart and Graphics!

Change Capitalization |

Capitalization - =

mOZART AMND gRAPRHICS!

Change Capitalization |

The program for the small graphical application is concerned with the following three
issues:

widgets Create the graphical entities called widgets. The application consists of three widgets:
a toplevel widget (this is the outermost window), an entry for entering text, and a
button.

4 Chapter 2. Getting Started

geometry Arrange the entry and button such that they appear inside the toplevel widget.

actions Attach an action to the button widget such that pressing the button changes the capital-
ization of the entry text.

In the sections below, we exhibit the code handling these issues. The complete appli-
cation then has the following structure:

Widget creation Ha
Geometry management Fp

2.1.1 Widgets

The following program fragment

4a (Widget creation fa
We{New Tk.toplevel tklnit(title:)}
E={ New Tk. entry tklnit(parent: W}
B={ New Tk. button tklnit(parent: W
text:
action: (Action definition fk))}

creates and initializes the widget objects of our application. Creating and initializing a
widget object creates a graphical image for the widget object. We refer to the graphical
image just as the widget. Most often we do not distinguish between the object and its
widget. All but the toplevel widget are linked by the par ent features: this defines a
widget hierarchy for closing widgets and geometry management.

2.1.2 Geometry

Here we define the geometry for the entry and button widgets:

4b (Geometry management fp
{Tk.send pack(E B fill:x padx:4 pady:4)}

2.1.3 Actions

The remaining program fragment:

4c (Action definition Hc
proc {$}
S={E tkReturn(get $)}

{E tk(delete O)}
{E tk(insert 0 {Map S (Change capitalization N}
end

defines the action as a procedure to be executed when the button is pressed. It retrieves
the current content S from entry E, clears E, and reinserts S in E, but with toggled
capitalization. tkRet urn illustrates another important issue: returning values from
widgets.

2.2. The Architecture 5

2.2 The Architecture

Figure .2 shows a sketch of the architecture of the window interface in Mozart. Its
core part is the graphics engine. The graphics engine computes graphical output and
displays it according to the input received.

return values

Figure 2.2: Architecture sketch.

actions ﬁ

graphics engine ~——events

Tk. send\/

tklnit

tk

Initializing widgets with the method t ki ni t and applying widgets to the t k method
send messages to the graphics engine. Additionally, the procedure Tk. send we used
for geometry management sends messages to the graphics engine. The graphics engine
understands tickles, Tk. send in fact just takes a tickle and sends it to the engine. Also
t ki nit and t k methods map straightforwardly to tickle messages.

The graphics engine is sequential, each tickle is executed in order. User events are con-
sidered only when the graphics engine is idle, then the attached actions are executed.

2.3 Implementation

The implementation idea of the window interface is quite simple. The graphics engine
is executed by a separate operating system process (it runs in fact a modified wi sh).
Any communication with the graphics engine is done via strings. The interface maps
tickles and tickle messages to strings (this is done in a fairly efficient way). In the
reverse direction, strings can be mapped back to Oz data types like integers, atoms,
lists of integers or lists of atoms.

To get an impression of the efficiency of the implementation, try some examples, as
well as the demosf] and the toolsf that come with Mozart. They are all built on top of
the Tk window programming interface.

1“Mozart Demo Applications”
2“0z Shell Utilities”

Chapter 2. Getting Started

Widgets

This chapter introduces some of the widget objects provided by the Tk interface. Ex-
amples illustrate the most common options and the values they can take.

3.1 Toplevel Widgets and Widget Objects

A toplevel widget serves as the outermost container for other widgets. It can be created
from the class Tk. t opl evel and can be initialized by applying it to a message with
label t ki ni t. An example is shown in Figure B.I. The features wi dt h and hei ght
of the message together with their values specify that the toplevel widget is 150 pixels
wide and 50 pixels high.

Figure 3.1: Creating a toplevel widget.

0z Windoyw [[=]

WE{ New Tk. topl evel tKklnit(w dth:150 hei ght:50)}

Creating and initializing a widget object creates a graphical image for the widget ob-
ject. We will refer to the graphical image just as the widget. Most often we will not
distinguish between the object and its widget. A toplevel widget is special in that its
graphical image appears immediately on the screen after the widget object has been ini-
tialized. Other widgets require to be managed by a so-called geometry manager before
they appear on the screen. See Chapter § for a discussion of geometry managers.

A widget object can be sent a message with label t k to change the appearance or
behavior of its widget. For example, the background color of the toplevel widget Wcan
be changed to purple by

{Wtk(configure background: purple)}

8 Chapter 3. Widgets

Additionally, a widget object understands messages that query its state. These will be
discussed later.

A widget object can be closed by applying the object to the message t kCl ose. Closing
the widget object also destroys the widget displayed on the screen. Section B.4]contains
more details concerning how widget objects are closed.

The structure of messages with labels t kI ni t and t k depend on the particular widget
under consideration. However, all of these messages share a common structure. The
following section explains this structure and shows how to build messages such that
they are understood by widgets.

Reference information on toplevel widgets can be found in t opl evel [J.

3.2 The Graphics Engine, Tickles, and Widget Messages

Widget objects as well as instances of other classes defined in the Tk module are built
as object oriented frontends to a single graphical agent, the graphics engine.

3.2.1 The Graphics Engine

The graphics engine receives messages and executes them. By executing a message the
engine creates widgets, configures the appearance and behavior of widgets, or com-
putes a geometry for the layout of a widget on the screen.

tickles The messages the engine understands are tickles. The procedures Tk. send
and Tk. bat ch take a tickle or a list of tickles and send it to the graphics engine. We
use these two procedures especially to send tickles for geometry management, as is
discussed in Chapter [.

translating object messages to tickles Messages sent to widgets and other
objects of the Tk interface are translated in a straightforward fashion to tickles. These
tickles are then forwarded to the graphics engine.

3.2.2 Tickles and Widget Messages

Tickles are used to describe messages for the graphics engine. A tickle is either a
boolean value, the name uni t, a virtual string, a record that has neither a name as
label nor as feature, or a tickle object. A tickle object is any instance of a class that
the Tk module provides, unless otherwise mentioned (the only exception is the class
Tk. | i stener, see Section p.6).

An initialization message with label t kI ni t must be a record without integer features.
The field of a feature must be a tickle. Only the special features par ent, acti on, url,
and ar gs may take different values. These features we will discuss later.

options To the features we refer to as configuration options, or for short as options.
Their values we refer to as option values.

1 . /tcltk/ TkCnd/ topl evel . ht m

3.2. The Graphics Engine, Tickles, and Widget Messages 9

commands and arguments A message with label t k must be a record with at
least a single integer feature and maybe some other integer features and some options.
The value of the first integer feature we call the command, whereas we refer to the
remaining values for the integer features as arguments. For example, in the message

tk(set active background: purple)

set isthe command, act i ve is the single argument, and backgr ound is an option with
value pur pl e.

3.2.3 Translating Tickles

The graphics engine does not understand tickles but strings that follow a particular
structure. This means that each tickle sent to the graphics engine is first translated to
a string. The translation is generic, for our purposes here it suffices to give a short
example. The full translation details can be found in Chapter The Module Tk, (System
Modules).

For example,
exanpl e(1 2.0 side:left(right:true) fill:x)

is translated to

That is, a record is translated to a string consisting of the label and the features and the
translation of the fields. Atomic features are prepended by a and integer features
are ignored.

3.2.4 Special Tickles

Additionally, special tickles are supported (see Figure B.2). Their usage becomes clear
in the examples that are presented in this document.

Figure 3.2: Examples of special tickles.

Example Translation Mnemonic Used

o(10 12 fill:red) 10 12 -fill red option see Figure £.7]

I (red green bl ue) [red green blue] list list of tickles

q(red green bl ue) {red green blue} quote see Figure@

s(red green bl ue) string string of tickles

p(4 7 linestart) {4.7 linestart} position see (page
b([a(b:1) c(d:2)]) a-b1lc-d2 batch see (page RO)

v(1#) 1\ nno quote virtual string verbatim virtual strings
c(255 128 0) #FF8000 color see Figure 5.10

d(pack(grid row4)) grid -row 4 delete skip record label

10

Chapter 3. Widgets

3.3 Frames

3.3.1 Relief

Frame widgets are similar to toplevel widgets in that they serve as containers for other
widgets. The difference is that a frame is used as container within other widgets,
whereas a toplevel widget is the outermost container. The main purpose of frames
is to determine geometrical layouts for the widgets they contain. More on geometry
management we see in Chapter [.

Options

relief and border Frames support the rel i ef and bor derwi dt h options. These
options determine a three dimensional border to be drawn around a frame. The values
fortherel i ef option must be one of gr oove, ri dge, f| at, sunken, andr ai sed. The
different styles of borders which correspond to theses values are shown in Figure 8.3

Figure 3.3: Frame widgets with different values for relief.

0z Window =]

| msss

Fs={ Map
fun

{

end}

[groove ridge flat sunken raised]

{$ R

New Tk. frame tklnit(parent: Wwi dt h: 2#c hei ght: 1#c
relief:R borderw dth: 4)}

{{Nth Fs 3} tk(configure background: bl ack)}
{Tk. send pack(b(Fs) side:left padx:4 pady:4)}

parent widgets The t kI nit message contains the option par ent which links the
frames into its parent, the toplevel widget W All widgets but toplevels need a parent
widget, this is discussed in Section B.4.

The program shown in Figure B.3 maps the list of relief option values to frame objects.
To make the frame with the option f | at visible, its background is configured to be
black.

Note that we left out the code to create the toplevel widget. Here and in the follow-
ing we assume that the variable Wis bound to a toplevel widget. The example filef,
however, contains the code needed to create the toplevel widget.

The exact meaning of the pack command used in this example is explained in Sec-
tion .2,

2W ndowPr ogr ammi ng. oz

3.3. Frames 11

3.3.2 Screen Distance Options

As value for the bor derw dt h option we used an integer in the example shown in
Figure B.3. Just giving a number specifies a distance in screen pixels. If the number is
followed by one of the letters c, m i , and p the screen distance is given in centimeters,
millimeters, inches (2.54 centimeters), or printers’ points (1/72 inch).

A convenient way to specify screen distances that employ units is to use a virtual string
that appends the unit letter to the number, as used in Figure

3.3.3 Color Options

To make the frame with the rel i ef optionf | at visible, we configured the background
color to be black. Color options can be given either symbolically or numerically.

symbolic color values A symbolic color value can be given as virtual string like
bl ack, , or #bl Ue, where the capitalization does not have any signifi-
cance.

numerical color values A numerical color value is determined by three integers
between 0 and 255. The three integers describe the red, green, and blue part of the
color. A numerical color value in Oz can be specified by a ternary tuple with label c,
where the three fields of the tuple are the three integers. For example, the base col-
ors red, green, and blue are described by the tuples c(255 0 0), c(0 255 0), and
c(0 0 255) respectively.

Two examples that make frequent use of color options can be found in Section 6.8 and
Sectionp.9.

3.3.4 Abbreviations and Synonyms
Some of the most common options have the following synonyms:

background bg
f or eground fg
borderwi dth bd

option abbreviations In addition to synonyms, it is also possible to abbreviate
options provided that the abbreviation is unambiguous. For example, it is correct to
abbreviate the backgr ound option by ba but not by b since b is also an abbreviation
for bi t map and bor der wi dt h.

3.3.5 Additional Tk Information

The full Tk-reference information for each widget is shipped with the Mozart distribu-
tion. For an example, see the reference information for f r amefj.

Reference information on options that are supported by all widgets are explained in
opti onsf.

3. . /tcltk/ TkCmd/ frame. ht m
4. ./tcltk/ TkCnd/ opti ons. ht m

12 Chapter 3. Widgets

3.4 The Widget Hierarchy

masters and slaves Widgets are arranged in a hierarchy. Each widget has a single
parent. The only exceptions can be toplevel widget objects, which do not have to have
a parent. The parent of a widget is given by the option par ent inthet ki ni t message.
Usually parent widgets are containers. To the parent of a widget we also refer to as its
master. To the widget itself we refer to as slave of its master.

For example, in the previous example shown in Figure B.3 the five frame widgets are
slaves of the single toplevel widget.

The purpose of the hierarchy is threefold:

1. The geometry for widgets is computed according to the hierarchy. This is dis-
cussed in Chapter [

2. Creation and initialization has to follow the hierarchy. To initialize a widget ob-
ject it is necessary that its parent widget object is already created and initialized.
Otherwise initialization of a slave blocks until its master is initialized.

3. Closing a parent widget object also closes all its slaves. The slaves are closed
by applying them to the t kCl ose message. A widget object gets closed and its
widget gets destroyed only after all of its slaves have been closed.

After a widget object has been closed, using it in tickles sent directly to the graphics
engine, e.g. by Tk. send or Tk. bat ch, issues a runtime error.

3.5 Label Widgets

A label widget displays a text string or a bitmap. Options for frames are also valid
options for labels, additional options determine what the label displays. The reference
documentation for labels is | abel f.

Figure 3.4: Example for labels displaying bitmaps and text.

0z Windows _ O

§ Labels: bitmaps and text

L1={New Tk. | abel tklnit(parent:Whbitnmap:info)}
L2={ New Tk. | abel tklnit(parent: Wtext:)}
{Tk. send pack(L1l L2 side:left padx:2#m pady: 2#n)}

Figure B.4 shows an example where the label L1 displays a bitmap and the label L2
displays text. As with other widgets, the options of a label widget can be reconfigured

5 . /tcltk/ TkCmd/ | abel . ht m

3.5. Label Widgets 13

by sending the widget object a t k message with the command conf i gur e. Execution
of the following expression changes the bitmap to an exclamation mark:

{L1 tk(configure bitnmap:warning)}

3.5.1 Bitmap Options

Label widgets and several other widgets allow to display bitmaps. There are two dif-
ferent kinds of bitmaps: predefined bitmaps and bitmaps stored in files.

If the first character of the bi t map option value is an @ the value is interpreted as
filename. For instance, feeding

{L2 tk(configure bitnmap: #{Property. get Y #
f oreground: orange)}

displays a bitmap stored in a file. Here the file name is given relative to where the

Mozart system has been installed, that is relative to { Pr operty. get } (for
the system module Property see Chapter Emulator Properties: Property, (System
Modules)).

predefined bitmaps If the first character is different from @it is interpreted as the
name of a predefined bitmap. A program that displays all predefined bitmaps and their
names you can see in Figure B.5 The program uses the grid geometry manager which
is discussed in Section .3

bitmap colors Bitmaps have two colors. These colors can be configured with the
f or egr ound and backgr ound options. The color of the bitmaps’ pixels is given by the
foreground color.

3.5.2 Font Options

A font to be used for displaying text can be specified by the f ont option. Valid values
for the f ont option are either platform specific font names or instances of the class
Tk. f ont . An instance of the class Tk. f ont is also a tickle object but is not a widget.

Platform dependent font names are for example X font names. If you are running
a Unix based system, you can for example display the available names by using the
x| sf ont s program.

However the preferred way to specify fonts is to be platform independent of course.
The program in Figure B.g uses this technique.

The init message for creating a font determines with the options f ani | y (the style of
the font), wei ght (whether it is bold or normal), and si ze (how large is the font in
point, if the number is positive, in pixels if it is less than zero) how the font looks.
Tk. f ont supports more options, for a complete overview consult f ont f.

Regardless of the platform, the families courier, tines, and hel veti ca are sup-
ported.

6. /tcltk/ TkCnd/ font. htm

14 Chapter 3. Widgets
Figure 3.5: Predefined bitmaps.
0z Window =10O] =
error grayfo grayal grayZa graylZ
e -]
1 b
hourglass info questhead gquestion waming
{List.forAlllInd [error gray75 gray50 gray25 grayl2
hour gl ass info quest head questi on war ni ng]
proc {$ | D}
R=(1-1) div 5
C=(1-1) nod 5
in
{Tk.batch [grid(row R*2 colum: C
{New Tk. | abel tklnit(parent: Wbitnmap:D)})
grid(row. R*2+1 colum:C
{New Tk. I abel tklnit(parent:Wtext:D)})]}
3.6 Images

Besides of text and bitmaps labels can display images. Images differ from bitmaps in
that they allow for more than two colors to be displayed.

Images are provided as objects in Oz. These objects are also tickle objects (see Sec-
tion B.2), but are different from widget objects.

The program in Figure B.7 creates an image object and displays the image in three
labels. Changing the configuration of the image, changes the displayed image in all
label widgets. For example, feeding the following expression

{1 tk(configure file:D#)}

replaces all three displayed trucks by trucks heading in the inverse direction.

type and format Images can be of two different types. The value of the type
configuration option can be phot o (as in our example), or bi t map. If the type is phot o,
the image can display files in two different formats. The format is specified by the
f or mat option. Valid values for the f or mat option are gi f and ppm

bitmap images In case the value for the t ype option is bi t map, the value given for
the fi | e option must be a valid bitmap file.

3.6. Images 15

Figure 3.6: Example for different fonts.

0z Window - |O] =]

A normal times font,
A bold times font.
A normal helvetica font,
A bold helvetica font.
2 normal courier font.
A& bold courier font.

{ForAll [times helvetica courier]
proc {$ Famly}
{ForAl'l [normal bold]
proc {$ Wight}
F={New Tk.font tkinit(famly: Famly
wei ght: Wi ght

si ze: 12)}

L={New Tk. | abel tklnit(parent: W
text: #\Wei ght # " #Fam | y#
font: F)}

{Tk. send pack(L)}
end}
end}

Figure 3.7: Three labels displaying the same image.

0z Window = =]

D ={Property. get Y#

I ={New Tk.inmage tklnit(type: photo format: ppmfile: D#)}
L1={New Tk. | abel tklinit(parent:Winage:l)}

L2={ New Tk. | abel tklnit(parent: Winmage:l)}

L3={New Tk. | abel tklinit(parent:Winmage:l)}

{Tk.send pack(L1l L2 L3 padx: 1#m pady: 1#m si de: left)}

16

Chapter 3. Widgets

referring to images by URLs In addition to files, images can also be referred to
by URLs. For example,

{New Tk.image tklnit(type: photo format:gif
url: }

would have loaded a gif file from the given URL. Note that the graphics engine itself is
not capable of handling URLs. Instead, the image object handles URLs by localizing a
URL to a local file (see also Chapter Resolving URLS: Resol ve, (System Modules)).
The local file then is used by the graphics engine.

In Section B.4 an abstraction is presented that eases the handling of images consider-
ably.

Reference information on images can be found in i mage[].

3.7 Messages

aspect and justify Message widgets display text extending over several lines.
How the text is distributed over several lines is determined by one of the options wi dt h
and aspect . Each of the line is justified according to the value of the option j usti fy.
Possible values are | ef t (the default value), cent er, and ri ght . Figure B.§ shows the
result of different combinations of aspect and justification.

Figure 3.8: Messages with j usti fy and aspect options.

Text

Text exten

Text extending extending ding
over several over over
lines. several sever
lines. al

lines.

Me={Map [| eft#200 center#100 ri ght #50]
fun {$ J#A}

{New Tk. message tklnit(parent: Wtext:S justify:J aspect: A}

end}
{Tk. send pack(b(Ms) side:left padx:2#m pady: 2#m) }

7. ./tcltk/ TkCmd/ i mage. ht m

3.7. Messages 17

aspect and width If the option wi dt h is present, the value (a screen distance, see
Section B.3.2) gives the length of each line. If no wi dt h option is present, the aspect
ratio between height and width of the text is given by the option aspect. The value
specifies the aspect as

100 * width / height

For example a value of 100 means that the text is as high as wide, a value of 200 means
that the text is twice as wide as high.

Reference information on message widgets can be found in messagef]

8 . /tcltk/ TkOrd/ nessage. ht m

18

Chapter 3. Widgets

Geometry Managers

This chapter explains geometry managers. Geometry managers compute how much
space widgets occupy and at which position they appear on the screen. Last but not
least they make widgets appear on the screen with the geometry computed previously.

4.1 Widgets and Parcels

A geometry manager computes the size and location of widgets, that is the geometry,
and displays the widgets on the screen. The geometry manager computes the geometry
according to the widget hierarchy. During computation of the geometry, the manager
takes the following three things into account:

1. The geometry requested by slave widgets. Widgets like labels and messages
request just enough space to displays their text or bitmap.

2. The geometry requested by master widgets. Usually master widgets do not re-
guest an explicit geometry. But for example, if a frame widget is initialized with
explicit values for width and height, the geometry manager takes these values
into account.

3. The options given to the geometry manager.

parcels The geometry manager computes for each slave of a master widget a so-
called parcel. The parcel is a rectangle and describes the space and the position com-
puted for the slave. From the slaves’ parcels the manager computes the parcel for the
master. If the master does not request a specific geometry on its own, the manager
will assign the master a parcel that encloses all slave parcels. Otherwise the geometry
manager distributes the space in the parcel for the master to the slave parcels. This may
shrink or grow the parcels for the slaves.

Options to the geometry manager affect usually the way how parcels are computed and
how widgets are put into their parcels, if the parcels are larger (or smaller) than the
parcel initially requested by the widget.

In the following we will show the two most important geometry managers which are
provided in Tk. One is the packer, which can be used for simple arrangements, like
placing several widgets in a row or in a line. The other geometry manager we will dis-
cuss is implemented by the gri d command. As the name suggests, the grid command
allows for arranging widgets in a grid-like fashion.

20

Chapter 4. Geometry Managers

It is perfectly possible to mix geometry managers in a single toplevel widget provided
that all slaves of a master are managed by the same manager. For example, suppose
a toplevel widget that contains two frames which contain widgets themselves. Both
frames must be managed by the same manager. The widgets in the frames can be
managed by two different managers.

We discuss only the most important options these two managers provide, a complete
description can be found in packfj and gri df. More information on the packer can
also be found in John Ousterhout’s book[f]] in Chapter 17.

4.2 The Packer

The packer supports simple arrangements of widgets in rows and columns. Arranging
widgets nicely usually also means that some vertical and horizontal space has to be
inserted, either designed to provide for additional space or to fill up space not occupied
by the widget’s original size.

The different ways how to affect the geometry we will study by means of examples.
For this, let us assume we are dealing with three label widgets. The following function
creates a toplevel widget with background color white for better visibility, and returns
a list of three labels.

fun {NewLabel s}
WE{ New Tk. topl evel tklnit(background: white)}

{Map []
fun {$ A}
{New Tk. | abel tklnit(parent:Wtext:A)}
end}
end

To display the labels in the toplevel widget, the packer can be invoked as follows:

[L1 L2 L3] = {NewLabel s}
{Tk. send pack(L1 L2 L3)}

This computes and displays a geometry for the toplevel widget as shown in Figure
Rather than giving a tickle which contains each of the labels as field we can give a
batch tickle. A batch tickle is a tuple with label b where its single argument must be a
list of tickles. By using a batch tickle, we can rewrite our example from above to

{Tk. send pack(b({NewLabel s}))}

where the list of tickles is the list of labels as returned by the function Newt.abel s.

1 ./tcltk/ TkCnd/ pack. ht m
2 . /tcltk/ TkCmd/ grid. htm

4.2. The Packer 21

Figure 4.1: Plain geometry computed by the packer.

0z Winddiy [=]

label
Second label widget
3rd label

4.2.1 Side Options

The label widgets in the previous examples were placed from the top to the bottom of
the toplevel widget. The side where the widgets are packed against can be determined
with the si de option. The default value for this option is t op. The examples in Fig-
ure 1.7 show the geometry which is computed when | eft and bot t omare given as
values for the side option. Valid values for the side option are t op, bott om I ef t , and
right.

Figure 4.2: Geometries computed by the packer according to si de option.

0z Window - |O] =]

label Second label widget 3rd label

{Tk. send pack(b({NewLabel s}) side:left)}

Oz Winddil =] B3

3rd label
Second label widget
label

{Tk. send pack(b({NewLabel s}) side:bottom}

4.2.2 Padding

The geometry computed for widgets by the packer can be given additional space in
two different ways: either externally or internally. Additional external space can be
specified with the options padx and pady. The values for these options must be valid
screen distances (see Section B.3.2), specifying how much additional space should be
provided by the master widget around the packed widgets. The internal space can be
specified by the i padx and i pady options, where the values must be screen distances
as well. These values determine by how much space the packed widgets are expanded

22 Chapter 4. Geometry Managers

in each of their four borders. The examples in Figure .3 show the effects on the
geometries computed by the packer for both internal and external padding.

Figure 4.3: Additional space provided by the packer.
0z Wind o =]
label
second label widget
Jrd label

{Tk. send pack(b({NewLabel s}) padx: 1#m pady: 1#m }

0z WindovfS =]

label
second label widget

Jrd label

{Tk. send pack(b({NewLabel s}) ipadx: 2#m i pady: 2#m) }

4.2.3 Anchors

With the anchor option it can be specified where in a widget’s parcel the packer places
the widget. If no anchor option is given, the packer places the widget in the center of
its parcel. Otherwise, the widget is placed according to the option’s value, which can
be one of center, n, s, w, e, nw, ne, sw, and se. The Figure [f.4 shows the geometry
computed when wis used as anchor.

4.2.4 Filling and Expansion

For pleasant overall geometry it is imported that widgets have similar geometries. The
packer employs two different schemes how widgets can be arranged to have similar
geometries. One is filling: the widget extends over its entire parcel. The other one is
expansion: the widget’s parcel is extended such that the parcels of all slaves in a master
occupy the master’s parcel entirely.

Figure .5 shows the geometry computed when the option fi | | with value x is used.
Possible values for the fi | | option are x, y, bot h, and none (which is the default).

Expansion is only significant when the parcels of the slave do not fill the master’s parcel
completely. In all our previous examples, the parcel of the master was computed by the

4.3. The Grid Geometry Manager 23

Figure 4.4: Using the anchor option for packing.
0z Windo il [=]
lahel
second label widget
Jrd label

{Tk. send pack(b({NewLabel s}) anchor:w padx: 1#m pady: 1#m }

Figure 4.5: Using the fi | | option for packing.

Oz Winddil =]

label
second label widget
3rd label

{Tk. send pack(b({NewLabels}) fill:x)}

packer to be just large enough to contain the slave’s parcels. So there was no additional
space in the master’s parcel to be filled by expansion of slave parcels.

Figure f1.g shows three toplevel widgets which have been resized manually by dragging
with the mouse. The top most example shows that when the parcel of the toplevel
widget grows, the remaining space is filled by the label widgets. In the example in the
middle, only the parcels of the label widget’s are expanded. At the bottom, the parcels
are expanded and then filled up in both horizontal and vertical direction by the label
widgets.

4.3 The Grid Geometry Manager

The grid geometry arranges widgets in a grid-like fashion. For each widget to be
managed by the gri d command, a row and a column number is given. The manager
computes parcels for the widgets such that all parcels in the same column have the
same width and all parcels in the same row have the same height.

Figure f£.7 shows how eight labels are placed by the gri d command. Note that it is
not necessary that all positions in the grid are occupied by a widget. In our example in
Figure [£.7], the position at row and column 2 does not contain a widget.

24 Chapter 4. Geometry Managers

Figure 4.6: Resizing effects for filling and expansion.

0z Window _ O

label
second label widget
3rid label

{Tk. send pack(b({NewLabels}) fill:x)}

0z Window - 3] =
label

Second label widget

Jril lahel

{Tk. send pack(b({NewLabel s}) expand:true)}

0z Window _ O] x|
lahel

second label widget

Jrd label

{Tk. send pack(b({NewLabel s}) fill:both expand:true)}

4.3. The Grid Geometry Manager 25

Figure 4.7: Using the gri d command.
0z Windo i [=]
nw north he
west east

S south swr

proc {GL WR C S}
L={New Tk. | abel tklnit(parent:Wtext:S)}

{Tk.send grid(L row. R col um: C padx: 4 pady: 4)}

end
{&L W1 1 nw {& W1 2 north} {GL W1 3 ne}
{& W2 1 west} {& W2 3 east}

{& W3 1 sw} {& W3 2 south} {GL W3 3 sw}

4.3.1 Padding

The gri d command supports padding in the same way as the packer does. In the above
example we used external padding by giving padx and pady options. It is also possible
to use internal padding with the options i padx and i pady.

4.3.2 Span Options

The grid command can also compute geometries where widgets occupy more than
a single row or column. In the example shown in Figure £.8 the label widget L is
managed by the gri d command to occupy both two rows and two columns. How
much rows and columns a widget’s parcel spans is specified with the col urmspan and
r owspan options.

4.3.3 Sticky Options

The gri d command combines the anchor andfi | | options from the packer in a single
sti cky option. The value given for a sticky option determines both the side the widget
is placed in its parcel, and how the widget is to be stretched to fill its parcel.

Valid values for the sti cky option are all combinations of the letters n, s, w, and e
in any order. Giving one of n and s (or of wand e) specifies the anchor position of a
widget. Giving both n and s (or both wand e) requests that the widget should fill its
parcel horizontally (or vertically). For an example see Figure

26 Chapter 4. Geometry Managers

Figure 4.8: Using the col utmspan and r owspan options.

0z Wind =] E3

ne

Upper left
east

sw south sw

{Tk.send grid({New Tk. Il abel tklnit(parent: Wtext:)}
row 1 rowspan: 2
colum: 1 col utmspan: 2
padx: 4 pady: 4)}

{& W1 3 ne} {GL W2 3 east}

{& W3 1 sw {G W3 2 south} {GL W3 3 sw}

Figure 4.9: Using the st i cky option with the gri d command.

0z Wincl =]

ne

Upper left
east

sw south sw

{Tk.send grid({New Tk. | abel tklnit(parent: Wtext:)}
row 1 rowspan: 2
colum: 1 col utmspan: 2
sticky: nse
padx: 4 pady: 4)}

4.4, Using Anchors for Widgets 27

4.3.4 Weight Options

The grid geometry manager employs a different scheme for expansion of parcels than
the packer. Rows and columns in the grid can be assigned an integer weight. Additional
space available in the master of the grid is distributed between the rows and columns
according to their relative weight.

For example, if we take the last example and want that all additional space is given to
the third row and third column, we can do this by

{Tk. batch [grid(rowconfigure W3 weight:1)
grid(col umconfigure W3 weight:1)]}

Figure shows the result of resizing the window.

Figure 4.10: Result of resizing a window.

0z Window - |O

he
Upper left
east
sw south sWr

4.4 Using Anchors for Widgets

The anchor option for the packer and the st i cky option for the grid geometry manager
determine where the widget is placed in its parcel. In the same way several kind of
widgets, e.g., message and label widgets, take an anchor opt i on, which determines
where the displayed item, e.g., the text or bitmap, is placed within the widget.

Figure shows an example for the three label widgets used throughout Section
The possible values for the anchor options are the same as described in Section f.2.3

28

Chapter 4. Geometry Managers

Figure 4.11: Widgets with anchor options.

Oz Winddil =]

label
second label widget
3rd label

[L1 L2 L3]={NewLabel s}

{Tk.send pack(L1 L2 L3 fill:x)}
{L1 tk(configure anchor:w)}
{L3 tk(configure anchor:e)}

More Widgets

This chapters presents widgets which are intended to be interactive: buttons to invoke
actions, entries to enter text, scales to enter numbers, and listboxes to choose elements
of lists.

5.1 Buttons and Actions

actions Button widgets are similar to label widgets: they display text, bitmaps, or
images. Additionally, they provide for actions: pressing the mouse button over the
button widget, invokes an action. An action is either a procedure or a pair of object
and message. If the action is a procedure, pressing the widget button creates a thread
in which the procedure is applied. Otherwise, a thread is created that applies the object
to the message provided. Actions are discussed in more detail in Section .6

Figure B.1 shows a program which creates two buttons and attaches actions to them.
Pressing button B1 browses the atom pr essed, whereas pressing button B2 closes the
toplevel widget object T.

action values The acti on option is different from other options in that it has not
a generic translation as explained in Section B.2l Valid values for this option are not
tickles, but as already mentioned, procedures or object message pairs.

Internally, an object providing for the act i on option, creates a Tcl script which when
executed invokes the Oz procedure or object. This script is used then as value for the
configuration option conmand. All widgets which provide for the conmand option in
Tk, provide for the act i on option in Oz.

changing actions Actions can be deleted or changed by the method t kAct i on.
For example, deleting the action for button B1 and changing the action for B2 can be
done by executing:

{B1 tkAction}
{B2 tkAction(action: Bl # tkC ose)}

More information on buttons can be found in but t onfj.

1 . /tcltk/ TkCmd/ button. ht m

30 Chapter 5. More Widgets

Figure 5.1: Buttons with attached actions.

Press me!

&

B1={New Tk. button tklnit(parent: W

text:

action: proc {$}

{Browse pressed}
end)}

B2={ New Tk. button tklnit(parent: W

bi t map: error

action: Wtkd ose)}
{Tk.send pack(Bl B2 fill:x padx: 1#m pady: 1#m }

5.2 Checkbuttons, Radiobuttons, and Variables

checkbuttons Checkbutton widgets are used for binary choices. An indicator to
the left shows whether the button is ‘on’ or ‘off’. The state of the indicator is given by
a tickle variable. A tickle variable is a tickle object that provides messages to set and
to query the value of the variable.

radiobuttons Radiobuttons are used for non-binary choices. Several radiobuttons
are linked together to a group. Selecting a radio button de-selects all buttons belonging
to the same group and displays a mark in an indicator to the left. Radiobuttons are
linked together by tickle variables: all buttons belonging to the same group share the
same variable.

Figure b.7 shows an example of a checkbutton and a group of three radiobuttons. The
value with which the variable V1 is initialized determines whether the checkbutton
initially is selected. The value of the variable v2 determines which of the radiobuttons
is selected initially.

state To query the state of the radiobutton and of the checkbuttons we query the
state of the corresponding variables. Feeding the following expression

{Browse state(bol d: {V1 tkReturnint($)}==1
famly: {V2 tkReturnAtom $)})}

displays the values of the variables in the browser. See the next section (page B1)) for a
detailed explanation of the t kRet ur nl nt and t kRet ur nAt ommessages.

5.3. Querying Tickle Objects 31

Figure 5.2: A checkbutton and three radiobuttons.

0z Window O

| Bold

- Times & Helvetica - Courer

V1={New Tk.variable tklinit(fal se)}
C ={New Tk. checkbutton tklnit(parent: Wvari abl e: V1
text: anchor: w)}
V2={New Tk. variable tklnit()}
Rs={Map []
fun {$ F}
{New Tk.radi obutton tklnit(parent: W
vari abl e: V2 val ue: F
text: F anchor:w)}
end}
{Tk.batch [grid(C padx: 2#m col utmspan: 3)
grid(b(Rs) padx:2#m]}

actions \ery often selecting a checkbutton or a radiobutton must show immediate
effect. For this purpose it is possible to attach actions to checkbuttons and radiobuttons
in the same way as for buttons. Figure p.3 shows an example where the checkbutton
and the radiobuttons configure the font of a label widget. Note that the options used
for initialization of the checkbutton and radiobuttons are the same as in the example
shown in Figure p.2

Reference information on radiobuttons and checkbuttons can be found inr adi obut t onfj
and checkbut t onf}

5.3 Querying Tickle Objects

In the previous section we queried a Tk-variable’s state with the methods t kRet ur nl nt
and t kRet urnAt om In fact it is possible to query the state of all tickle objects, in
particular to query the state of widgets.

All tickle objects provide a method t kRet ur n. This method is similar to the t k method
in that it sends a message to the graphics engine. After the message has been executed
by the graphics engine, however, the t kRet ur n method returns a string, whereas the
t k method ignores this string.

synchronization The field of the t kRet ur n message with the largest integer fea-
ture is constrained to the string returned. The method t kRet ur n is asynchronous: it

2. /tcltk/ TkCnd/ r adi obut t on. ht m
3. . /tcltk/ TkCmd/ checkbutt on. ht m

Chapter 5. More Widgets

Figure 5.3: Actions for radiobuttons and checkbuttons.

0z Window O] x|

& Bold

~- Times - Helvetica & Courier

A test text.

fun {Get Wi ght}
if {V1 tkReturnlint($)}==1 then bold el se normal end
end
F={New Tk.font tklnit(size:24
famly: {V2 tkReturn($)}
wei ght: {GetWight})}
L={ New Tk. | abel tklnit(parent: Wtext: font:F)}
{C tkAction(action: proc {$}
{F tk(configure weight:{GetWight})}
{L tk(configure font:F)}
end)}
{List.forAlllnd []
proc {$ | Fam |y}
{{Nth Rs I} tkAction(action: proc {$}
{F tk(configure famly: Famly)}
{L tk(configure font:F)}
end) }
end}

sends the message to the graphics engine but does not block the thread until the return
string is available. Eventually the graphics engine writes the return string to the store.

The t kRet ur n message is sent asynchronously for efficiency reasons. One can start
another calculation without having to wait for t kRet ur n’s result. One can send several
t kRet ur n messages consecutively, and they will be sent immediately. The messages
will be handled by the graphics agent in the same order as they are sent.

If you want to be sure that you have received the return value, say X, of t kRet urn
before continuing, then you must use a { Wi t X} statement.

illegal return values Similar to the method t kRet ur n tickle objects provide meth-
ods that return atoms, integers, floats and lists of strings, atoms, integers, and floats.
Rather than writing a string to the store they write a value to the store which is obtained
by transforming the string to the particular type. If it is not possible to transform the
string into a value of that type, the boolean value f al se is written to the store.

5.3. Querying Tickle Objects 33

The methods that return a list of strings, atoms, integers, or floats split the string into

substrings separated by space characters. For instance, the return string is
transformed into the list[a b c] by the method t kRet ur nLi st At om Figure p.4 lists
the return methods and how the methods transform strings. Note that a string is

transformed by t kRet ur nl nt to the integer 1.

Figure 5.4: Returns methods and examples of return values.

Method Example string Return value

t kRet urn

t kRet ur nAt om

t kRet ur nl nt 1

t kRet ur nFl oat 1.0

t kRet ur nLi st []
t kRet ur nLi st At om [red]

t kRet ur nLi st | nt [false 1 1]

t kRet ur nLi st Fl oat [false 1.0 1.0]

string handling procedures The Tk Module provides also for a set of procedures
that can transform strings into atoms, integers, floats and lists of these three types. With
these procedures it is possible to transform return strings in a user defined fashion. For
more information see Section Strings, (System Modules).

5.3.1 Querying Configuration Options

The values of configuration options of a widget can be queried with the confi gure
command. Instead of giving a value to which the option is to be set, we give the tickle
uni t asvalue. The tickle uni t expands to just nothing, meaning that the value is not to
be set but to be queried. For example, to query the value of the bg option of a widget T,
we can feed

{T tkReturnListAton(configure bg:unit $)}

This displays a list of atoms, usually it suffices to know that the current value of the
option is the fifth element of the list, whereas its default value is the fourth element of
the list.

5.3.2 Querying Widget Parameters

The command wi nf o is helpful to query parameters of widgets. For instance, to query
the position and geometry of a widget T, we can use the following:

{Browse {Map [rootx wi dth rooty height]
fun {$ A}
{Tk.returnint winfo(A T)}
end}}

34

Chapter 5. More Widgets

The wi nf o command provides more options than those used above, for the details
please consult wi nf off.

5.4 Menus, Menuitems, and Menubuttons

Menu widgets serve as containers for menu entries. A menu entry can be one of the
following:

separ at or displays a horizontal line
command similar to button widgets

radi obutton similar to radiobutton widgets
checkbut t on similar to checkbutton widgets
cascade displays sub menus

Menu entries are not widgets. In particular, menu entries are not managed by a ge-
ometry manager. Instead as soon as a menu entry is created it is displayed in its par-
ent menu. To configure a menu entry after it has been created, one needs to use the
ent ryconf i gur e command rather than the conf i gur e command.

tear off entry The program shown in Figure p.5 creates two menu widgets ML and
M. The first cascade entry of the menu widget ML is configured such that it displays
the menu M2 when the menu is traversed. The option t ear of f determines that the first
default so-called “tear off’ entry is not created. Selecting a tear off entry displays the
menu in a window on its own.

posting menus Usually menus are not visible. Only when needed a menu appears
on the screen, we say that it is posted. After the user has traversed the menu and has
selected an entry, the menu is made invisible again: it is unposted. Posting the menu
ML at the upper left edge of the screen can be done by

{ML tk(post 0 0)}

menubuttons From menus one can compose menu bars and popup menus. A menu
bar consists of several menubutton widgets. A menubutton widget can display text,
bitmaps, or images. To a menubutton a menu can be attached such that pressing the
button makes the menu widget appear on the screen. We do not discuss menu bars here
in detail, since the TkTool s module provides an abstraction that supports the creation
of menu bars (see Section B.3).

popup menus The command t k_popup can be used to display popup menus. It
takes as arguments the menu widget and the coordinates where the widget should ap-
pear on the screen. Ideally, we want the menu widget to appear after pressing the
mouse button when the mouse pointer is over some widget. The next section (page B5)
introduces events which allows to mattach actions to abitrary widgets.

Reference information can be found in nenufj and nenubut t onfj.

4 . /tcltk/ TkCmd/ wi nfo. ht m
5 . /tcltk/ TkCnd/ nmenu. ht m
6. /tcltk/ TkCmd/ nenubut t on. ht m

5.5. Events

35

\Y

=

Figure 5.5: A menu with entries, including a cascaded sub menu.

Background Color

Quit

]

={New Tk. menu tklnit(parent: W tearoff:fal se)}
={New Tk.nmenu tkinit(parent: ML tearoff:false)}
={ New Tk. menuentry. cascade

tklnit(parent: ML | abel : nmenu: M2) }

={New Tk. menuentry. separator tklnit(parent: M)}
={New Tk. menuentry. comand

tklnit(parent: ML | abel : action: Wtkd ose)}

={New Tk.variable tklnit(Cs.1)}
CEs={Map Cs fun {$ C

{New Tk. menuent ry. radi obutton
tkinit(parent: M | abel:C var:V val:C
action: Witk(configure bg:Q))}
end}

5.5 Events

binding to events Button widgets allow to specify an action which is invoked
when the button is pressed. This is only one particular example of attaching an action
to an event. The Tk toolkit allows to attach actions to any widget with the method
t kBi nd. To attach an action to an event we refer to as binding the action to the event.
The action is invoked when some event occurs. Examples for events are to move the
mouse pointer within a widget, or to press a mouse button when the mouse pointer is
over a widget. Actions can be given arguments. The arguments depend on the type of
the event, e.g., arguments can be the coordinates of the mouse pointer.

Let us look to the example from the previous section. There we created a menu widget
ML and a toplevel widget T. Now we want that the menu widget is posted if the mouse
button is pressed over the toplevel widget T. Additionally, we want the menu to get
posted at the position of the mouse pointer when the mouse button was pressed.

event patterns The program in Figure p.6 does what we want: for
the event option is the so-called event pattern. The value for the ar gs option describes
that the action should invoked with two arguments. The first (second) one should be
an integer giving the x (y) coordinate of the mouse pointer within the widget when the

36 Chapter 5. More Widgets

mouse button has been pressed. The acti on procedure pops up the menu widget at
exactly the screen coordinates. These are computed from the coordinates of the upper
left edge of the toplevel widget and the event arguments.

Figure 5.6: Action to popup menu.

{WtkBi nd(event:
ar gs: [int(x) int(y)]
action: proc {$ XY}
TX={Tk.returnlnt wi nfo(rootx W}
TY={Tk.returnlnt wi nfo(rooty W}

{Tk.send tk_popup(ML X+TX Y+TY)}
end) }

55.1 Event Patterns

An event pattern is either a string consisting of a single character, where the charac-
ter must be different from the space character and <. This event pattern matches a
KeyPr ess event for that character.

Otherwise, an event pattern must be a string
#Modi fier# - #Modifier# - #Type# - #Detail #

where only one of either Type or Det ai | is mandatory. This means, for example
that also

#Type#
or
#Det ai | #

are valid event patterns.

event modifiers and types Figure b.7 shows common event modifiers and event
types. Multiple entries separated by commas can be used as synonyms. The full set of
modifiers and types is described in bi ndf].

For example, the event pattern

7. /tcl tk/ TkCmd/ bi nd. ht m

5.5. Events

37

Figure 5.7: Some event modifiers and types.

Event Modifier

Contr ol Shi ft Lock Met a Al 't
Buttonl, B1 Button2,B2 Button3,B3 Button4,B4 Button5b, B5
Doubl e Triple

Event Type Description

Key, KeyPress key has been pressed

KeyRel ease key has been released

Butt on, Butt onPress mouse button has been pressed

But t onRel ease mouse button has been released

Ent er mouse pointer has entered a widget

Leave mouse pointer has left a widget

Mot i on mouse pointer has been moved within widget

matches the event that a mouse button is double-clicked while the shift key is pressed.

If the event is But t onPress or But t onRel ease, Det ai | may be the number of a
mouse button. The number must be between 1 and 5, where 1 is the leftmost button.
The number as detail means that only events from pressing or releasing this particular
button match. If no detail is given, pressing or releasing any button matches the event.
If a number is given as detail, But t onPress can be omitted, e.g., <But t onPr ess- 1>
and <1> match the same events.

If the event is KeyPr ess or KeyRel ease, Det ai | may be the specification of a key-
symbol, e.g., conma for the , key. For more information please consult bi ndf.

5.5.2 Event Arguments

The ar gs option of the t kBi nd method takes a list of argument specifications. An
argument specification describes the type of the argument and the argument itself. Fig-
ure B.g shows the valid types and some arguments. The types mean the same as the
types for the different return methods as discussed in Section 5.3

5.5.3 Invoking Actions

When an event matches an event pattern to which an action has been bound by t kBi nd,
a new thread is created in which the action is executed. If the action is a procedure the
arity of the procedure has to be equal to the length of the argument list specified in
t kBi nd.

If the action is a pair of object and message, the object is applied to message with the
arguments appended. For example, after creating an event binding by

{T tkBi nd(event:
args: [int(x)]
action: O # invoke(button))}

8 . /tcltk/ TkCnd/ bi nd. ht m

38

Chapter 5. More Widgets

Figure 5.8: Event arguments.

Argument Type

string(A), A at om(A) i nt (A) f1 oat (A)

list(string(A)),list(A list(atom(A list(int(A) list(float(A

Event Argument Description

X x coordinate

y y coordinate

K string describing the symbol of the key pressed
A character describing the key pressed

pressing the leftmost button at x-coordinate 42 creates a thread that executes the state-
ment

{O invoke(button 42)}

5.5.4 Appending and Deleting Event Bindings

If t kBi nd is used as before, any other existing binding for the event pattern specified
is overwritten. If no action is specified any existing binding for the event pattern is
deleted.

For a single event pattern there may be more than one binding. To create an event bind-
ing that does not overwrite already existing bindings, we can give the option append
with value t r ue. For instance, if we do not only want to popup the menu but also to
display pop in the Browser, we can create an additional binding by

{WtkBi nd(event:
append: true
action: proc {$} {Browse pop} end)}

5.6 More on Actions: Listeners

In previous sections we used procedures or pairs of object and message as actions.
Each time an action is invoked, a new thread is created. While this is fine as it comes
to efficiency (threads in Oz are light weight), it may cause trouble in that the order in
which actions are invoked might be lost: the threads are created in the right order but
there is no guarantee that they will run in that order.

The class Tk. I'i stener fixes this. An instance of a subclass of Tk. i stener has
a thread of its own in which it serves action messages in order of invocation. For
example, in

L ={New class $ from Tk.|istener
nmeth bl {Browse bl} end
neth b2 {Browse b2} end

5.7. Entries and Focus 39

end tklnit}
B1={New Tk. button tklnit(parent: Wtext: action: L#bl)}
B2={ New Tk. button tklnit(parent: Wtext: action: L#b2)}

{Tk. send pack(Bl B2 side:left)}

the methods b1 and b2 are always executed in the same order in which the correspond-
ing buttons are pressed.

When the t kI ni t method of the class Tk. I i st ener is executed, a new thread together
with a message stream is created. Whenever an action is invoked, where the object O
of an object message pair O¢+Mis an instance of Tk. | i st ener, no new thread is created
but Mis appended at the end of the message stream. The thread then serves the message
Mas soon as all previous messages on the stream have been served completely. It serves
Mby executing the object application { O M .

An additional message Mto be served can be given to a listener by the method t kSer ve.
For example, by

{L tkServe(bl)}

the message b1 is served by L.

5.7 Entries and Focus

An entry widget lets the user enter a single line of text into the widget. An example
is shown in Figure p.9. The initialization message for the entry widget specifies the
width of the entry in characters. The same holds true for the width of label widgets
displaying text: a value for the width without an unit appended is taken as width in
characters and not in pixels.

Figure 5.9: An entry widget to enter text.

0z Windows - |O] =]

File name: |WindnwF’rngramming.nz

L={ New Tk. | abel tklnit(parent: Wtext:)}

E={New Tk.entry tklnit(parent: Ww dth: 20)}

{Tk. batch [pack(L E side:left pady:1#m padx: 1#m
focus(E)]}

focus To be able to enter text into an entry, the entry needs to have the focus. If a
widget has the focus, all input from the keyboard is directed to that widget. A widget
that has the focus is drawn with a frame around it. To give the focus to widget, we can
use the f ocus command as in the above example.

40 Chapter 5. More Widgets

An entry widget can be given the focus also by clicking it with the mouse button. It
is also possible to give the focus to button widgets. That allows to invoke actions with
keys, and to move the focus between several widgets by pressing keys. For more on
this, see f ocusf]

returning entered text To query the string entered in a widget the command get
is provided. To display the entered string in the Browser we can execute

{Browse {E tkReturnAton(get $)}}

The string entered in an entry can be deleted, additional characters can be inserted, and
so on. More on entry widgets you can find in ent r y[q.

5.8 Scales

A scale widget allows to select a number from a certain range by moving a slider.
Each time the slider is moved, an action attached to the slider is invoked with a single
argument giving the current number value of the slider.

In Figure an example is shown which allows to display a color determined by three
sliders for the intensity of the base colors red, green, and blue. The object F stores the
intensity for each base color in an attribute. Whenever the method bg is executed it
changes the intensity for one of the base colors and changes the background color to
the combination of all three base colors.

The sliders are configured with the | abel option to display the name of the base color
as their labels. The other options besides of acti on and ar gs are self explanatory,
more information on them can be found in scal eft].

The value for the ar gs option must be a type specification similar to that used for
the specification of argument types in event bindings (see Section The only
difference is that no event argument specification is required. Invoking the action is
also similar. For instance, if the scale for the color r ed changes its value to 10, the
message bg(red 10) will eventually be served by the listener L.

5.9 Listboxes and Scrollbars

scanning A listbox displays a list of strings and allows the user to select one or
more of them. If the listbox contains more lines than it can display at once, the user can
select the strings to be displayed by scanning the listbox. The listbox can be scanned
by pressing the second mouse button and moving the mouse pointer up or down while
the button is still being pressed.

A more convenient way than scanning is to use scrollbar widgets. A scrollbar wid-
gets allows the user to determine the portion of strings displayed by moving a slider.
9 ./tcltk/ TkCnd/ f ocus. ht m

10 /tcltk/ TkCnd/ entry. ht m
1 /tcltk/ TkCmd/ scal e. htm

5.9. Listboxes and Scrollbars

Figure 5.10: Scales to configure a frame’s background color.

0z Window O

red

206

o
green

126

| LI
blue

L ={New class $ from Tk.|istener
attr red:0 green:0 blue:0

meth bg(C 1)
C<- 1| {F tk(configure bg:c(@ed @reen @lue))}
end
end tklnit}

n

={New Tk. frame tklnit(parent: W hei ght: 2#c)}
Ss={Map [red green bl ue]
fun {$ C
{New Tk. scal e tklnit(parent:Worient:horizontal
label :C "froni:0 to: 255
action: L # bg(Q
args: [int])}

| engt h: 8#c

end}
{Tk. send pack(b(Ss) F fill:x)}

42

Chapter 5. More Widgets

Scrollbars are independent of a particular widget type: they can be also attached to
other widgets including entries.

Figure shows a program that allows to select a color from a list of colors. The
list of colors is provided by some external file inserted at the beginning of the program.
The listbox object is initialized and creates an event binding for pressing the left mouse
button as follows. First the currently selected index | is retrieved (the strings in the list
box are indexed). Then the string C at this index is retrieved and used as background
color of the listbox widget.

Figure 5.11: A listbox together with a vertical scrollbar.

0z Window _|O
gjold I

goldenrod |
gray i
green

greenyellovs

grey £

L={ New Tk. | i stbox tklnit(parent: W height:6)}
{L tkBi nd(event:

action: proc {$}
I ={L tkReturn(curselection $)}
C={L tkReturn(get(l) $)}

{L tk(configure bg: O}
end)}

S={New Tk. scrol | bar tklnit(parent: W}

{ForAl'l (Color names 9%
proc {$ C

{L tk(insert O}
end}

{Tk. addYScrol | bar L S}
{Tk.send pack(L S fill:y side:left)}

attaching scrollbars To attach a scrollbar to a widget we use the predefined proce-
dure Tk. addYScrol | bar . It creates event bindings for the scrollbar such that moving
the scrollbar’s slider affects the visible strings of the listbox. Also it creates event
bindings for the listbox such that scanning the listbox is reflected by the scrollbar.

More information on listboxes can be found in | i st box[4 and more information on

12 Jtcltk/ TkCmd/ 1 stbox. ht m

5.10. Toplevel Widgets and Window Manager Commands 43

scrollbars in scr ol | bar 5,

5.10 Toplevel Widgets and Window Manager Commands

To manipulate toplevel widgets which are managed by the window manager similar to
how other widgets are managed by a geometry manager, Tcl/Tk provides for the wm
command.

For example, by
{Tk.send wn(iconify T)}

the toplevel widget T is iconified whereas by
{Tk. send wr(deiconify T)}

it is deiconified. For more information see wni.

Two important forms of the wncommand are supported such that they can be given as
options to the t ki ni t method of the Tk. t opl evel class.

titled toplevel For example
W={New Tk.toplevel tklnit(title:)}

creates a toplevel widget with the title Sormet hi ng di fferent.

withdrawn toplevels Sometimes it is important to create a toplevel widget in a
withdrawn state: the toplevel widget does not appear on the screen. This can be used
to first create all widgets to be contained in the toplevel widget, invoke a geometry
manager for them, and only then make the toplevel widget appear on the screen. A
toplevel widget can be created in withdrawn state by

We{New Tk.toplevel tklinit(w thdraw true)}
To make the toplevel widget appear, the window manager command
{Tk. send wn{deiconify W}

can be used.

Reference information on the window manager command can be found in wirf.

44

Chapter 5. More Widgets

Figure 5.12: Selecting files.

Open
Directory: Mhomesschulte/mozartisharefib -| |
£ ap 3 init 71 wp El Misc.o
7 hase 7 linker El .cvsignore [E] oze.sh
1 compiler £ misc E analyze E pztsh
£ cp £ op E hoot-initoztgz [E t2p.sh
£7 CWS 7 nzbatch E] boot-ozc.oztgz
7 dp 7 sp E] boot-ozc.sh
7 images 7 support B Makefilein
] =

File name: |Makefile.in Open
-| Cancel |

case {Tk.return tk_get QpenFil e}
of nil then skip

el seof S then {Browse file({String.toAtom S})}

end

5.11 Selecting Files

Tk provides for predefined dialogs to select files for being opened or for being saved.

Selecting a file to be opened can be done with the command t k_get OpenFi | e. For
example, an arbitrary file can be selected as shown in Figure p.12. If the command re-
turns the empty string (that is ni |), the selection dialog has been canceled. Otherwise,

the string S gives the filename of the file to be opened.

The visual appearance of the file selector depends on the operating system Oz runs on.
For example, the file selector for Unix based operating systems is shown in Figure
Running Oz under Windows uses the Windows specific file selector dialog.

To select filenames for saving the command t k_get SaveFi | e can be used in the same
way as above. The difference is that this command does not require that a file with the

selected filename already exists.

Reference information on both commands can be found int k_get OpenFi | eﬁ.

BB /tcltk/ TkCmd/ scrol | bar. ht m

14 Jtcl tk/ TkCrd/ wm ht m
15 /tcl tk/ TkCrd/ wm ht m

16, /tcltk/ TkCmd/ tk_get QpenFile. htm

5.12. Example: Help Popups 45

5.12 Example: Help Popups

In the following we want to look at a small example which provides for a generic
interactive help popup window. The idea is that if the mouse pointer stays over a
widget for some time without pressing a mouse button, a small help text is displayed.
The help text should disappear if the mouse pointer leaves the screen area covered by
the widget.

We will build a procedure At t achHel p such that help texts are enabled by application
of the procedure to a widget and a help text. We proceed in three steps, the first is to
create a function to create a toplevel widget that displays the help text, the second is a
listener class (that is, a subclass of Tk. | i st ener), and the last step is the definition of
At t achHel p itself.

5.12.1 Displaying Help

The procedure MakePopup shown in Figure .13 takes a widget and the help text as
its argument and returns a function to create a toplevel widget containing the text at a
position relative to the widget on the screen.

Figure 5.13: Creating a help window.

45a (Definition of MakePopup E3a
fun {MakePopup Parent Text}

fun {$}
[XY H={Map [rootx rooty height]
fun {$ W}
{Tk.returnlnt winfo(W Parent)}
end}

WE{ New Tk.topl evel tklnit(w thdraw true bg: bl ack)}
M={ New Tk. nessage
tklnit(parent: Wtext: Text bg: khaki aspect: 400)}

{Tk. batch [wr(overrideredirect Wtrue)
wn{ geonetry W #X+10#" + #Y+H)
pack(M padx: 2 pady: 2)
wn{ dei coni fy W]}

end
end

The returned function creates a toplevel widget in withdrawn state and configures the
toplevel widget such that it:

1. is not equipped with a frame from the window manager. This is done by using
the window manager command overri der edi rect : the window manager is
advised to not ‘redirect’ the toplevel widget into a frame.

2. appears at a position relative to X and Y coordinates of the widget parent, which
done by the geonet ry window manager command.

46 Chapter 5. More Widgets

3. appears on the screen by deiconifying it.

5.12.2 The Listener Class

The listener class Hel pLi st ener is shown in Figure §.14] The method i ni t initializes
an instance of this class by creating a procedure for creation of the popup widget.

Figure 5.14: The listener class Hel pLi st ener .

46a (Definition of HelpListener fda
cl ass Hel pLi stener from Tk. | i stener

attr
cancel : unit
popup: unit

meth init(parent:P text:T)
popup <- {MakePopup P T}
Tk.listener,tklnit

end

nmeth enter
Cc

cancel <- C
thread A={ Al arm 1000} in
{Wito C A}
if {IsDet A} then WE{ @opup} in
{Wait C {Wtkd ose}
end
end
end
nmet h | eave
@ancel =uni t
end
end

When the mouse pointer enters the parent widget, the method ent er gets executed.
This method stores a new variable C in the attribute cancel which serves as flag
whether the help popup must be closed. The newly created thread waits until either
one second has elapsed (A gets bound after 1000 milliseconds) or the widget has been
left (C gets bound). Then possibly the widget for the help text is created, which gets
closed when the parent widget is left. Note that if both A and C happen to be bound at
the same time, the popup will be created and then closed immediately.

The | eave method signals that the help popup must be closed by binding the variable
stored in cancel .

5.12.3 AttachHel p

The definition of At t achHel p is shown in Figure p.15. It creates a listener and creates
event bindings that are served by that listener.

5.12. Example: Help Popups 47

| oca
Definition of MakePopup f5a
Definition of HelpListener Eda

proc {AttachHel p Wdget Text}
L={ New Hel pLi stener init(parent: Wdget text: Text)}

{W dget tkBind(event: action: L#enter append:true)}
{Wdget tkBind(event: action: L#l eave append:true)}
{Wdget tkBind(event: action: L#l eave append:true)}
end
end
Figure 5.15:

5.12.4 Using Help Popups

A small example that shows how to use help popups is shown in Figure p.16.

48

Chapter 5. More Widgets

Figure 5.16: Demo of the Hel pPopup class.

0z Window o =]

Okay | Cancel | Quit |

Close the
windowr.

Bs={Map [Okay’ # ' Do not hi ng nmeani ngful .’
"Cancel’ # 'Do nothing at all.’
"Quit’ # ' Close the window. ']
fun {$ Text # Hel p}
B={ New Tk. button tklnit(parent: Wtext: Text)}
in
{AttachHelp B Hel p} B
end}
{Tk. send pack(b(Bs) side:left padx:2#m pady: 2#m) }

Canvas Widgets

Canvas widgets allow to create and manipulate graphical items. In particular, arbitrary
widgets can be embedded within canvas widgets. Reference information on canvas
widgets can be found in canvasfj

6.1 Getting Started
items A canvas widget displays items. An item is created with the creat e com-
mand, followed by coordinates and options. The number of coordinates and the options
depend on the particular type of item to be created. An item is of one the following
types:

arc
An arc item displays a piece of a circle.

bi t map
A bitmap item displays a bitmap with a given name.

i mage
Displays an image.

I'ine
A line item consists of several connected segments. It is possible to configure line
items such that Bézier splines are used.

oval
An oval can either be a circle or an ellipsis.

pol ygon
A polygon is described by three or more line segments. As with line items, it is possible
to use Bézier splines.

rectangl e

Displays a rectangle.

1 . /tcltk/ TkCmd/ canvas. ht m

50

Chapter 6. Canvas Widgets

t ext

W ndow

Displays text consisting of a single or several lines.

Displays a widget in the canvas where the canvas widget serves as geometry manager
for the widget.

For example,

C={New Tk. canvas tklnit(parent: W}
{Tk. send pack(C)}
{C tk(create rectangle 10 10 1#c 1#c fill:red outline: bl ue)}

creates a red rectangle with a blue outline near to the upper left corner of the canvas
widget C. More information on the different items can be found in canvasfj.

6.2 Example: Drawing Bar Charts

As a more interesting example let us consider a program to draw bar charts. The
definition of a class to display barcharts is shown in Figure p.I] Before any item is
created in the canvas by the method bar s, the canvas widget is configured such that
the scrollable region is just large enough for the barchart to be drawn.

The method Dr awBar s creates for each element of the list Ys a rectangle item as well
as a text item, which both correspond to the value of the particular item. The value
of Ois used as option for the rectangle items. This value depends on Tk. i sCol or
which is t r ue if the screen is a color screen, and f al se otherwise. For a color screen
the rectangle items are filled with the color wheat . For a black and white screen, the
rectangle items are drawn in a stippled fashion: only those pixels are drawn with the
fill color (that is bl ack) where the stipple bitmap contains a pixel.

Figure [p.2 shows how the bar chart canvas is used in order to display data.

6.3 Canvas Tags

Each item in a canvas is identified by a unique integer. This integer can be returned
by using the t kRet ur nl nt method for creating items rather than the t k method. The
returned integer can then be used to manipulate the corresponding item. However,
returning values from the graphics engine involves latency. But there are some good
news here, since it is not necessary to refer to items by numbers.

tags Canvas widgets offer a more powerful and easier method to manipulate single
items or even groups of items. Items can be referred to by tags. A single item can be
referred to by as many tags as you like to. Tags are provided as objects in Oz. Before an
item can be added to a tag, a tag object must be created from the class Tk. canvasTag
and initialized with respect to a particular canvas.

To add an item to a tag, the option t ags is used when creating the item. For instance,
2. /tcl tk/ TkCnd/ canvas. ht m

6.3. Canvas Tags 51

Figure 6.1: A canvas for displaying bar charts.

| ocal
O=if Tk.isColor then o(fill:wheat)
el se o(stipple:gray50 fill:black)
end
D=10 D2=2*D B=10

cl ass Bar Canvas from Tk. canvas
nmeth DrawBars(Ys H X)
case Ys of nil then skip
[T Y Yr then
{self tk(create rectangle X H X+D HY*D2 O}
{sel f tk(create text X H+D text:Y anchor:w}
{self DrawBars(Yr H X+D2)}
end
end
nmet h confi gure(SX SY)
{self tk(configure scrollregion:q(B ~B SX+B SY+B))}
end
nmet h bars(Ys)
Wr=D2* ({Length Ys}+1) Hy=D2*({FoldL Ys Max 0} +1)
in
{sel f configure(W HY)}
{sel f DrawBars(Ys HY D)}
end
end
end

R={ New Tk. canvasTag tklnit(parent: C)}
{C tk(create rectangle 10 10 40 40 fill:red tags: R}

creates a new rectangle item and adds it to the tag R

A second oval item can be added to the tag R by
{C tk(create oval 20 20 40 40 tags:R}

All items referred to by a tag can be manipulated simultaneously. The following moves
all items 40 pixels to the right:

{R tk(rmove 40 0)}

Figure b.3 shows a small program that creates items interactively. Pressing the mouse
button over the canvas widget creates either a rectangle item or an oval item at the
position of the mouse pointer. All rectangle items created are added to the tag R, and
all oval items are added to the tag O.

52 Chapter 6. Canvas Widgets
Figure 6.2: Using a canvas for drawing barcharts.
0z Window - 3] x|
34 217 2 342456 7 7 8,/
P | P
C={ New Bar Canvas tklnit(parent: Whg: white w dth: 300 hei ght:120)}
H={ New Tk. scrol | bar tklnit(parent: Worient:horizontal)}
V={New Tk. scrol | bar tklnit(parent:Worient:vertical)}
{Tk. addXScrol | bar C H {Tk.addYScrollbar C V}
{Tk. batch [grid(C row. 0 col um: 0)
grid(Hrow 1 colum: 0 sticky:we)
grid(V row. 0 colum:1 sticky:ns)]}
{Chars([1 3453421723424
56778435677843])}
configuring items Items can be configured with the command i t enconfi gure,
which is similar to the command conf i gur e for widgets. The color of all rectangle
and oval items in our previous example can be changed by:
{R tk(itenconfigure fill:wheat)}
{O tk(itenconfigure fill:blue)}
Besides of the nove command there are other commands for manipulating items. For
instance, executing the following statement
{O tk(delete)}
deletes all oval items attached to the tag O. Other commands allow to scale items, to
change the coordinates of items and so on. More information on possible commands
are available from canvasfl.
6.3.1 Event Bindings

Similar to widgets, event bindings can be created for tags. Creating an event binding
for a tag means to create the binding for all items referred to by the tag. The following
example creates an event binding for all oval items.

3. /tcltk/ TkCmd/ canvas. ht m

6.3. Canvas Tags 53

Figure 6.3: A canvas for creating rectangles and ovals.

0z Window - |0O] x|

C={New Tk. canvas tklnit(parent: Ww dt h: 300 hei ght: 200 bg: white)}
R={ New Tk. canvasTag tklnit(parent: C)}
O={New Tk. canvasTag tklnit(parent:C)}
{C tkBi nd(event: ' <1>
args: [int(x) int(y)]
action: proc {$ X Y}
{C tk(create rectangle X-10 Y-10 X+10 Y+10
tags: R fill:steel blue)}
end) }
{C tkBi nd(event: ' <2>
args: [int(x) int(y)]
action: proc {$ XY}
{C tk(create oval X-10 Y-10 X+10 Y+10
tags: Ofill:orange)}
end) }
{Tk. send pack(C}

54 Chapter 6. Canvas Widgets

Col ors={New cl ass $ from BaseObj ect
attr cs: (Cs=red|green| bl ue|yellow orange| Cs
in
GCs)
nmet h get (?0)
C inCC = (cs < Q)
end
end noop}
{O tkBi nd(event:
action: proc {$}
{O tk(itenconfigure
fill:{Colors get($)})}
end)}

Clicking with the right mouse button on an oval item, configures all items referred to
by oto employ a different color. The Col or s object serves as color generator. Each
time the method get is invoked, it returns a color from the circular list of colors stored
in the attribute cs.

6.4 Example: An Animated Time Waster

In this section we want to program a procedure that signals to the user that a particular
computation is still running and entertains the user by some animation.

Figure .4 shows a subclass of Tk. canvasTag that creates a bitmap item showing
a magnifying glass and starts a thread to move that bitmap randomly. The random
movement can be stopped by binding the variable D given as value for the feature
done. If the animation has stopped indeed, the variable S gets bound, as you can see in
method nove.

The procedure i t Done shown in Figure p.5 takes a variable Done which is used for
signalling when the computation we are waiting for is finished. It creates a randomly
moving magnifier item and as soon as the magnifier signals that it has been stopped
(by st opped) the toplevel windows is closed.

For example,

decl are Done
{ Wi t Done Done}

creates a waiting dialog which disappears by binding Done

Done=uni t

6.4. Example: An Animated Time Waster 55

Figure 6.4: An animated time waster class.

| ocal
fun {RandCoord} {OS.rand} nod 20 + 15 end

cl ass RandMag from Tk. canvasTag
neth init(parent: P done: D stopped:S)
{self tkinit(parent:P)}
{P tk(create bitmap 0 0
bi t map: #{ Property. get Y #

tags: sel f foreground: bl ue)}
thread {self move(D S)} end
end
neth nmove(D S)
{WaitO {Al arm 400} D}
if {IsDet D} then S=unit else
{sel f tk(coords {RandCoord} {RandCoord})}
{sel f nmove(D S)}
end
end
end
end

56 Chapter 6. Canvas Widgets

Figure 6.5: A procedure for creating wait dialogs.

Computing...

proc {\Wait Done Done}
We{ New Tk. topl evel tklnit(w thdraw true)}

L={ New Tk. | abel tklnit(parent: Wtext:)}
C={New Tk. canvas tklnit(parent: Ww dt h: 50 hei ght: 50)}
St opped

{Tk. batch [wm(overrideredirect Wtrue)
pack(L C side:left pady:2#m padx: 2#m
wn{dei coni fy W]}
_={New RandMag i nit(parent: C done: Done stopped: St opped)}
thread {Wait Stopped} {Wtkd ose} end
end

7.1

Text Widgets

Text widgets display (as suggested by the name) one or more lines of text, where the
text can be edited. It offers commands to manipulate segments of text and to embed
other widgets into the flow of text. This chapter attempts to give a short overview on
text widgets, for the details consult t ext [J.

Manipulating Text

Let us start with a very simple example where we want to display a given text in a text
widget. Figure [7.1] shows a program that does the job.

Figure 7.1: Displaying text.

0z Window - |O] =]

The quick brown fox jumps owv
er the lazy dog.

T={New Tk.text tklnit(parent: Ww dth: 28 height:5 bg:white)}
{T tk(insert)}

scanning Similar to listboxes (page fi0), a text widget supports scanning: The text
can be scanned by pressing the second mouse button and moving the mouse pointer
while the button is still being pressed. And of course, in the same way as canvas
widgets scrollbars can be attached to a text widget.

text wrapping The text is wrapped where word boundaries (that is, spaces) are not
taken into account. Changing the wrapping such that word boundaries are preserved
can be done as follows:

1 . /tcltk/ TkCnd/text. htm

58

Chapter 7. Text Widgets

{T tk(configure wap:word)}

positions Positions in the displayed text can be referred to by positions. A position
can be denoted by a tickle p(L C), where L gives the line (starting from one) and C
the position in that line (also starting from zero). Positions also can take modifiers, for
more details on this issue see t ext f|. Another helpful position is which refers
to the position after the last character.

getting text Portions of the text can be retrieved. For example,
{T tkReturnAton{get p(1 4) p(1 9) $)}

returns the atom qui ck.

inserting text Positions also specify where to insert text, for example
{T tk(insert p(1 4))}

inserts the text directly before quick.

deleting text In the same way text can also be deleted. For example
{T tk(delete p(1 4) p(1l 14))}

deletes again the text

disabling input We do not discuss here how to employ a text widget as a powerful
editor, please see again t ext . If you try to place a cursor inside the text widget
and make some character strokes, you will notice that by default a text widget accepts
input. To prevent a user from altering the text in a display only situation the widget can
be configured as follows:

{T tk(configure state:disabled)}

7.2 Text Tags and Marks

creating tags In the same way as canvas widgets, text widgets support tags. While
canvas tags refer to sets of items (see Section [.2), text tags refer to sets of characters
and allow to configure and manipulate the set of characters. For example, the following

B={ New Tk.textTag tklnit(parent: T foreground: brown)}

creates a new tag, where the tag is configured such that all characters that will be
referred to by this tag (initially, no characters) are displayed in brown color.

2. /tcltk/ TkCmd/ text. htm
3. /tcltk/ TkCmd/ text. ht m

7.2. Text Tags and Marks 59

adding text Already inserted text can be added to a tag by defining the text portion
to be added with positions. The following

{B tk(add p(1 10) p(1 15))}

adds the text part " br own" to the tag B, which changes the color of that text to brown.

configuring tags Changing the configuration of a tag takes effect on all characters
that are referred to by that tag. For example, if the tag B is configured for a larger font
as follows

{B tk(configure font:{New Tk.font tklnit(size:18)})}

the text portion " br own" now appears in that larger font.

inserting and adding text Thei nsert command also supports tags directly. The
following

{T tk(insert)}
{T tk(insert B) }
{T tk(insert)}

adds three portions of text to the text widget, where the text " br own" is both inserted
and added to the tag B, which makes it appear both in brown color and with a large
font. Now the text widget looks as shown in Figure 7.2,

Figure 7.2: Using tags with text widgets.

0z Window _ O] =]

The quick DTOWN fox jumps
owver the lazy dog.

Dogs are brown as well.

In the same way as described in Section p.3 for canvas tags, events can be attached to
text tags. We will exemplify this in the next section (page §0).

In addition to tags, text widgets also support marks. Marks refer to positions in the
text rather than to particular characters as tags do. They are supported by the class
Tk. t ext Mar k. For their use, see again t ext ﬂ

4 . /tcltk/ TkCmd/ text. htm

60 Chapter 7. Text Widgets

7.3 Example: A ToyText Browser

In the following we discuss a tiny ToyText browser that supports following of links
in the text and going back to previously displayed pages. A ToyText hypertext is a
record, where the features are the links and the fields describe pages. For an example,
see (page [0). A page consists out of head and body, where the body is a list of
elements. An element is either a virtual string or a record a(ref: R ES), where Ris a
feature of the record and Es is a list of elements.

Figure [/.3 shows the main routine to display a ToyText page in a text widget T. The
procedure Di spl ay takes a list of references Rs as input, and displays the page that is
referred to by its first element.

Figure 7.3: Displaying a ToyText page.

60a (Definition of Display Bda
proc {Di splay Rs}
case Rs of nil then skip
[] RIRr then

{T tk(delete p(0 0))}
{Head ToyText.R head Rr} {Body ToyText.R body Rs}
end

end

Figure [/.4 shows how the head of a ToyText page is displayed, where E is the virtual
string to be displayed and Rs is the list of current references without its first element.
The tag HT is configured such that clicking it displays the previous page.

Figure 7.4: Displaying the head of a ToyText page.

60b (Definition of Head [db
| ocal
HF={ New Tk. f ont tkinit(fam|ly: helvetica size:18 weight: bol d)}
HT={New Tk.textTag tklnit(parent: T font: H- foreground: orange)}

proc {Head E Rs}
{T tk(insert p(0 0) E# HT) }
{HT tkBi nd(event:
action: proc {$} {D splay Rs} end)}
end
end

Figure [7.5 shows how the body of a ToyText page is displayed, where Es is the list of
elements, CT is the current tag to which inserted text is added, and Rs are the current
references, including a reference to the page currently under display as first element.
To display a reference element, a new tag RT is created that carries as action a procedure
that displays the referred page.

7.3. Example: A ToyText Browser

61

Figure 7.5: Displaying the body of a ToyText page.

61a (Definition of Body pla
| ocal
BF={ New Tk. f ont tkinit(famly: helvetica size:12 weight:normal)}
BT={ New Tk.textTag tklnit(parent: T font:BF)}
proc {Do Es CT Rs}
case Es of nil then skip
[T EEr then
case E
of a(ref:R Es) then
RT={ New Tk.text Tag tklnit(parent: T font:BF
foreground: bl ue underline:true)}

{RT tkBi nd(event:
action: proc {$} {Display R Rs} end)}

{Do Es RT Rs}

el se
{T tk(insert E CT)}

end

{Do Er CT Rs}

end
end

proc {Body Es Rs}
{Do Es BT Rs}
end
end

Figure shows the complete ToyText browser and how it looks when displaying

pages.

62 Chapter 7. Text Widgets

Figure 7.6: A ToyText browser.

0z Window - |0] x|

A canvas widget displays items. An item is of
one the following types; arc, hitmap, image,
line, owal, polygon, rectangle, text, and
Wwindaow,

proc {ToyBrowse ToyText Root}
WE{ New Tk.toplevel tklnit}
T={New Tk.text tklnit(parent: Wwi dth:40 hei ght:8 bg: white wap:word)}
Definition of Head Bdo
Definition of Body [l
Definition of Display pda
in
{Tk. send pack(T)}
{Di splay [Root]}
end
{ToyBrowse (Sample ToyText [0a) canvas}

Tools for Tk

This chapter presents some common graphical abstractions you might find useful when
building graphical user interfaces in Oz. The graphical abstractions are provided by the
module TkTool s and are built on top of the functionality provided by the Tk module.

8.1 Dialogs

A dialog displays some graphical information and several buttons. A simple abstraction
to build dialogs is provided by the class TkTool s. di al og.

Figure B.1 shows an example dialog for deleting a file. The class TkTool s. di al og is
a subclass of Tk. f rame. Creating and initializing an instance of this class creates a
toplevel widget together with buttons displayed at the bottom of the toplevel widget.
The instance itself serves as container for user-defined widgets that are displayed at the
top of the dialog (as the label and the entry widget in our example).

The initialization message for a dialog must contain the t i t | e option, which gives the
title of the dialog. The buttons to be displayed are specified by a list of pairs, where the
first pair in the list describes the leftmost button. The pair consists of the label of the
button and the action for the button. The action can be also the atom t kO ose, which
means that the action of the button sends a t kCl ose message to the dialog. In a similar
manner, the action can be a unary tuple with label t kC ose, which means that first the
action specified by the tuple’s argument is executed and then the dialog is closed. The
def aul t option specifies which button should be the default one. The default button is
marked by a sunken frame drawn around the button.

In the above example, pressing the button executes an r mcommand to remove
the file with the name as given by the entry widget E. Only if execution of this command
returns 0, the dialog is closed.

The class TkTool s. di al og is a subclass of Tk. f rame. In particular it allows to wait
until the dialog object gets closed. For example, the execution of

{wait D.tkd osed}

blocks until the dialog in the above example is closed.

Chapter 8. Tools for Tk

Figure 8.1: A dialog to remove files.

Remove File o =]

File name: |WindnwF‘rngramming.nz

Okay Cancel |

D={ New TkTool s. di al og
tkinit(title:

buttons: [#
proc {$}
try
{CS.unlink {E tkReturn(get $)}}
{D tkd ose}
catch _ then skip
end
end
tkd ose]
default: 1)}
L={ New Tk. | abel tklnit(parent:D text:)}

E={New Tk.entry tklnit(parent: D bg: wheat w dth: 20)}
{Tk. batch [pack(L E side:left pady:2#n) focus(E)]}

8.2 Error Dialogs

A dialog to display error messages is provided by the class TkTool s. error, which
is a sub class of TkTool s. di al og. Figure B.2 shows an example of how to use
TkTool s. error.

transient widgets All dialogs provide for the option nast er . By giving a toplevel
widget as value for mast er, the dialog appears as a transient widget: depending on the
window manager the widget appears with less decoration, e.g., no title, on the screen.
Moreover, when the master widget is closed, the dialog is closed as well.

8.3 Menubars

keyboard accelerators A menubar is a frame widget containing several menubut-
ton widgets. To each of the menubutton widgets a menu is attached. The menu con-
tains menuitems being either radiobutton entries, checkbutton entries, command entries
(similar to button widgets), separator entries or cascade entries to which sub menus are
attached. The menu entries can be equipped with keyboard accelerators describing key

8.3. Menubars 65

Figure 8.2: A transient error dialog.

Error

Error in system
configuration: too
much memory.

Okay
E={ New TkTool s. error
tklnit(master: W
text: #
)}

event bindings that can be used to invoke the action of the menu entry. A keyboard
accelerator must be added to the menu entry and the right event binding needs to be
created.

Creating a menubar by hand has to follow this structure and is inconvenient due to
the large numbers of different kinds of widgets and menu entries that are to be cre-
ated. To ease the creation of a menubar, the TkTool s module provides the procedure
TkTool s. menubar that creates to a given specification a menubar and creates keyboard
accelerators with the right event bindings. The specification of a menubar consists of
messages used to initialize the necessary widgets and entries, where the label deter-
mines the kind of entry to be created.

Figure B.3 shows an example for menubar creation. The procedure TkTool s. menubar
takes two widgets and two menubar specifications as input and returns a frame contain-
ing the widgets for the menubar. The widget given as first argument serves as parent
for the menubar’s frame, whereas the widget given as second argument receives the
key bindings for the accelerators. The specification given as third (fourth) argument
describe the left (right) part of the menubar.

A menubar specification consists of a list of menubut t on messages. The valid options
are those for the t ki ni t method of a menubutton widget object, where the parent
field is not necessary, and the additional options menu and f eat ur e. The value for the
menu option must be a list of specifications for the menu entries. The menu entries
are specified similar to the menubuttons, the allow for the additional options f eat ur e,
key, and event .

The value for the key describes the keyboard accelerator and event binding to be cre-
ated. They can be used as follows:

66 Chapter 8. Tools for Tk

Figure 8.3: A menubar.

0z Window - |a] =]
Test Options

I Incremental

Size o - - - _.

-~ Middle
“~ Large

V={New Tk.variable tklnit(0)}
B={ TkTool s. menubar WW
[menubutton(text: Test' underline:0

menu: [conmand(| abel : " About test

action: Browse#about
key: alt(a)
feature: about)

separ at or

command(| abel : "Quit’
action: Wtkd ose
key: ctrl(c)

feature: quit)]
feature: test)
nmenubutton(text:’ Options’ underline:0
menu: [checkbutton(label: ' ncrenental
var: {New Tk.variable tkinit(false)})
separ at or
cascade(l abel : " Size
nmenu: [radi obutton(l abel:’ Small
var:V val ue: 0)
radi obutton(l abel :” M ddl e
var:V val ue: 1)
radi obutton(l abel :’ Large
var:V value: 2)])])]
nil}
F={New Tk. frane tklnit(parent: Wwi dth: 10#c hei ght: 5#c bg:ivory)}
{Tk.send pack(B F fill:x)}

8.4. Handling Images 67

key option value accelerator event binding

a a a
ctrl(a) Ca <Control -a>
alt(a) A-a <Al t-a>
alt(ctrl(a)) A-Ca <Al't-Control -a>
ctrl(alt(a)) CAa <Control -Alt-a>

In case one wants to use different event bindings than those generated from the key
option value, one can specify the event pattern as value for the option event .

The f eat ur e options for menubuttons and menu entries attach features to the created
objects such that the object get accessible by these features. For instance, to disable
the ‘About test’ entry is possible with

{B.test.about tk(entryconfigure state:disabled)}

The menus attached to menubuttons or to cascade entries can be accessed under the
feature nenu. For instance the first tear off entry from the “Test’ menu can be removed
with

{B.test.menu tk(configure tearoff:false)}

Itis possible to extend a menubar created with TkTool s. menubar with further entries.
The following statement adds a menu entry just before the Qui t entry:

A={New Tk. menuentry. command tklnit(parent:B.test. menu
before: B.test. quit
| abel :)}

which can be deleted and removed from the menu again by:

{A tkd ose}

8.4 Handling Images

A convenient way to create images is given by TkTool s. i nages. It takes a list of
URLSs as input and returns a record of images, where the fields are atoms derived
naturally from the URLs. The type and format of images is handled according to the
extension of the URL.

For example,
U=
I ={ TkTool s. i nages [U#
U#
U# 1}
binds | to a record with features wp, queen, and , Where the fields are

the corresponding images.

First the basename of the URL is computed by taking the last fragment of the URL
(that is, *wp.gif” for example). The extension (the part following the period, *gif’ for
example), determines the type and format of the image. The part of the basename that
precedes the period yields the feature.

68

Chapter 8. Tools for Tk

A

Data and Program Fragments

The following appendix features some program fragments and data specifications omit-

ted in the chapters’ text.

A.l1 Getting Started

Change capitalization pda

fun {$ I}

case {Char.type 1}
of | ower then {Char.toUpper 1}
[T upper then {Char.tolLower I}

el se |
end
end

A.2 More on Widgets

Color names fdb
[ali cebl ue
azure
bl ack
bl uevi ol et
cadet bl ue
coral
cyan
dar kgol denr od
dar kgr ey
dar kol i vegr een
dar kred
dar ksl at ebl ue
dar kt ur quoi se
deepskybl ue
dodger bl ue
forestgreen
gol d
green

anti quewhite
bei ge

bl anchedal nond
br own
chartreuse

cor nf | ower bl ue
dar kbl ue

dar kgr ay

dar kkhak

dar kor ange

dar ksal non

dar ksl at egr ay
dar kvi ol et

di ngr ay
firebrick

gai nsboro

gol denr od

gr eenyel | ow

aquamari ne
bi sque

bl ue
bur | ywood
chocol at e
cornsil k

dar kcyan

dar kgr een
dar kmagent a
dar kor chi d
dar kseagr een
dar ksl at egr ey
deeppi nk

di ngr ey
floralwhite
ghostwhite
gray

grey

70

Appendix A. Data and Program Fragments

honeydew
ivory

| avender bl ush
I'i ght bl ue

I i ght gol denr od
i ghtgreen

I'i ght sal non

I'i ght sl at ebl ue
| i ght st eel bl ue
l'inen

medi unaquamari ne
medi unpur pl e
medi unspri nggreen
m dni ght bl ue
noccasi n
navybl ue
orange

pal egol denr od
pal evi ol etred
peru
powder bl ue

r osybr own

sal nmon

seashel

sl at ebl ue
snow

tan

turquoi se
wheat

yel | ow

A.3 Text Widgets

Sample ToyText [fda
hyper (canvas:
e(head:
body: [

a(ref:arc

hot pi nk

khaki

| awngr een
lightcora

I'i ght gol denr odyel | ow
lightgrey

I'i ght seagreen
I'i ght sl at egray
Iightyellow
nmagent a

medi unbl ue
nmedi unseagr een
medi unt ur quoi se
m nt cream
navaj owhi te

ol dl ace

or anger ed

pal egreen
papayawhi p

pi nk

purpl e
royal bl ue
sandybr own

si enna

sl at egray
springgreen
thistle

vi ol et

white

yel | ongr een]

a(ref:bitmp
a(ref:imge
a(ref:line

a(ref: polygon
a(ref:rectangl e
a(ref:text
a(ref:w ndow

e(head:

[
[
[
[
a(ref:oval [
[
[
[
[

i ndi anr ed

| avender

| enonchi ffon

I i ght cyan
I'ightgray

I i ght pi nk

I'i ght skybl ue
i ghtsl ategrey
Ii megreen

mar oon

medi unor chi d
nmedi unsl at ebl ue
medi unvi ol etred
m styrose

navy

ol i vedrab
orchid

pal et ur quoi se
peachpuf f

pl um

red
saddl ebr own
seagr een
skybl ue

sl at egr ey

st eel bl ue

t onat o
violetred

whi t esnoke

A.3. Text Widgets

71

body

bi t map:
e(head
body

i mage:
e(head
body
l'ine:
e(head
body

oval :

e(head:

body

pol ygon:
e(head
body

:["An arc itemdisplays a piece of a
"circle.’])

;' Bit map’
:["A bitmap itemdisplays a bitnmap
"with a given nane.’])

2 1 mage’
;[Displays an inmage.’])

2’ Line’
:["Aline itemconsists of severa
' connected segnents.’])

Oval’
:["An oval can either be a circle or
"an ellipsis.’])

1’ Pol ygon’
[A polygon is described by three or
"nmore " a(ref:line ["line'])
segnents.’])

rectangl e:

e(head
body

text:
e(head
body

wi ndow:
e(head
body

;" Rectangl e’
:['Displays a rectangle.’])

D Text’

;[Displays text consisting of a single
"or several lines.’])

1’ W ndow

:['Displays a widget in the canvas where
"the canvas wi dget serves as geonetry
"manager for the wi dget.

" See al so
a(ref:canvas ['the canvas widget']) "."1))

72

Appendix A. Data and Program Fragments

Bibliography

[1] Mark Harrison and Michael McLennan. Effective Tcl/Tk Programming: Wkit-
ing Better Programs with Tcl and Tk. Professional Computing Series. Addison-
Wesley, Reading, MA, USA, 1998.

[2] John K. Qusterhout. Tcl and the Tk Toolkit. Professional Computing Series.
Addison-Wesley, Reading, MA, USA, 1994.

action, fi

anchor,

background color,
bar chart,

bitmap, L3, [[4
canvas

canvas, tag,
canvas, A9

documentation,

entryfield,
examples, [

font
font, family, [[3
font, name, L3
font, size, [[3
font, weight, [L3
format, [I4

geometry,
gi f M4
graphics engine, f

grid, {9, P3

hei ght, ﬂ

image, [[4
image format, [[4
image type, [(4
item
item, arc, 9
item, bitmap, 9

item, configuration, 52

item, image, 9
item, line, &9
item, oval, ig

item, polygon, fi9
item, rectangle, 9

item, text,
item, window,

option

74

Index

option, abbreviation, [L]]

option, anchor, @, @

option, aspect , [[§

option, bor der wi dt h,

color
option, color, numerical, [7]
option, color, symbolic, [[]]

option, color, 1]

option, col utmspan, E

option, expand, P2

fill
option, fill, both, P2
option, fill, none, @
option, fill,x, P2
option, fill,y,P2

option, fill,P2

option, f ont , f[3

option, i padx, 1}, P§

option, i pady, @, @

justify
option, j ustify, center, E
option, justify,left,
option, j ustify,right,

option, j ustify,

option, padx, 1, P§

option, pady, 1, p§

relief
option, rel i ef,flat, [
option, rel i ef , gr oove, [LO
option, rel i ef , r ai sed,
option, rel i ef , ri dge,
option, rel i ef , sunken,

option, rel i ef

option, r owspan, P§

option, screen distance, []]

side
option, si de, bot t om @
option, si de, | ef t, P1]
option, si de, ri ght , P1
option, si de, t op, 1

option, si de, 1]

option, st i cky, P§

option, wei ght , P7

INDEX

75

pack,
pack, [9
packer, [[9
padding, 1, P§
photo, [14
ppm 4
Property
Property, get, B

scanning, 57

text
text, deleting,
text, disabling input,
text, getting,
text, inserting,
text, mark,
text, position,
text, tag,
text, wrapping, b7
text, 7]
tickle
tickle, special,
tickle, translation to strings,
Tk
Tk, addXScr ol | bar, @
Tk, addYScr ol | bar, @
Tk, bat ch, f
Tk, but t on, {, BQ
Tk, canvas,
Tk, canvasTag,
Tk, checkbut t on, B]]
Tk, entry, f,
Tk, font, [[3
Tk, f rame, [LO
Tk, i nage, E
Tk, i sCol or, @
Tk, | abel , [[2
Tk, | i st box,
Tk, li st ener,,@
Tk, nenu,
menuentry
Tk, menuentry, cascade,
Tk, menuent ry, conmand,
Tk, menuentry, separ at or,
Tk, menuentry,
Tk, nessage,
Tk, radi obut t on, @
Tk, returnlnt, @
Tk, scal e, @

Tk, scrol | bar, @, @
Tk, send, @, B, B [0
Tk, t ext Mar k, @
Tk, t ext Tag,
Tk, t opl evel , , ,@
Tk, vari abl e, B]]

tk, B[B

Tk module, §

tk_get OpenFi l e, f4

t k_popup,

t kAction, B2

t kBi nd, B6, 53

tkd ose, fi

tkinit,B @B

t KRet urn,

TkTools
TkTool s, di al og, @
TkTool s, error, b4
TkTool s, i nages, @
TkTool s, menubar,

TkTool s, @

toplevel widget, [

URL, 1§

widget
widget, close,
widget, frame,
widget, text, b7
widget, toplevel,

widget, fll, B

widget hierarchy,

wi dt h, 1

window,

