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Abstract

This tutorial introduces the Oz programming language and the Mozart programming sys-
tem. Oz is a multi-paradigm language that is designed for advanced, concurrent, net-
worked, soft real-time, and reactive applications. Oz provides the salient features of
object-oriented programming including state, abstract data types, objects, classes, and in-
heritance. It provides the salient features of functional programming including composi-
tional syntax, first-class procedures/functions, and lexical scoping. It provides the salient
features of logic programming and constraint programming including logic variables, con-
straints, disjunction constructs, and programmable search mechanisms. It allows users to
dynamically create any number of sequential threads. The threads are dataflow threads in
the sense that a thread executing an operation will suspend until all operands needed have
a well-defined value.

The tutorial covers most of the concepts of Oz in an informal way. It is suitable as first
reading for programmers who want to be able to quickly start writing programs without
any particular theoretical background. The document is deliberately informal and thus
complements other Oz documentation.

The Mozart programming system has been developed by researchers from DFKI (the Ger-
man Research Center for Artificial Intelligence), SICS (the Swedish Institute of Computer
Science), the University of the Saarland, UCL (the Université catholique de Louvain), and
others.

The material in this document is still incomplete and subject to change from day to day.
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1

Introduction

The Mozart system implements Oz 3, the latest in the Oz family of multi-paradigm
languages based on the concurrent constraint model. Oz 3 is almost completely up-
ward compatible with its predecessor Oz 2. The main additions to Oz 2 are functors
(a kind of software component) and futures (for improved dataflow behavior). Oz 2
is itself a successor to the original Oz 1 language, whose implementation was first re-
leased publicly in 1995. Except as otherwise noted, all references to Oz in the Mozart
documentation are to Oz 3.

Oz 3 and the Mozart system have been developed mainly by the research groups of
Gert Smolka at the DFKI (the German Research Center for Artificial Intelligence),
Seif Haridi at SICS (the Swedish Institute of Computer Science), and Peter Van Roy at
UCL (the Université catholique de Louvain).

Underlying all versions of Oz is a concurrent constraint programming model, extended
to support stateful computations, i.e., computations on mutable objects. The theoret-
ical foundation of the concurrent constraint model is given in [3]. The original Oz
computation model, Oz 1, supports a fine-grained notion of concurrency where each
statement can potentially be executed concurrently. This results in a fine-grained model
similar to the actor model. A good exposition of the Oz 1 programming model is given
in [5]. Our experience using Oz 1 showed that this kind of model, while theoretically
appealing, makes it very hard for the programmer to control the resources of his/her
application. It is also very hard to debug programs and the object model becomes
unnecessarily awkward.

Oz 2 remedies these problems by using instead a thread-based concurrency model,
with explicit creation of threads. A powerful new object system has been designed and
traditional exception handling constructs have been added. In addition, the constraint
solving and search capabilities have been greatly enhanced.

Oz 3 conservatively extends Oz 2 with two concepts, functors and futures, and also
corrects several minor syntactic problems. A functor is a kind of software component.
It specifies a module in terms of the other modules it needs. This supports incremental
construction of programs from components that may be addressable over the Internet
by URLs, see [1]. A future is a logic variable that can be read but not written. This
allows safe dataflow synchronization over the Internet.

The Mozart system supports distributed and networked applications. It is possible
to connect Oz computations located on different sites, resulting in a single network-
transparent computation. Mozart supports automatic transfer of stateless data and code
among sites, mobile computation (objects), message passing, shared logic variables
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and orthogonal mechanisms for fault detection and handling for the network and for
sites.

1.1 Summary of Oz features

A very good starting point is to ask why Oz. Well, one rough short answer is that,
compared to other existing languages, it is magic! It provides programmers and system
developers with a wide range of programming abstractions to enable them to develop
complex applications quickly and robustly. Oz merges several directions of program-
ming language designs into a single coherent design. Most of us know the benefits
of the various programming paradigms whether object-oriented, functional, or con-
straint logic programming. When we start writing programs in any existing language,
we quickly find ourselves confined by the concepts of the underlying paradigm. Oz
solves this problem by a coherent design that combines the programming abstractions
of various paradigms in a clean and simple way.

So, before answering the above question, let us see what Oz is. This is again a difficult
question to answer in a few sentences. So, here is the first shot. It is a high-level
programming language that is designed for modern advanced, concurrent, intelligent,
networked, soft real-time, parallel, interactive and pro-active applications. As you see,
it is still hard to know what all this jargon means. More concretely:

• Oz combines the salient features of object-oriented programming, by providing
state, abstract data types, classes, objects, and inheritance.

• Oz provides the salient features of functional programming by providing a com-
positional syntax, first-class procedures, and lexical scoping. In fact, every Oz
entity is first class, including procedures, threads, classes, methods, and objects.

• Oz provides the salient features of logic programming and constraint program-
ming by providing logic variables, disjunctive constructs, and programmable
search strategies.

• Oz is a concurrent language where users can create dynamically any number
of sequential threads that can interact with each other. However, in contrast to
conventional concurrent languages, each Oz thread is a dataflow thread. Execut-
ing a statement in Oz proceeds only when all real dataflow dependencies on the
variables involved are resolved.

• The Mozart system supports network-transparent distribution of Oz computa-
tions. Multiple Oz sites can connect together and automatically behave like
a single Oz computation, sharing variables, objects, classes, and procedures.
Sites disconnect automatically when references between entities on different
sites cease to exist.

• In a distributed environment Oz provides language security. That is, all language
entities are created and passed explicitly. An application cannot forge references
nor access references that have not been explicitly given to it. The underlying
representation of the language entities is inaccessible to the programmer. This is
a consequence of having an abstract store and lexical scoping. Along with first-
class procedures, these concepts are essential to implement a capability-based
security policy, which is important in open distributed computing.
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1.2 The Kernel Language

This section gives a short but precise introduction to the Oz kernel language. The full
Oz language can be regarded as syntactic sugar to a small kernel language. The kernel
language represents the essential part of the language.

Figure 1.1: The Oz kernel language
〈Statement〉 ::= 〈Statement1〉 〈Statement2〉

| X = f(l1:Y1 ... ln:Yn)
| X = 〈number〉
| X = 〈atom〉
| X = 〈boolean〉
| {NewName X}
| X = Y
| local X1 ... Xn in S1 end

| proc {X Y1 ... Yn} S1 end

| {X Y1 ... Yn}
| {NewCell Y X}

| {Exchange X Y Z}

| {Access X Y}

| if B then S1 else S2 end

| thread S1 end

| try S1 catch X then S2 end

| raise X end

The Oz execution model consists of dataflow threads observing a shared store. Threads
contain statement sequences Si and communicate through shared references in the
store. A thread is dataflow if it only executes its next statement when all the values
the statement needs are available. If the statement needs a value that is not yet avail-
able, then the thread automatically blocks until it can access that value. As we shall
see, data availability in the Oz model is implemented using logic variables. The shared
store is not physical memory, rather it is an abstract store which only allows operations
that are legal for the entities involved, i.e., there is no direct way to inspect the internal
representations of entities. The store contains unbound and bound logic variables, cells
(named mutable pointers, i.e., explicit state), and procedures (named lexically scoped
closures that are first-class entities). Variables can reference the names of procedures
and cells. Cells point to variables. The external reference procedures are variables.
When a variable is bound, it disappears, that is, all threads that reference it will auto-
matically reference the binding instead. Variables can be bound to any entity, including
other variables. The variable and procedure stores are monotonic, i.e., information can
only be added to them, not changed or removed.

Figure 1.1 defines the abstract syntax of a statement S in the kernel language. We
briefly define each possible statement. Statement sequences are reduced sequentially
inside a thread. Values (records, numbers, etc.) are introduced explicitly and can be
equated to variables. All variables are logic variables, declared in an explicit scope
defined by the local statement. Procedures are defined at run-time with the proc

statement and referred to by a variable. Procedure applications block until their first
argument refers to a procedure. State is created explicitly by NewCell, which creates
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a cell, an updateable pointer into the variable store. Cells are updated by Exchange
and read by Access. Conditionals use the keyword if and block until the condition
variable B is true or false in the variable store. Threads are created explicitly with
the thread statement. Exception handling is dynamically scoped and uses the try and
raise statements.

The full Oz language is defined by transforming all its statements into this kernel lan-
guage. This will be explained in detail in this document. Oz supports idioms such
as objects, classes, reentrant locks, and ports [5][7]. The system implements them
efficiently while respecting their definitions. As an introduction we will give a brief
summary of each idiom’s definition. For clarity, at this stage we have made small
conceptual simplifications. Full definitions are given later in this document.

1.3 Classes

A class is essentially a record that contains the method table and attribute names. A
class is defined through multiple inheritance, and any conflicts are resolved at definition
time when building its method table.

1.4 Objects

An object is essentially a special record having a number of components. One com-
ponent is the object’s class. Another component is a one-argument procedure that
references a cell, which is hidden by lexical scoping. The cell holds the object’s state.
Applying an object Obj to message M applies the object’s procedure to M. The argument
indexes into the method table. A method is a procedure that is given a reference to the
state cell. In general it modifies the state of the object.

1.5 Reentrant locks

A reentrant lock is essentially a one-argument procedure {Lck P} used for explicit
mutual exclusion, e.g., of method bodies in objects used concurrently. Reentrant locks
use cells and logic variables to achieve their behavior. P is a zero-argument procedure
defining the critical section. Reentrant means that the same thread is allowed to reenter
the lock. Calls to the lock may therefore be nested. The lock is released automatically
if the thread in the body terminates or raises an exception that escapes the lock body.

1.6 Ports

A port is an asynchronous channel that supports many-to-one communication. A
port P encapsulates a stream S. A stream is a list with unbound tail. The operation
{Send P M} adds M to the end of S. Successive sends from the same thread appear in
the order they were sent.
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The Interactive Development
Environment

This tutorial contains many code examples and you are highly encouraged to try them
out interactively as you go. This can be done very comfortably by taking advantage
of the Mozart system’s interactive development environment. We normally call it the
OPI, which stands for the Oz Programming Interface, and it is described extensively
in “The Oz Programming Interface” . In the present section, you will learn just enough
about the OPI to allow you to start experimenting with our code examples.

2.1 Starting The OPI

Under Unix, the OPI is normally started by invoking the command oz at the shell
prompt. Under Windows, the installation procedure will have provided you with a
Mozart system program group: click on the Mozart item in this group. Shortly there-
after you get a window that looks like this:

The OPI uses the Emacs editor as the programming front-end. If you are not famil-
iar with Emacs or its terminology, you should consult the Emacs on-line tutorial [6]
available from the Help menu in the Emacs menu bar.

The initial window is split in two text buffers. The upper buffer called Oz is a space
where you can write small pieces of code and interactively execute them: it essentially
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plays, for Oz code, the same role as the *scratch* buffer for emacs lisp code. The
lower text buffer is called *Oz Compiler* and shows a transcript of your interaction
with the compiler of the Mozart subprocess.

2.2 Hello World

Let us begin with the traditional Hello World example. In the Oz buffer, type the
following:

{Show ’Hello World’}

This example illustrates the unconventional syntax of procedure invocation in Oz: it is
indicated by curly braces. Here, procedure Show is invoked with, as single argument,
the atom ’Hello World’.

In order to execute this fragment, we position the point on the line we just typed and
select Feed Line from the Oz menu in the menubar. We now see:

The transcript from the compiler indicates that {Show ’Hello World’} was fed to
the compiler and accepted, i.e. successfully parsed and compiled. But was it executed,
and, if yes, where is the output? Indeed it was executed, but the output appears in a
different buffer called *Oz Emulator*: this contains the execution transcript. If we
select from the Oz menu Show/Hide -> Emulator, we now see:
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2.3 Good News For The Programmer

The OPI has many features to support interactive code development.

2.3.1 Code Editing

The oz-mode is a major mode for editing Oz code, and provides automatic indentation
as well font-lock support for code colorization.

2.3.2 Key Bindings

You may interact with the underlying Mozart subprocess from any buffer in oz-mode,
not just from the Oz buffer as demonstrated earlier. Furthermore, all the actions that
we carried out in the Hello World example can be invoked more conveniently through
key bindings instead of through the Oz menu.

C-. C-l Feed current line
C-. C-r Feed selected region
C-. C-b Feed whole buffer
M-C-x Feed current paragraph
C-. C-p idem
C-. c Toggle display of *Oz Compiler* buffer
C-. e Toggle display of *Oz Emulator* buffer

a ‘paragraph’ is a region of text delimited by empty lines.

2.3.3 Compiler Errors

The OPI also has support for conveniently dealing with errors reported by the compiler.
Let us type the following erroneous code in the Oz buffer:
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local A B in

A = 3

proc {B}

{Show A + ’Tinman’}

end

{B 7}

end

and feed it to the compiler using M-C-x. The compiler reports 2 errors and we see:

C-x ‘ (that is Control-x backquote) positions the transcript to make the first error
message visible and moves the point, in the source buffer, to where the bug is likely to
be located.

Indeed, we should not try to add an integer and an atom! If we invoke C-x ‘ once
more, we see:
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Here, we have mistakenly applied a nullary procedure to an argument.

2.3.4 Graphical Development Tools

The mozart system has many graphical tools. Here we only mention the Browser which
is otherwise extensively documented in “The Oz Browser” . So far, we merely used the
procedure Show to print out values. Instead, we can invoke Browse to get a graphical
display interface. For example, feeding:

{Browse ’Hello World’}

causes the following new window to pop up:

This is not very exciting, but let’s now feed this code:

declare W H

{Browse foo(width:W height:H surface:thread W*H end)}

Now the browser window shows a term that is only partially known (instantiated) since
variable W and H have been declared but not yet bound to values:
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Now let us feed W=3 and we see that the browser automatically updates the display to
reflect the information we just added.

Now we feed H=5 and again the browser updates the display and now shows a fully
instantiated term:

The browser allows you to see the evolution of the instantiation of a term as concurrent
computations (threads) proceed and add more information.



3

Basics

We will initially restrict ourselves to the sequential programming style of Oz. At this
stage you may think of Oz computations as performed by a sequential process that
executes one statement after the other. We call this process a thread. This thread has
access to the store. It is able to manipulate the store by reading, adding, and updating
information stored in the store. Information is accessed through the notion of vari-
ables. A thread can access information only through the variables visible to it, directly
or indirectly. Oz variables are single-assignment variables or more appropriately logic
variables. In imperative languages like C and Java, a variable can be assigned multiple
times. In contrast, single assignment variables can be assigned only once. This no-
tion is known from many languages including dataflow languages and concurrent logic
programming languages. A single assignment variable has a number of phases in its
lifetime. Initially it is introduced with unknown value, and later it might be assigned a
value, in which case the variable becomes bound. Once a variable is bound, it cannot
itself be changed. A logic variable is a single assignment variable that can also be
equated with another variable. Using logic variables does not mean that you cannot
model state-change because a variable, as you will see later, could be bound to a cell,
which is stateful, i.e., the content of a cell can be changed.

A thread executing the statement:

local X Y Z in S end

will introduce three single assignment variables X, Y, Z and execute the statement S in
the scope of these variables. A variable normally starts with an upper-case letter, pos-
sibly followed by an arbitrary number of alphanumeric characters. Variables may also
be presented textually as any string of printable characters enclosed within back-quote
characters, e.g. ‘this $ is a variable‘. Before the execution of S the variables
declared will not have any associated values. We say that the variables are unbound.
Any variable in an Oz program must be introduced, except for certain pattern matching
constructs to be shown later.

Another form of declaration is:

declare X Y Z in S

This is an open-ended declaration that makes X, Y, and Z visible globally in S, as well
as in all statements that follow S textually, unless overridden again by another variable
declaration of the same textual variables. X, Y, Z are global variables.
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3.1 Primary Oz Types

Figure 3.1: Oz Type Hierarchy

Oz is a dynamically typed language. Figure 3.1 shows the type hierarchy of Oz. Any
variable, if it ever gets a value, will be bound to a value of one of these types. Most
of the types seem familiar to experienced programmers, except probably Chunk, Cell,
Space, FDInt and Name. We will discuss all of these types in due course. For the
impatient reader here are some hints. The Chunk data type allows users to introduce
new abstract data types. Cell introduces the primitive notion of state-container and
state modification. Space will be needed for advanced problem solving using search
techniques. FDInt is the type of finite domain that is used frequently in constraint
programming, and constraint satisfaction. Name introduces anonymous unique un-
forgeable tokens.

The language is dynamically-typed in the sense that when a variable is introduced, its
type as well as its value are unknown. Only when the variable is bound to an Oz value,
does its type become determined.

3.2 Adding Information

In Oz, there are few ways of adding information to the store or (said differently) of
binding a variable to a value. The most common form is using the equality infix oper-
ator =. For example, given that the variable X is declared the following statement:

X = 1

will bind the unbound variable X to the integer 1, and add this information to the store.
Now, if X is already assigned the value 1, the operation is considered as performing a
test on X. If X is already bound to an incompatible value, i.e. to any other value different
from 1, a proper exception will be raised. Exception handling is described later.
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3.3 Data Types with Structural Equality

The hierarchy starting from Number and Record in Figure 3.1 defines the data types of
Oz whose members (values) are equal only if they are structurally similar. For example
two numbers are equal if they have the same type, or one is a subtype of the other, and
have the same value. For example, if both are integers and are identical numbers or
both are lists and their head elements are identical as well as their respective tail lists.
Structural equality allows values to be equivalent even if they are replicas occupying
different physical memory location.

3.4 Numbers

The following program, introduces three variables I,F and C. It assigns I an integer, F
a float, and C the character t in this order. It then displays the list consisting of I,F,
and C.

local I F C in

I = 5

F = 5.5

C = &t

{Browse [I F C]}

end

Oz supports binary, octal, decimal and hexadecimal notation for integers, which can
be arbitrary large. An octal starts with a leading 0, and a hexadecimal starts with a
leading 0x or 0X. Floats are different from integers and must have decimal points.
Other examples of floats are shown where ~ is unary minus:

~3.141 4.5E3 ~12.0e~2

In Oz, there is no automatic type conversion, so 5.0 = 5 will raise an exception.
Of course, there are primitive procedures for explicit type conversion. These and
many others can be found in [4]. Characters are a subtype of integers in the range
of 0, ..., 255. The standard ISO 8859-1 coding is used (not Unicode). Printable
characters have external representation, e.g. &0 is actually the integer 48, and &a is
97. Some control characters have also a representation e.g. &\n is a new line. All
characters can be written as &\ooo, where o is an octal digit.

Operations on characters, integers, and floats can be found in the library modules
Char1, Float2, and Int3. Additional generic operations on all numbers are found
in the module Number4.

1Section Characters, (The Oz Base Environment)
2Section Floats, (The Oz Base Environment)
3Section Integers, (The Oz Base Environment)
4Section Numbers in General, (The Oz Base Environment)
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3.5 Literals

Another important category of atomic types, i.e. types whose members have no internal
structure, is the category of literals. Literals are divided into atoms and names. An
Atom is symbolic entity that has an identity made up of a sequence of alphanumeric
characters starting with a lower case letter, or arbitrary printable characters enclosed in
quotes. For example:

a foo ’=’ ’:=’ ’OZ 3.0’ ’Hello World’

Atoms have an ordering based on lexicographic ordering.

Another category of elementary entities is Name. The only way to create a name is by
calling the procedure {NewName X} where X is assigned a new name that is guaranteed
to be worldwide unique. Names cannot be forged or printed. As will be seen later,
names play an important role in the security of Oz programs. A subtype of Name is
Bool, which consists of two names protected from being redefined by having the re-
served keywords true and false. Thus a user program cannot redefine them, and mess
up all programs relying on their definition. There is also the type Unit that consists
of the single name unit. This is used as synchronization token in many concurrent
programs.

local X Y B in

X = foo

{NewName Y}

B = true

{Browse [X Y B]}

end

3.6 Records and Tuples

Records are structured compound entities. A record has a label and a fixed number of
components or arguments. There are also records with a variable number of arguments
that are called open records. For now, we restrict ourselves to ’closed’ records. The
following is a record:

tree(key: I value: Y left: LT right: RT)

It has four arguments, and the label tree. Each argument consists of a pair Fea-
ture:Field, so the features of the above record are key, value, left, and right. The
corresponding fields are the variables I,Y,LT, and RT. It is possible to omit the features
of a record reducing it to what is known from logic programming as a compound term.
In Oz, this is called a tuple. So, the following tuple has the same label and fields as the
above record:

tree(I Y LT RT)

It is just a syntactic notation for the record:
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tree(1:I 2:Y 3:LT 4:RT)

where the features are integers starting from 1 up to the number of fields in the tuple.
The following program will display a list consisting of two elements one is a record,
and the other is tuple having the same label and fields:

declare T I Y LT RT W in

T = tree(key:I value:Y left:LT right:RT)

I = seif

Y = 43

LT = nil

RT = nil

W = tree(I Y LT RT)

{Browse [T W]}

The display will show:

[tree(key:seif value:43 left:nil right:nil)

tree(seif 43 nil nil)]

3.7 Operations on records

We discuss some basic operations on records. Most operations are found in the module
Record5. To select a field of a record component, we use the infix dot operator, e.g.
Record.Feature

% Selecting a Component

{Browse T.key}

{Browse W.1}

% will show seif twice in the browser

seif

seif

The arity of a record is a list of the features of the record sorted lexicographically. To
display the arity of a record we use the procedure Arity. The procedure application
{Arity R X} will execute once R is bound to a record, and will bind X to the arity of
the record. Executing the following statements

% Getting the Arity of a Record

local X in {Arity T X} {Browse X} end

local X in {Arity W X} {Browse X} end

will display

[key left right value]

[1 2 3 4]

5Section Records in General, (The Oz Base Environment)
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Another useful operation is conditionally selecting a field of a record. The operation
CondSelect takes a record R, a feature F, and a default field-value D, and a result
argument X. If the feature F exists in R, X is bound to R.F, otherwise X is bound to the
default value D. CondSelect is not really a primitive operation. It is definable in Oz.
The following statements:

% Selecting a component conditionally

local X in {CondSelect W key eeva X} {Browse X} end

local X in {CondSelect T key eeva X} {Browse X} end

will display

eeva

seif

A common infix tuple-operator used in Oz is #. So, 1#2 is a tuple of two elements, and
observe that 1#2#3 is a single tuple of three elements:

’#’(1 2 3)

and not the pair 1#(2#3). With the # operator, you cannot directly write an empty or a
single element tuple. Instead, you must fall back on the usual prefix record syntax: the
empty tuple must be written ’#’() or just ’#’, and a single element tuple ’#’(X).

The operation {AdjoinAt R1 F X R2} binds R2 to the record resulting from adjoining
the field X to R1 at feature F. If R1 already has the feature F, the resulting record R2

is identical to R1 except for the field R1.F whose value becomes X. Otherwise the
argument F:X is added to R1 resulting in R2.

The operation {AdjoinList R LP S} takes a record R, a list of feature-field pairs, and
returns in S a new record such that:

• The label of R is equal to the label of S.

• S has the components that are specified in LP in addition to all components in R
that do not have a feature occurring in LP.

This operation is of course defined by using AdjointAt.

local S in

{AdjoinList tree(a:1 b:2) [a#3 c#4] S}

{Show S}

end

% gives S=tree(a:3 b:2 c:4)
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3.8 Lists

As in many other symbolic programming languages, e.g. Scheme and Prolog, lists
form an important class of data structures in Oz. The category of lists does not belong
to a single data type in Oz. They are rather a conceptual structure. A list is either the
atom nil representing the empty list, or is a tuple using the infix operator | and two
arguments which are respectively the head and the tail of the list. Thus, a list of the
first three positive integers is represented as:

1|2|3|nil

Another convenient special notation for a closed list, i.e. a list with a determined num-
ber of elements is:

[1 2 3]

The above notation is used only for closed list, so a list whose first two elements are 1
and 2, but whose tail is the variable X looks like:

1|2|X

One can also use the standard record notation for lists:

’|’(1 ’|’(2 X))

Further notational variant is allowed for lists whose elements correspond to character
codes. Lists written in this notation are called strings, e.g.

"OZ 3.0"

is the list

[79 90 32 51 46 48]

or equivalently

[&O &Z & &3 &. &0]

3.9 Virtual Strings

A virtual string is a special tuple that represents a string with virtual concatenation, i.e.
the concatenation is performed when really needed. Virtual strings are used for I/O
with files, sockets, and windows. All atoms, except nil and ’#’, as well as numbers,
strings, or ’#’-labeled tuples can be used to compose virtual strings. Here is one
example:

123#"-"#23#" is "#100
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represents the string

"123-23 is 100"

For each data type discussed in section, there is a corresponding module in the Mozart
system. The modules define operations on the corresponding data type. You may find
more about these operations in The Oz Base Environment documentation6

6“The Oz Base Environment”
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Equality and the Equality Test
Operator

We have so far shown simple examples of the equality statement, e.g.

W = tree(I Y LT LR)

These were simple enough to understand intuitively what is going on. However, what
happens when two unbound variables are equated X = Y, or when two large data struc-
tures are equated. Here is a short explanation. We may think of the store as a dynami-
cally expanding array of memory words called nodes. Each node is labeled by a logic
variable. When a variable X is introduced a new node is created in the store, labeled by
X, having the value unknown. At this point, the node does not possess any real value;
it is empty as a container that may be filled later.

A variable labeling a node whose value is unknown is an unbound variable. The nodes
are flexible enough to contain any arbitrary Oz value. The operation

W = tree(1:I 2:Y 3:LT 4:LR)

stores the record structure in the node associated with W. Notice that we are just getting
a graph structure. The node contains a record with four fields. The fields contain arcs
pointing to the nodes labeled by I ,Y ,LT, and LR respectively. Each arc, in turn, is
labeled by the corresponding feature of the record. Given two variables X and Y, the
operation X = Y will try to merge their respective nodes. Now we are in a position to
give a reasonable account for the merge operation X = Y, known as the incremental
tell or alternatively the unification operation.

• If X and Y label the same node, the operation is completed successfully.

• If X (resp. Y) is unbound then merge the node of X (resp. Y) with the node of Y
(resp. X). Merging means replacing all references to the node X by a reference
to Y1. Conceptually the original node of X has been discarded.

• If X and Y label different nodes containing the records Rx and Ry respectively:
1This could be done by many various ways. One way is to let the node X point to the node Y , and

changing X to be a reference node. The chain of reference node are always traversed before performing
any unification operation.
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– If Rx and Ry have different labels, arities, or both: the operation is com-
pleted, and an exception is raised.

– Otherwise, the arguments of Rx and Ry with the same feature are pair-wise
merged in arbitrary order.

In general the two graphs, to be merged, could have cycles. However any correct
implementation of the merge operation will remember the node pairs for which an
attempt to merge has been made earlier, and considers the operation to be successfully
performed. A more formal description of the incremental tell operation is found in [2].

When a variable is no longer accessible, a process known as garbage collection re-
claims its node.

Here are some examples of successful equality operations:

local X Y Z in

f(1:X 2:b) = f(a Y)

f(Z a) = Z

{Browse [X Y Z]}

end

will show [a b R14=f(R14 a)] in the browser. R14=f(R14 a) is the external repre-
sentation of a cyclic graph.

To be able to see the finite representation of Z, you have to switch the Browser to
Minimal Graph presentation mode. Choose the Option menu, Representation field,
and click on Minimal Graph.

The Browser is described in “The Oz Browser” .

The following example shows, what happens when variables with incompatible values
are equated.

declare X Y Z in

X = f(c a)

Y = f(Z b)

X = Y

The incremental tell of X = Y will bind Z to the value c, but will also raise an exception
that is caught by the system, when it tries to equate a and b.

4.1 Equality test operator ==

The basic procedure {Value.’==’ X Y R} tries to test whether X and Y are equal or
not, and returns the result in R.

• It returns the Boolean value true if the graphs starting from the nodes of X

and Y have the same structure, with each pair-wise corresponding nodes having
identical Oz values or are the same node.
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• It returns the Boolean value false if the graphs have different structure, or some
pair-wise corresponding nodes have different values.

• It suspends when it arrives at pair-wise corresponding nodes that are different,
but at least one of them is unbound.

Now remember this, if a procedure suspends, the whole thread suspends! This does not
seem very useful. However, as you will see later, it becomes a very useful operation
when multiple threads start interacting with each other.

The equality test is normally used as a functional expression, rather than a statement.
{Value.’==’ X Y R} can also be written R = X==Y using the infix == operator. This
is further illustrated in the example below:

% See, lists are just tuples, which are just records

local L1 L2 L3 Head Tail in

L1 = Head|Tail

Head = 1

Tail = 2|nil

L2 = [1 2]

{Browse L1==L2}

L3 = ’|’(1:1 2:’|’(2 nil))

{Browse L1==L3}

end
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Basic Control Structures

We have already seen some basic statements in Oz. Introducing new variables and
sequencing of statements:

S1 S2

Reiterating again, a thread executes statements in a sequential order. However a thread,
contrary to conventional languages, may suspend in some statement, so above, a thread
has to complete execution of S1, before starting S2. In fact, S2 may not be executed at
all, if an exception is raised in S1.

5.1 skip

The statement skip is the empty statement.

5.2 If Statement

Oz provides a simple form of conditional statement having the following form:

if B then S1 else S2 end

B should be a Boolean value.

5.2.1 Semantics

• If B is bound to true S1 is executed

• if B is bound to false S2 is executed

• if B is bound to an non-boolean value, an exception is raised

• otherwise if B is unbound the thread suspends until one of the cases above applies
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Figure 5.1: Using a if statement

local X Y Z in

X = 5 Y = 10

if X >= Y then Z = X else Z = Y end

end

Comparison Procedures Oz provides a number of built-in tertiary procedures
used for comparison. These include == that we have seen earlier as well as \=, =<,
<, >=, and >. Common to these procedures is that they are used as Boolean functions
in an infix notation. The following example illustrates the use of an If-statement in
conjunction with the greater-than operator >.

In this example Z is bound to the maximum of X and Y, i.e. to Y:

5.2.2 Abbreviations

A statement using the keyword elseif:

if B1 then S1 elseif B2 then S2 else S3 end

is shorthand for nested if-statements:

if B1 then S1
else if B2 then S2

else S3 end

end

An if-statement missing the else part:

if B1 then S1 end

is equivalent to:

if B1 then S1 else skip end

5.3 Procedural Abstraction

5.3.1 Procedure Definition

Procedure definition is a primary abstraction in Oz. A procedure can be defined, passed
around as argument to another procedure, or stored in a record. A procedure definition
is a statement that has the following structure.

proc {P X1 ... Xn} S end
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5.3.2 Semantics

Assume that the variable P is already introduced; executing the above statement will:

• create a unique closure which is essentially a uniquely named lambda expression
λ(X1 . . .XN).S

• The variable P is bound to the closure.

A procedure in Oz has a unique identity, given by its unique closure, and is distinct
from all other procedures. Two procedure definitions are always different, even if they
look similar. Procedures are the first Oz values that we encounter, whose equality is
based on name equality. Others include threads, cells, and chunks.

5.4 On Lexical Scoping

In general, the statement S in a procedure definition will have many variable occur-
rences. A variable that occurs textually in a statement is called an identifier to dis-
tinguish it from the logic variable that is a data structure created at runtime. Some
identifier occurrences in S are syntactically bound while others are free. An identifier
occurrence X1 in S is bound if it is in the scope of the procedure formal-parameter X,
or is in the scope of a variable introduction statement that introduces X. Otherwise, the
identifier occurrence is free. Each free identifier occurrence in a program is eventually
bound by the closest textually surrounding identifier-binding construct.

We have already seen how to apply (call) a procedure. Let us now show our first
procedure definition. In Figure 5.1, we have seen how to compute the maximum of
two numbers or literals. We abstract this code into a procedure.

local Max X Y Z in

proc {Max X Y Z}

if X >= Y then Z = X else Z = Y end

end

X = 5

Y = 10

{Max X Y Z} {Browse Z}

end

5.5 Anonymous Procedures and Variable Initialization

One could ask why a variable is bound to a procedure in a way that is different from
it being bound to a record, e.g. X = f(...)? The answer is that what you see is just a
syntactic variant of the equivalent form

P = proc {$ X1 ... Xn} S end

1This rule is approximate, since class methods and patterns bind identifier occurrences
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The R.H.S. defines an anonymous procedural value. This is equivalent to

proc {P X1 ... Xn} S end

In Oz, we can initialize a variable immediately while it is being introduced by using a
variable-initialization equality

X = 〈Value〉

or

〈Record〉 = 〈Value〉

between local and in, in the statement local ... in ... end. So the previous
example could be written as follows, where we also use anonymous procedures.

local

Max = proc {$ X Y Z}

if X >= Y then Z = X

else Z = Y end

end

X = 5

Y = 10

Z

in

{Max X Y Z} {Browse Z}

end

Now let us understand variable initialization in more detail. The general rule says that:
in a variable-initialization equality, only the variables occurring on the L.H.S. of the
equality are the ones being introduced. Consider the following example:

local

Y = 1

in

local

M = f(M Y)

[X1 Y] = L

L = [1 2]

in {Browse [M L]} end

end

First Y is introduced and initialized in the outer local ... in ... end. Then, in
the inner local ... in ... end all variables on the L.H.S. are introduced, i.e. M, Y,
X1, and L. Therefore the outer variable Y is invisible in the innermost local ... end

statement. The above statement is equivalent to:
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local Y in

Y = 1

local M X1 Y L in

M = f(M Y)

L = [X1 Y]

L = [1 2]

{Browse [M L]}

end

end

If we want Y to denote the variable in the outer scope, we have to suppress the intro-
duction of the inner Y in the L.H.S. of the initializing equality by using an exclamation
mark ! as follows. An exclamation mark ! is only meaningful in the L.H.S. of an
initializing equality 2.

local

Y = 1

in

local

M = f(M Y)

[X1 !Y] = L

L = [1 2]

in {Browse [M L]}

end

end

5.6 Pattern Matching

Let us consider a very simple example: insertion of elements in a binary tree. A binary
tree is either empty, represented by nil, or is a tuple of the form tree(Key Value TreeL TreeR),
where Key is a key of the node with the corresponding value Value, and TreeL is the
left subtree having keys less than Key, and TreeR is the right subtree having keys
greater than Key. The procedure Insert takes four arguments, three of them are input
arguments Key, Value and TreeIn, and one output argument TreeOut to be bound to
the resulting tree after insertion.

The program is shown in Figure 5.2. The symbol ? before TreeOut is a voluntary
documentation comment denoting that the argument plays the role of an output argu-
ment. The procedure works by cases as obvious. First depending on whether the tree
is empty or not, and in the latter case depending on a comparison between the key
of the node in the tree and the input key. Notice the use of if ... then ... el-

seif ... else ... end with the obvious meaning.

In Figure 5.2, the local variable introduction statement

local tree(K1 V1 T1 T2)= TreeIn in ...

2In fact the exclamation mark ! can be used in other situation where you want to suppress the intro-
duction of new variables, for example in pattern matching constructs
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Figure 5.2: Inserting a node (key and value) in a binary tree

proc {Insert Key Value TreeIn ?TreeOut}

if TreeIn == nil then TreeOut = tree(Key Value nil nil)

else

local tree(K1 V1 T1 T2) = TreeIn in

if Key == K1 then TreeOut = tree(Key Value T1 T2)

elseif Key < K1 then

local T in

TreeOut = tree(K1 V1 T T2)

{Insert Key Value T1 T}

end

else

local T in

TreeOut = tree(K1 V1 T1 T)

{Insert Key Value T2 T}

end

end

end

end

end

performed implicitly a pattern matching to extract the values of the locally introduced
variables K1, V1, T1 and T2.

Oz provides an explicit pattern-matching case statement, which allows implicit intro-
duction of variables in the patterns.

5.6.1 Case Statement

case E of Pattern_1 then S1
[] Pattern_2 then S2
[] ...

else S end

All variables introduced in Pattern_i are implicitly declared, and have a scope stretch-
ing over the corresponding Si.

5.6.2 Semantics

Let us assume that expression E is evaluated to V. Executing the case statement will
sequentially try to match V against the patterns Pattern_1, Pattern_2, ...,Pattern_n in
this order. Matching V against Pattern_i is done in left-to-right depth-first manner.

• If V matches Pattern_i without binding any variable occuring in V, the corre-
sponding Si statement is executed.
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• If V matches Pattern_i but binds some variables occuring in V, the thread sus-
pends

• If the matching of V and Pattern_i fails, V is tried against the next pattern
Pattern_i+1, otherwise the else statement S is executed.

The else part may be omitted, in which case an exception is raised if all matches fail.

Again, in each pattern one may suppress the introduction of a new local variable by
using !. For example, in the following example:

case f(X1 X2) of f(!Y Z) then ... else ... end

X1 is matched is against the value of the external variable Y. Now remember again
that the case statement and its executing thread may suspend if X1 is insufficiently
instantiated to decide the result of the matching. Having all this said, Figure 5.3 shows
the tree-insertion procedure using a matching case-statement. We have also reduced
the syntactic nesting by abbreviating:

local T in

TreeOut = tree( ... T ... )

{Insert ... T}
end

into:

T in

TreeOut = tree( ... T ... )

{Insert ... T}

Figure 5.3: Tree insertion using case statement

% case for pattern matching

proc {Insert Key Value TreeIn ?TreeOut}

case TreeIn

of nil then TreeOut = tree(Key Value nil nil)

[] tree(K1 V1 T1 T2) then

if Key == K1 then TreeOut = tree(Key Value T1 T2)

elseif Key < K1 then T in

TreeOut = tree(K1 V1 T T2)

{Insert Key Value T1 T}

else T in

TreeOut = tree(K1 V1 T1 T)

{Insert Key Value T2 T}

end

end

end

The expression E we may match against, could be any record structure, and not just
a variable. This allows multiple argument matching, as shown in Figure 5.4, which
expects two sorted lists Xs and Ys and merges them into a sorted list Zs.
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Figure 5.4: Merging of two sorted lists

proc {SMerge Xs Ys Zs}

case Xs#Ys

of nil#Ys then Zs=Ys

[] Xs#nil then Zs=Xs

[] (X|Xr) # (Y|Yr) then

if X=<Y then Zr in

Zs = X|Zr

{SMerge Xr Ys Zr}

else Zr in

Zs = Y|Zr

{SMerge Xs Yr Zr}

end

end

end

5.7 Nesting

Let us use our Insert procedure as defined in Figure 5.3. The following statement
inserts a few nodes in an initially empty tree. Note that we had to introduce a number
of intermediate variables to perform our sequence of procedure calls.

local T0 T1 T2 T3 in

{Insert seif 43 nil T0}

{Insert eeva 45 T0 T1}

{Insert rebecca 20 T1 T2}

{Insert alex 17 T2 T3}

{Browse T3}

end

Oz provides syntactic support for nesting one procedure call inside another statement
at an expression position. So, in general:

local Y in

{P ... Y ...}

{Q Y ... }

end

could be written as:

{Q {P ... $ ...} ... }

Using $ as a nesting marker, and thereby the variable Y is eliminated. The rule, to revert
to the flattened syntax is that, a nested procedure call, inside a procedure call, is moved
before the current statement; and a new variable is introduced with one occurrence
replacing the nested procedure call, and the other occurrence replacing the nesting
marker.
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5.7.1 Functional Nesting

Another form of nesting is called functional nesting: a procedure {P X ... R} could
be considered as a function; its result is the argument R. Therefore {P X ...} could
be considered as a function call that can be inserted in any expression instead of the
result argument R. So {Q {P X ... } ... } is equivalent to:

local R in

{P X ... R}

{Q R ... }

end

Now back to our example, a more concise form using functional nesting is:

{Browse {Insert alex 17

{Insert rebecca 20

{Insert eeva 45 {Insert seif 43 nil}}}}}

There is one more rule to remember. It has to do with a nested application inside a
record or a tuple as in:

Zs = X|{SMerge Xr Ys}

Here, the nested application goes after the record (or list) construction statement.
Therefore, we get

local Zr in

Zs = X|Zr

{SMerge Xr Ys Zr}

end

Doing so makes many recursive procedures be tail-recursive. Tail-recursive procedures
execute with the space efficiency of iterative constructs.

We can now rewrite our SMerge procedure as shown in Figure 5.5, where we use nested
application.

5.8 Procedures as Values

Since we have been inserting elements in binary trees, let us define a program that
checks if a data structure is actually a binary tree. The procedure BinaryTree shown in
Figure 5.6 checks a structure to verify whether it is a binary tree or not, and accordingly
returns true or false in its result argument B.

Notice that we also defined the auxiliary local procedure And.

Consider the call {And {BinaryTree T1} {BinaryTree T2} B}. It is certainly do-
ing unnecessary work. According to our nesting rules, it evaluates its second argu-
ment even if the first is false. One can fix this problem by making a new procedure
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Figure 5.5: Merging two sorted lists written in nested form

proc {SMerge Xs Ys Zs}

case Xs#Ys

of nil#Ys then Zs=Ys

[] Xs#nil then Zs=Xs

[] (X|Xr) # (Y|Yr) then

if X=<Y then

Zs = X|{SMerge Xr Ys}

else Zr in

Zs = Y|{SMerge Xs Yr}

end

end

end

Figure 5.6: Checking a binary tree

% What is a binary tree?

local

proc {And B1 B2 ?B}

if B1 then B = B2 else B = false end

end

in

proc {BinaryTree T ?B}

case T

of nil then B = true

[] tree(K V T1 T2) then

{And {BinaryTree T1} {BinaryTree T2} B}

else B = false end

end

end

AndThen that takes as its first two arguments two procedures, and calls the second pro-
cedure only if the first returns false; thus, getting the effect of delaying the evaluation
of its arguments until really needed. The procedure is shown Figure 5.7. AndThen is
the first example of a higher-order procedure, i.e. a procedure that takes other proce-
dures as arguments, and may return other procedures as results. In our case, AndThen
just returns a Boolean value. However, in general, we are going to see other exam-
ples where procedures return procedures as result. As in functional languages, higher
order procedures are invaluable abstraction devices that help creating generic reusable
components.
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Figure 5.7: Checking a binary tree lazily

local

proc {AndThen BP1 BP2 ?B}

if {BP1} then B = {BP2} else B = false end

end

in

proc {BinaryTree T ?B}

case T

of nil then B = true

[] tree(K V T1 T2) then

{AndThen

proc {$ B1} {BinaryTree T1 B1} end

proc {$ B2} {BinaryTree T2 B2} end

B}

else B = false end

end

end

5.9 Control Abstractions

Higher-order procedures are used in Oz to define various control abstractions. In the
modules Control3 and List4 as well as many others, you will find many control
abstractions. Here are some examples. The procedure {For From To Step P}5 is
an iterator abstraction that applies the unary procedure P (normally saying the proce-
dure P/1 instead) to integers from From to To proceeding in steps Step. Executing
{For 1 10 1 Browse} will display the integers 1 2 ... 10.

Figure 5.8: The For iterator

local

proc {HelpPlus C To Step P}

if C=<To then {P C} {HelpPlus C+Step To Step P} end

end

proc {HelpMinus C To Step P}

if C>=To then {P C} {HelpMinus C+Step To Step P} end

end

in proc {For From To Step P}

if Step>0 then {HelpPlus From To Step P}

else {HelpMinus From To Step P} end

end

end

3Chapter Control, (The Oz Base Environment)
4Section Lists, (The Oz Base Environment)
5Section Loops, (The Oz Base Environment)
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Another control abstraction that is often used is the ForAll/2 iterator defined in the
List module. ForAll/2 applies a unary procedure on all the elements of a list, in
the order defined by the list. Think what happens if the list is produced incrementally
by another concurrent thread? In this case the consumer thread will synchronize on
the availability of data on the list. The list behaves as a stream of elements and we
automatically get stream communication between threads.

proc {ForAll Xs P}

case Xs

of nil then skip

[] X|Xr then

{P X}

{ForAll Xr P}

end

end

5.10 Exception Handling

Oz incorporates an exception handling mechanism that allows safeguarding programs
against exceptional and/or unforeseeable situations at run-time. It is also possible to
raise and handle user-defined exceptions.

An exception is any expression E. To raise the exception E, one executes the following
statement:

raise E end

Here is a simple example:

proc {Eval E}

case E

of plus(X Y) then {Browse X+Y}

[] times(X Y) then {Browse X*Y}

else raise illFormedExpression(E) end

end

end

The basic exception handling statement is called a try-statement. Its simplest form is:

try S1 catch X then S2 end

Execution of this statement is equivalent to executing S1 if S1 does not raise an excep-
tion. If S1 raises an exception E, X gets bound to E and the statement S2 is executed.
The variable X is visible in the scope of S2.

A more convenient try statement has the following form:
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try S catch

Pattern_1 then S1
[] Pattern_2 then S2

...

[] Pattern_n then Sn
end

This is equivalent to:

try S catch X then

case X

of Pattern_1 then S1
[] Pattern_2 then S2

...

[] Pattern_n then Sn
else raise X end end

end

Put into words, the Execution of this statement is equivalent to executing S if S does not
raise an exception. If S raises exception E and E matches one of the patterns Pattern_i,
control is passed to the corresponding statement S_i. If E does not match any pattern
the exception is propagated outside the try-statement until eventually caught by the
system, which catches all escaping exceptions.

try

{ForAll [plus(5 10) times(6 11) min(7 10)] Eval}

catch

illFormedExpression(X) then {Browse ’** ’#X#’ **’}

end

A try-statement may also specify a final statement S_final, which is executed on normal
as well as on exceptional exit.

try S catch

Pattern_1 then S1
[] Pattern_2 then S2

...

[] Pattern_n then Sn
finally

S_final
end

Assume that F6 is an opened file; the procedure Process/1 manipulates the file in
some way; and the procedure CloseFile/1 closes the file. The following program
ensures that the F is closed upon normal or exceptional exit.

try

{Process F}

catch X then {Browse ’** ’#X#’ **’}

finally {CloseFile F} end

6We will now see how input/output is handled later
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5.11 System Exceptions

The exceptions raised by the Oz system are records with one of the labels: failure,
error, and system.

• failure: indicates the attempt to perform an inconsistent equality operation on
the store of Oz.

• error: indicates a runtime error which should not occur such as applying a
nonprocedure to some argument or adding an integer to an atom, etc.

• system: indicates a runtime condition because of the environment of the Mozart
operating system process, i.e., an unforeseeable situation like a closed file or
window; or failing to open a connection between two Mozart processes.

The exact format of Mozart system-exceptions is in an experimental state and therefore
the user is advised to rely only on the label, as in the following example:

proc {One X} X=1 end

proc {Two X} X=2 end

try {One}={Two}

catch

failure(...) then {Show caughtFailure}

end

Here the pattern failure(...) catches any record whose label is failure. When an
exception is raised but not handled, an error message is printed in the emulator win-
dow (standard error), and the current thread terminates. In stand-alone applications the
default behavior is that a message is printed on standard error and the whole applica-
tion terminates. It is possible to change this behavior to something else that is more
desirable for particular applications.
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Functions

6.1 Functional Notation

Oz provides functional notation as syntactic convenience. We have seen that a proce-
dure call:

{P X1 ... Xn R}

could be used in a nested expression as a function call:

{P X1 ... Xn}

Oz also allows functional abstractions directly as syntactic notation for procedures.
Therefore, the following function definition:

fun {F X1 ... Xn} S E end

where S is a statement and E is an expression corresponds to the following procedure
definition:

proc {F X1 ... Xn R} S R=E end

The exact syntax for functions as well as their transformation into procedure definitions
is defined in the The Oz Notation Reference Manual1.

Here we rely on the reader’s intuition. Roughly speaking, the general rule for syntax
formation of functions looks very similar to how procedures are formed. With the
exception that, whenever a thread of control in a procedure ends in a statement, the
corresponding function ends in an expression.

The program shown in Figure 6.1 is the functional equivalent to the program shown
in Figure 5.7. Notice how the function AndThen/2 is unfolded into the procedure
AndThen/3. Below we show a number of steps that give some intuition of the trans-
formation process. All the intermediate forms are legal Oz programs.

1“The Oz Notation”



38 Chapter 6. Functions

fun {AndThen BP1 BP2}

if {BP1} then {BP2}

else false end

end

Make a procedure by introducing a result variable B:

proc {AndThen BP1 BP2 B}

B = if {BP1} then {BP2}

else false end

end

Move the result variable into the outer if-expression to make it an if-statement:

proc {AndThen BP1 BP2 B}

if {BP1} then B = {BP2}

else B = false end

end

Figure 6.1: Checking a binary tree lazily

% Syntax Convenience: functional notation

local

fun {AndThen BP1 BP2}

if {BP1} then {BP2}

else false end

end

fun {BinaryTree T}

case T

of nil then true

[] tree(K V T1 T2) then

{AndThen

fun {$} {BinaryTree T1} end

fun {$} {BinaryTree T2} end}

else false end

end

end

If you are a functional programmer, you can cheer up! You have your functions, includ-
ing higher-order ones, and similar to lazy functional languages Oz allows certain forms
of tail-recursion optimizations that are not found in certain strict functional languages 2

including Standard ML, Scheme, and the concurrent functional language Erlang. How-
ever, standard function definitions in Oz are not lazy. Lazy functions are also supported
in Oz3.

Here is an example of the well-known higher order function Map/2. It is tail recursive
in Oz but not in Standard ML or in Scheme.

2Strict functional languages evaluate all its argument first before executing the function
3We will discuss them later when talking about futures and by need synchronization
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fun {Map Xs F}

case Xs

of nil then nil

[] X|Xr then {F X}|{Map Xr F}

end

end

{Browse {Map [1 2 3 4] fun {$ X} X*X end}}

6.1.1 andthen and orelse

After all, we have been doing a lot of work for nothing! Oz already provides the
Boolean lazy (non-strict) versions of the functions And/2 and Or/2 as the Boolean
operators andthen and orelse respectively. The former behaves like the function
AndThen/2, and the latter evaluates its second argument only if the first argument
evaluates to false. As usual, these operators are not primitives, they are defined in
Oz. Figure 6.2 defines the final version of the function BinaryTree.

Figure 6.2: Checking a binary tree lazily

fun {BinaryTree T}

case T of nil then true

[] tree(K V T1 T2) then

{BinaryTree T1} andthen {BinaryTree T2}

else false end

end

6.1.2 To Function or not to function?

Since now, in principal, we have some syntactic redundancy by either using procedures
or functions, the question is when to use functional notation, and when not. The honest
answer is that it is up to you! I will tell you my personal opinion. Here are some rules
of thumb:

• First, what I do not like. Given that you defined a procedure P do not call it
as a function, i.e. do not use functional nesting for procedures. Use instead
procedural nesting, with nesting marker, as in the SMerge example. Moreover,
given that you defined a function, call it as function.

• I tend to use function definitions when things are really functional, i.e. there is
one output and, possibly many inputs, and the output is a mathematical function
of the input arguments.

• I tend to use procedures in most of the other cases, i.e. multiple outputs or non-
functional definition due to stateful data types or nondeterministic definitions4.

• One may relax the previous rule and use functions when there is a clear direction
of information-flow although the definition is not strictly functional. After all
functions are concise.

4In fact, in those cases the use of the object-oriented style of Oz is most appropriate
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Modules and Interfaces

Modules, also known as packages, are collection of procedures and other values1 that
are constructed together to provide certain related functionality. A module typically has
a number of private procedures that are not visible outside the module and a number
of interface procedures that provide the external services of the module. In Oz there
is syntactic support for module specification. The concept used is called functor . A
functor is an expression that specifies the components of a module. The Mozart system
converts a functor to a module with the help of a module manager.

Let us first see what a module is, and then look to a corresponding functor that specifies
the module. In general a module is a bunch of locally defined entities, e.g. procedures,
objects, accessible through a record interface. Assume that we would like to construct
a module called List that provides a number of interface procedures for appending,
sorting and testing membership of lists. This would look as follows.

declare List in

local

proc {Append ... } ... end

proc {MergeSort ...} ... end

proc {Sort ... } ... {MergeSort ...} ... end

proc {Member ...} ... end

in

List = ’export’(append: Append

sort: Sort

member: Member

... )

end

Access to Append procedure outside of the module List is done by using the field
append from the record List: List.append. Notice that in the above example the
procedure MergeSort is private to the module. Most of the base library modules of
Mozart follow the above structure. The above module can be created from a functor
that looks as follows:

functor

export

append:Append

1Classes, objects, etc.
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sort:Sort

member:Member

...

define

proc {Append ... } ... end

proc {MergeSort ...} ... end

proc {Sort ... } ... {MergeSort ...} ... end

proc {Member ...} ... end

end

Assuming that this functor is stored, somehow, on the file ’/home/xxx/list.ozf’, the
module can be created as follows:

declare [List]= {Module.link [’/home/xxx/list.ozf’]}

Module.link/2 is a function defined in the module Module that takes a list of functors,
links them together, returns a corresponding list of modules.

Functors may also have import declarations. If you want to import a system module
you can just state the name of its functor. On the other-hand importing a user-defined
module requires stating the URL of the file where the functor is stored.

Consider the following functor.

functor

import

Browser

FO at ’file:///home/seif/FileOperations.ozf’

define

{Browser.browse {FO.countLines ’/etc/passwd’}}

end

The import declaration imports the system module Browser, and uses the procedure
Browser.browse. It also imports the module FO specified by the functor stored in the
file ’/home/seif/FileOperations.ozf’, and calls the procedure FO.countLines

which counts the number of lines in a file given as argument. This functor is defined
for its effect, therefore it does not export any interface. When this functor is linked the
statement between define ... end is executed.

Given a file ’x.oz’ defining a functor, you may create the corresponding functor
’x.ozf’ from your shell by typing the command:

ozc -c x.ozf
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Concurrency

So far, we have seen only one thread executing. It is time to introduce concurrency. In
Oz a new concurrent thread of control is spawned by:

thread S end

Executing this statement, a thread is forked that runs concurrently with the current
thread. The current thread resumes immediately with the next statement. Each non-
terminating thread, that is not blocking, will eventually be allocated a time slice of the
processor. This means that threads are executed fairly.

However, there are three priority levels: high, medium, and low that determine how
often a runnable thread is allocated a time slice. In Oz, a high priority thread cannot
starve a low priority one. Priority determines only how large piece of the processor
cake a thread can get.

Each thread has a unique name. To get the name of the current thread the procedure
Thread.this/1 is called. Having a reference to a thread, by using its name, enables
operations on threads such as terminating a thread, or raising an exception in a thread.
Thread operations are defined the base module Thread.

Let us see what we can do with threads. First, remember that each thread is a data-flow
thread that blocks on data dependency. Consider the following program:

declare X0 X1 X2 X3 in

thread

local Y0 Y1 Y2 Y3 in

{Browse [Y0 Y1 Y2 Y3]}

Y0 = X0+1

Y1 = X1+Y0

Y2 = X2+Y1

Y3 = X3+Y2

{Browse completed}

end

end

{Browse [X0 X1 X2 X3]}

If you input this program and watch the display of the Browser tool, the variables will
appear unbound. Observe now what happens when you input the following statements
one at a time:
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X0 = 0

X1 = 1

X2 = 2

X3 = 3

You will see how the thread resumes and then suspends again. First when X0 is bound
the thread can execute Y0 = X0+1 and suspends again because it needs the value of X1
while executing Y1 =X1+Y0, and so on.

Figure 8.1: A concurrent Map function

fun {Map Xs F}

case Xs

of nil then nil

[] X|Xr then thread {F X} end |{Map Xr F}

end

end

The program shown in Figure 8.1 defines a concurrent Map function. Notice that
thread ... end is used here as an expression. Let us discuss the behavior of this
program. If we enter the following statements:

declare

F X Y Z

{Browse thread {Map X F} end}

a thread executing Map is created. It will suspend immediately in the case-statement
because X is unbound. If we thereafter enter the following statements:

X = 1|2|Y

fun {F X} X*X end

the main thread will traverse the list creating two threads for the first two arguments of
the list, thread {F 1} end, and thread {F 2} end, and then it will suspend again
on the tail of the list Y. Finally,

Y = 3|Z

Z = nil

will complete the computation of the main thread and the newly created thread thread {F 3} end,
resulting in the final list [1 4 9].

The program shown in Figure 8.2 is a concurrent divide-and-conquer program, which
is rather inefficient way to compute the Fibonacci function. This program creates an
exponential number of threads! See how easy it is to create concurrent threads. You
may use this program to test how many threads your Oz installation can create. Try

{Browse {Fib 25}}
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Figure 8.2: A concurrent Fibonacci function

fun {Fib X}

case X

of 0 then 1

[] 1 then 1

else thread {Fib X-1} end + {Fib X-2} end

end

Figure 8.3: The Mozart Panel showing thread creation {Fib 26 X}

while using the panel program in your Oz menu to see the threads. If it works, try a
larger number. The panel is show in Figure 8.3.

The whole idea of explicit thread creation in Oz is to enable the programmer to struc-
ture his/her application in a modular way. In this respect the Mozart system is excellent.
Threads are so cheap that can afford to create say 100000 of them. As a comparison
thread creation in Mozart 1.0 is about 60 time faster than in Java JDK 1.2. If concur-
rency makes an easier structure of you program then use it without hesitation. However
sequential programs are always faster than concurrent programs having the same struc-
ture. The Fib program in Figure 8.2 is faster if you remove thread ... end. There-
fore, create threads only when the application needs it, and not because concurrency is
fun.

8.1 Time

In module Time1, we can find a number of useful soft real-time procedures. Among
them are:

• {Alarm I ?U} which creates immediately its own thread, and binds U to unit

after I milliseconds.
1Section Time, (The Oz Base Environment)
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• {Delay I} suspends the executing thread for, a least, I milliseconds and then
reduces to skip.

Figure 8.4: A ’Ping Pong’ program

local

proc {Ping N}

if N==0 then {Browse ’ping terminated’}

else {Delay 500} {Browse ping} {Ping N-1} end

end

proc {Pong N}

{For 1 N 1

proc {$ I} {Delay 600} {Browse pong} end }

{Browse ’pong terminated’}

end

in

{Browse ’game started’}

thread {Ping 50} end

thread {Pong 50} end

end

The program shown in Figure 8.4 starts two threads, one displays ping periodically
after 500 milliseconds, and the other pong after 600 milliseconds. Some pings will be
displayed immediately after each other because of the periodicity difference.

8.1.1 Making Standalone Application

It is easy to make stand-alone applications in Mozart. We show this by make the
program in Figure 8.4 stand-alone by making a functor of the program as shown in
Figure 8.5, and storing it in your file PingPong.oz. Thereafter use the command:

ozc -x PingPong.oz

Now type PingPong in your shell to start the program.2

8.2 Stream Communication

The data-flow property of Oz easily enables writing threads that communicate through
streams in a producer-consumer pattern. A stream is a list that is created incrementally
by one thread (the producer) and subsequently consumed by one or more threads (the
consumers). The threads consume the same elements of the stream. For example, the
program in Figure 8.6 is an example of stream communication, where the producer
generates a list of numbers and the consumer sums all the numbers.

Try the program above by running the following program:
2To terminate this program in the OS shell you have to type CONTROL-C. We will see later how to

terminate it properly.
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Figure 8.5: A ’Ping Pong’ program stand-alone

functor

import

Browser(browse:Browse) %Import Browse form Browser module

define

proc {Ping N}

if N==0 then {Browse ’ping terminated’}

else {Delay 500} {Browse ping} {Ping N-1} end

end

proc {Pong N}

{For 1 N 1

proc {$ I} {Delay 600} {Browse pong} end }

{Browse ’pong terminated’}

end

in

{Browse ’game started’}

thread {Ping 50} end

thread {Pong 50} end

end

Figure 8.6: Summing the elements in a list

fun {Generator N}

if N > 0 then N|{Generator N-1}

else nil end

end

local

fun {Sum1 L A}

case L

of nil then A

[] X|Xs then {Sum1 Xs A+X}

end

end

in fun {Sum L} {Sum1 L 0} end

end
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{Browse thread {Sum thread {Generator 150000} end } end}

It should produce the number 11250075000. Let us understand the working of stream
communication. A producer incrementally creates a stream (a list) of elements as in
the following example where it is producing volvo’s. This happens in general in an
eager fashion.

fun {Producer ...} ... volvo|{Producer ...} ... end

The consumer waits on the stream until items arrive, then the items are consumed as
in:

proc {Consumer Ls ...}

case Ls of volvo|Lr then ’Consume volvo’ ... end

{Consumer Lr}

end

The data-flow behavior of the case-statement suspends the consumer until the arrival of
the next item of the stream. The recursive call allows the consumer to iterate the action
over again. The following pattern avoids the use of recursion by using an iterator
instead:

proc {Consumer Ls ...}

{ForAll Ls

proc {$ Item}

case Item of volvo then

Consume volvo ...

end

end}

end

Figure 8.7 shows a simple example using this pattern. The consumer counts the cars
received. Each time it receives 1000 cars it prints a message on the display of the
Browser.

You may run this program using:

{Consumer thread {Producer 10000} end}

When you feed a statement into the emulator, it is executed in its own thread. There-
fore, after feeding the above statement two threads are created. The main one is for the
consumer, and the forked thread is for the producer.

Notice that the consumer was written using the recursive pattern. Can we write this
program using the iterative ForAll/2 construct? This is not possible because the con-
sumer carries an extra argument N that accumulates a result which, is passed to the
next recursive call. The argument corresponds to some kind of state. In general, there
are two solutions. We either introduce a stateful (mutable) data structure, which we
will do in Section 9.4, or define another iterator that passes the state around. In our
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Figure 8.7: Producing volvo’s

fun {Producer N}

if N > 0 then

volvo|{Producer N-1}

else nil end

end

local

proc {ConsumerN Ls N}

case Ls of nil then skip

[] volvo|Lr then

if N mod 1000 == 0 then

{Browse ’riding a new volvo’}

end

{ConsumerN Lr N+1}

else

{ConsumerN {List.drop Ls 1} N}

end

end

in

proc {Consumer Ls} {ConsumerN Ls 1} end

end

case, some iterators that fit our needs exist in the module List. First, we need an iter-
ator that filters away all items except volvo’s. We can use {Filter Xs P ?Ys} which
outputs in Ys all the elements that satisfies the procedure P/2 used as a Boolean func-
tion. The second construct is {List.forAllInd Xs P} which is similar to ForAll,
but P/2 takes the index of the current element of the list, starting from 1, as its first
argument, and the element of the list as its second argument. Here is the program:

proc {Consumer Ls}

fun {IsVolvo X} X == volvo end

Ls1

in

thread Ls1 = {Filter Ls IsVolvo} end

{List.forAllInd Ls1

proc {$ N X}

if N mod 1000 == 0 then

{Browse ’riding a new volvo’}

end

end}

end

8.3 Thread Priority and Real Time

Try to run the program using the following statement:
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{Consumer thread {Producer 5000000} end}

Switch on the panel and observe the memory behavior of the program. You will quickly
notice that this program does not behave well. The reason has to do with the asyn-
chronous message passing. If the producer sends messages i.e. create new elements in
the stream, in a faster rate than the consumer can consume, increasingly more buffer-
ing will be needed until the system starts to break down.3 There are a number of ways
to solve this problem. One is to create a bounded buffer between producers and con-
sumers which we will discuss later. Another way is to change the thread execution
speed (by changing the thread’s priority) so that consumers get more time-slices than
producers.

The modules Thread and Property provide a number of operations pertinent to threads.
Some of these are summarized in Figure 8.8.

Figure 8.8: Thread operations

Procedure Description
{Thread.state +T ?A} Returns current state of T
{Thread.suspend +T} Suspends T
{Thread.resume +T} Resumes T
{Thread.terminate +T} Terminates T
{Thread.injectException +T +E} Raises exception E in T

{Thread.this +T} Returns the current thread T

{Thread.setPriority +T +P} Sets T’s priority
{Thread.setThisPriority +P} Sets current thread’s priority
{Property.get priorities ?Pr } Gets system-priority ratios
{Property.put priorities(high:+X medium:+Y)} Sets system-priority ratios

Oz has three priority levels. The system procedure

{Property.put priorities(high:X medium:Y)}

sets the processor-time ratio to X:1 between high-priority threads and medium-priority
thread. It also sets the processor-time ratio to Y:1 between medium-priority threads
and low-priority thread. X and Y are integers. So, if we execute

{Property.put priorities(high:10 medium:10)}

for each 10 time-slices allocated to runnable high-priority threads, the system will
allocate one time-slice for medium-priority threads, and similarly between medium
and low priority threads. Within the same priority level, scheduling is fair and round-
robin. Now let us make our producer-consumer program work. We give the producer
low priority, and the consumer high. We also set the priority ratios to 10:1 and 10:1.

3Ironically in the Mozart system, using the distributed programming capabilities, stream communica-
tion across sites works better because of designed flow control mechanism that suspends producers when
the network buffers are full.
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local L in

{Property.put threads priorities(high:10 medium:10)}

thread

{Thread.setThisPriority low}

L = {Producer 5000000}

end

thread

{Thread.setThisPriority high}

{Consumer L}

end

end

8.4 Demand-driven Execution

An extreme alternative solution is to make the producer lazy, only producing an item
when the consumer requests one. A consumer, in this case, constructs the stream
with unbound variables (empty boxes). The producer waits for the unbound variables
(empty boxes) to appear on the stream. It then binds the variables (fills the boxes). The
general pattern of the producer is as follows.

proc {Producer Xs}

case Xs of X|Xr then

I in ’Produce I’

X=I ...

{Producer Xr}

end

end

The general pattern of the consumer is as follows.

proc {Consumer ... Xs}

X Xr in

...

Xs = X|Xr

’Consume X’

... {Consumer ... Xr}

end

The program shown in Figure 8.9 is a demand driven version of the program in Fig-
ure 8.7. You can run it with very large number of volvo’s!

8.4.1 Futures

There is another way to program demand-driven computations. This uses the notion of
future and the ByNeed primitive operation. A future is a read-only capability of a logic
variable. For example to create a future of the variable X we perform the operation !!

to create a future Y.
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Figure 8.9: Producing Volvo’s lazily

local

proc {Producer Xs}

case Xs of X|Xr then X = volvo {Producer Xr}

[] nil then {Browse ’end of line’}

end

end

proc {Consumer N Xs}

if N=<0 then Xs=nil

else X|Xr = Xs in

if X == volvo then

if N mod 1000 == 0 then

{Browse ’riding a new volvo’}

end

{Consumer N-1 Xr}

else

{Consumer N Xr}

end

end

end

in

{Consumer 10000000 thread {Producer $} end}

end

Y = !!X

A thread trying to use the value of a future, e.g. using Y, will suspend until the variable
of the future, e.g. X, gets bound.

One way to execute a procedure lazily, i.e. in a demand-driven manner, is to use the
operation {ByNeed +P ?F}. ByNeed takes a one-argument procedure P, and returns a
future F. When a thread tries to access the value of F, the procedure {P X} is called, and
its result value X is bound to F. This allows us to perform demand-driven computations
in a straightforward manner. For example by feeding

declare Y

{ByNeed proc {$ X} X=1 end Y}

{Browse Y}

we will observe that Y becomes a future, i.e. we will see Y<Future> in the Browser.
If we try to access the value of Y, it will get bound to 1. One way to access Y is by
performing the operation {Wait Y} which triggers the producing procedure.

Now we can rewrite program of Figure 8.9 as shown in Figure 8.10. This looks very
similar to Figure 8.7
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Figure 8.10: Producing Volvo’s using ByNeed

local

proc {Producer Xs}

Xr in

Xs = volvo|{ByNeed {Producer Xr} $}

end

proc {Consumer N Xs}

if N>0 then

case Xs of X|Xr then

if X==volvo then

if N mod 1000 == 0 then

{Browse ’riding a new volvo’}

end

{Consumer N-1 Xr}

else {Consume N Xr} end

end

end

end

in

{Consumer 10000000 thread {Producer $} end}

end

8.5 Thread Termination-Detection

We have seen how threads are forked using the statement thread S end. A natural
question that arises is how to join back a forked thread into the original thread of
control. In fact, this is a special case of detecting termination of multiple threads, and
making another thread wait on that event. The general scheme is quite easy because
Oz is a data-flow language.

thread T1 X1=unit end

thread T2 X2=X1 end

...

thread TN XN=XN-1 end

{Wait XN}

MainThread

When All threads terminate the variables X1 ... XN will be merged together and
bound to unit. {Wait XN} suspends the main thread until XN is bound.

In Figure 8.11 we define a higher-order construct (combinator), that implements the
concurrent-composition control construct that has been outlined above. It takes a single
argument that is a list of nullary procedures. When it is executed, the procedures are
forked concurrently. The next statement is executed only when all procedures in the
list terminate.

The program Figure 8.5 didn’t terminate properly when the Ping and the Pong threads
terminated. This problem can be remedied now. If we use Application.exit/1 a
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Figure 8.11: Concurrent Composition

local

proc {Conc1 Ps I O}

case Ps of P|Pr then M in

thread {P} M = I end

{Conc1 Pr M O}

[] nil then O = I

end

end

in

proc {Conc Ps} {Wait {Conc1 Ps unit $}} end

end

stand-alone application terminates aborting remaining threads. We can arrange things
such that the main thread terminates only when the Ping and the Pong threads termi-
nate. This is shown in Figure 8.12.
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Figure 8.12: A ’Ping Pong’ program stand-alone

functor

import

Browser(browse:Browse) %Import Browse form Browser module

Application

define

proc {Ping N}

if N==0 then {Browse ’ping terminated’}

else {Delay 500} {Browse ping} {Ping N-1} end

end

proc {Pong N}

{For 1 N 1

proc {$ I} {Delay 600} {Browse pong} end }

{Browse ’pong terminated’}

end

X1 X2

in

{Browse ’game started’}

thread {Ping 50} X1=unit end

thread {Pong 50} X2=X1 end

{Wait X2}

{Application.exit 0}

end
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Stateful Data Types

Oz provides a set of stateful data types. These include ports, objects, arrays, and dic-
tionaries (hash tables). These data types are abstract in the sense that they are char-
acterized only by the set of operations performed on the members of the type. Their
implementation is always hidden, and in fact different implementations exist but their
corresponding behavior remains the same. For example, objects are implemented in a
totally different way depending on the optimization level of the compiler. Each mem-
ber is always unique by conceptually tagging it with an Oz-name upon creation. A
member is created by an explicit creation operation. A type test operation always ex-
ists. In addition, a member ceases to exist when it is no longer accessible.

9.1 Ports

Port is such an abstract data-type. A Port P is an asynchronous communication channel
that can be shared among several senders. A port has a stream associated with it. The
operation: {Port.new S ?P} creates a port P and initially connects it to the variable S
taking the role of a stream. The operation: {Port.send P M} will append the message
M to the end of the stream associated with P. The port keeps track of the end of the
stream as its next insertion point. The operation {IsPort P ?B} checks whether P is
a port. In order to protect the stream S from being bound by mistake S is actually a
future. The following program shows a simple example using ports:

declare S P

P = {Port.new S}

{Browse S}

{Port.send P 1}

{Port.send P 2}

If you enter the above statements incrementally you will observe that S gets incremen-
tally more defined.

S

1|

1|2|_
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Ports are more expressive abstractions than pure stream communication, which was
discussed in Section 8.2, since they can be shared among multiple threads, and can
be embedded in other data structures. Ports are the main message passing mechanism
between threads in Oz.

9.2 Client-Server Communication

Ports are used as a communication entry point to servers. The program shown in
Figure 9.1 defines a thread that acts as FIFO queue server. It has two ports, one for
inserting items to the queue using put, and the other for fetch items out of the queue
using get. The use of single-assignment (logic) variables makes the server insensitive
to the relative arrival order of get and put requests. get requests can arrive even when
the queue is empty. A server is created by {NewQueueServer ?Q}. This procedure
returns back a record Q with features put and get each holding a unary procedure.
A client thread having access to Q can request services by invoking these procedure.
Notice how results are returned back through logic variables. A client requesting an
Item in the queue will call {Q.get I}. The server will eventually answer back by
binding I to an item.

Figure 9.1: Concurrent Queue server, first attempt

declare

fun {NewQueueServer}

Given GivePort={Port.new Given}

Taken TakePort={Port.new Taken}

in

Given = Taken

queue(put:proc {$ X} {Port.send GivePort X} end

get:proc {$ X} {Port.send TakePort X} end)

end

Try the following sequence of statements. The program will not work. So, what is the
problem?

declare

thread Q = {NewQueueServer} end

{Q.put 1}

{Browse {Q.get $}}

{Browse {Q.get $}}

{Browse {Q.get $}}

{Q.put 2}

{Q.put 3}

The problem is that Given = Taken is trying to impose equality between two futures.
Remember that Given and Taken are futures that can only be read and cannot be
bound. So the thread corresponding to the queue server will suspend in the statement
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Given = Taken. This problem is remedied by running this statement in its own thread
as shown in Figure 9.2 1.

The program works as follows. {Q.put I0} {Q.put I1} ... {Q.put In} will in-
crementally add the elements I0 I1 ... In to the stream Given, resulting in I0|I1|...|In|<Future1>.
{Q.get X0} {Q.put X1} ... {Q.put Xn} will add the elements X0 X1 ... Xn to
the stream Taken resulting in X0|X1|...|Xn|<Future2>. The equality constraint
Given = Taken will bind Xi’s to Ii’s.

Figure 9.2: Concurrent Queue server

declare

fun {NewQueueServer}

Given GivePort={Port.new Given}

Taken TakePort={Port.new Taken}

in

thread Given=Taken end

queue(put:proc {$ X} {Port.send GivePort X} end

get:proc {$ X} {Port.send TakePort X} end)

end

9.3 Chunks

Ports are actually stateful data structures. A port keeps a local state internally tracking
the end of its associated stream. Oz provides two primitive devices to construct abstract
stateful data-types chunks and cells. All others subtypes of chunks can be defined in
terms of chunks and cells.

A chunk is similar to a record except that the label of a chunk is an oz-name, and there
is no arity operation available on chunks. This means one can hide certain components
of a chunk if the feature of the component is an oz-name that is visible only (by lexical
scoping) to user-defined operations on the chunk.

A chunk is created by the procedure {NewChunk Record}. This creates a chunk with
the same components as the record, but having a unique label. The following program
creates a chunk.

local X in

X={NewChunk f(c:3 a:1 b:2)}

{Browse X}

{Browse X.c}

end

This will display the following.

<Ch>(a:1 b:2 c:3)

3

1This design of a FIFO queue server was proposed by Denys Duchier
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As a syntactic convenience, one can equate an expression E at an expression position
with a variable X = E, and use X to refer to the value of the expression. Using this
notation the above program could be written as

local X in

{Browse X={NewChunk f(c:3 a:1 b:2)}}

{Browse X.c}

end

In Figure 9.4, we show an example of using the information hiding ability of chunks
to implement Ports.

9.4 Cells

A cell could be seen as a chunk with a mutable single component. A cell is created as
follows.

{NewCell X ?C}

A cell is created with the initial content X. C is bound to a cell. The Figure 9.3 shows
the operations on a cell.

Figure 9.3: Cell operations

Operation Description
{NewCell X ?C} Creates a cell C with content X
{Access +C X} Returns the content of C in X
{Assign +C Y} Modifies the content of C to Y
{IsCell +C} Tests if C is a cell
{Exchange +C X Y} Swaps atomically the content of C from X to Y

Check the following program. The last statement increments the cell by one. If we
leave out thread ... end the program deadlocks. Do you know why?

local I O X in

I = {NewCell a} {Browse {Access I}}

{Assign I b} {Browse {Access I}}

{Assign I X} {Browse {Access I}}

X = 5*5

{Exchange I O thread O+1 end} {Browse {Access I}}

end

Cells and higher-order iterators allow conventional assignment-based programming in
Oz. The following program accumulates in the cell J the value of ∑1

i=1 0i.
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declare J in

J = {NewCell 0}

{For 1 10 1

proc {$ I}

O N in

{Exchange J O N}

N = O+I

end}

{Browse {Access J}}

Ports described in Section 9.1 can be implemented by chunks and cells in a secure way,
i.e. as an abstract data type that cannot be forged. The program in Figure 9.4 shows an
implementation of Ports. Initially an Oz-name is created locally, which is accessible
only by the Port operations. A port is created as a chunk that has one component,
which is a cell. The cell is initialized to the stream associated with the port. The type
test IsPort is done by checking the feature Port. Sending a message to a port results
in updating the stream atomically, and updating the cell to point to the tail of the stream.

Figure 9.4: Implementation of Ports by Cells and Chunks

declare Port in

local

PortTag = {NewName} %New Oz name

fun {NewPort S}

C = {NewCell S} in

{NewChunk port(PortTag:C)}

end

fun {IsPort ?P}

{Chunk.hasFeature P PortTag} %Checks a chunk feature

end

proc {Send P M}

Ms Mr in

{Exchange P.PortTag Ms Mr}

Ms = M|Mr

end

in Port = port(new:NewPort

is:IsPort

send:Send)

end

The implementation in Figure 9.4 does not protect the stream of the port. Protection of
the stream is done using a future as follows.
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Figure 9.5: Implementation of Ports by Cells and Chunks

declare Port in

local

PortTag = {NewName} %New Oz name

fun {NewPort FS}

S C = {NewCell S} in

FS = !!S % Create a future

{NewChunk port(PortTag:C)}

end

fun {IsPort ?P}

{Chunk.hasFeature P PortTag} %Checks a chunk feature

end

proc {Send P M}

Ms Mr in

{Exchange P.PortTag Ms Mr}

Ms = M|!!Mr

end

in Port = port(new:NewPort

is:IsPort

send:Send)

end
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Classes and Objects

A Class in Oz is a chunk that contains:

• A collection of methods in a method table.

• A description of the attributes that each instance of the class will possess. Each
attribute is a stateful cell that is accessed by the attribute-name, which is either
an atom or an Oz-name.

• A description of the features that each instance of the class will possess. A
feature is an immutable component (a variable) that is accessed by the feature-
name, which is either an atom or an Oz-name.

• Classes are stateless Oz-values1. Contrary to languages like Smalltalk, or Java
etc., they are just descriptions of how the objects of the class should behave.

10.1 Classes from First Principles

Figure 10.1 shows how a class is constructed from first principles as outlined above.
Here we construct a Counter class. It has a single attribute accessed by the atom val.
It has a method table, which has three methods accessed through the chunk features
browse, init and inc. A method is a procedure that takes a message, always a record,
an extra parameter representing the state of the current object, and the object itself
known internally as self.

As we can see, the method init assigns the attribute val the value Value, the method
inc increments the attribute val, and the method browse browses the current value of
val.

10.2 Objects from First Principles

Figure 10.2 shows a generic procedure that creates an object from a given class. This
procedure creates an object state from the attributes of the class. It initializes the at-
tributes of the object, each to a cell (with unbound initial value). We use here the
iterator Record.forAll/2 that iterates over all fields of a record. NewObject returns

1In fact, classes may have some invisible state. In the current implementation, a class usually has
method cache, which is stateful
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Figure 10.1: An Example of Class construction

declare Counter

local

Attrs = [val]

MethodTable = m(browse:MyBrowse init:Init inc:Inc)

proc {Init M S Self}

init(Value) = M in

{Assign S.val Value}

end

proc {Inc M S Self}

X inc(Value)=M

in

{Access S.val X} {Assign S.val X+Value}

end

proc {MyBrowse M=browse S Self}

{Browse {Access S.val}}

end

in

Counter = {NewChunk c(methods:MethodTable attrs:Attrs)}

end

a procedure Object that identifies the object. Notice that the state of the object is visi-
ble only within Object. One may say that Object is a procedure that encapsulates the
state2.

Figure 10.2: Object Construction

proc {NewObject Class InitialMethod ?Object}

State O

in

State = {MakeRecord s Class.attrs}

{Record.forAll State proc {$ A} {NewCell _ A} end}

proc {O M}

{Class.methods.{Label M} M State O}

end

{O InitialMethod}

Object = O

end

We can try our program as follows

declare C

{NewObject Counter init(0) C}

2This is a simplification; an object in Oz is a chunk that has the above procedure in one of its fields;
other fields contain the object features
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{C inc(6)} {C inc(6)}

{C browse}

Try to execute the following statement.

local X in {C inc(X)} X=5 end {C browse}

You will see that nothing happens. The reason is that the object application

{C inc(X)}

suspends inside the procedure Inc/3 that implements method inc. Do you know
where exactly? If you on the other hand execute the following statement, things will
work as expected.

local X in thread {C inc(X)} end X=5 end {C browse}

10.3 Objects and Classes for Real

Oz supports object-oriented programming following the methodology outlined above.
There is also syntactic support and optimized implementation so that object application
(calling a method in objects) is as cheap as procedure calls. The class Counter defined
earlier has the syntactic form shown in Figure 10.3:

Figure 10.3: Counter Class

class Counter

attr val

meth browse

{Browse @val}

end

meth inc(Value)

val <- @val + Value

end

meth init(Value)

val <- Value

end

end

A class X is defined by:

class X ... end

Attributes are defined using the attribute-declaration part before the method-declaration
part:

attr A1 ... AN
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Then follows the method declarations, each has the form:

meth E S end

where the expression E evaluates to a method head, which is a record whose label is
the method name. An attribute A is accessed using the expression @A. It is assigned a
value using the statement A <- E.

A class can be defined anonymously by:

X = class $ ... end

The following shows how an object is created from a class using the procedure New/3,
whose first argument is the class, the second is the initial method, and the result is the
object. New/3 is a generic procedure for creating objects from classes.

declare C in

C = {New Counter init(0)}

{C browse}

{C inc(1)}

local X in thread {C inc(X)} end X=5 end

10.3.1 Static Method Calls

Given a class C and a method head m(...), a method call has the following form:

C, m(...)

A method call invokes the method defined in the class argument. A method call can
only be used inside method definitions. This is because a method call takes the current
object denoted by self as implicit argument. The method could be defined at the class
C or inherited from a super class. Inheritance will be explained shortly.

10.3.2 Classes as Modules

Static method calls have in general the same efficiency as procedure calls. This allows
classes to be used as module-specification. This may be advantageous because classes
can be built incrementally by inheritance. The program shown in Figure 10.4 shows
a possible class acting as a module specification. The class ListC defines some com-
mon list-procedures as methods. ListC defines the methods append/3, member/2,
length/2, and nrev/2. Notice that a method body is similar to any Oz statement but
in addition, method calls are allowed. We also see the first example of inheritance.

class ListC from BaseObject

We also show functional methods, i.e. methods that return results similar to functions.
A functional method has in general the following form:

meth m( ... $) S E end
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Figure 10.4: List Class

class ListC from BaseObject

meth append(Xs Ys $)

case Xs

of nil then Ys

[] X|Xr then

X|(ListC , append(Xr Ys $))

end

end

meth member(X L $)

{Member X L} % This defined in List.oz

end

meth length(Xs $)

case Xs

of nil then 0

[] _|Xr then

(ListC , length(Xr $)) + 1

end

end

meth nrev(Xs ?Ys)

case Xs

of nil then Ys = nil

[] X|Xr then Yr in

ListC , nrev(Xr Yr)

ListC , append(Yr [X] Ys)

end

end

end

Here the class ListC inherits from the predefined class BaseObject that has only one
trivial method: meth noop() skip end.

To create a module from the module specification one needs to create an object from
the class. This is done by:

declare ListM = {New ListC noop}

ListM is an object that acts as a module, i.e. it encapsulates a group of procedures
(methods). We can try this module by performing some method calls:

{Browse {ListM append([1 2 3] [4 5] $)}}

{Browse {ListM length([1 2 3] $)}}

{Browse {ListM nrev([1 2 3] $)}}
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10.4 Inheritance

Classes may inherit from one or several classes appearing after the keyword: from. A
class B is a superclass of a class A if:

• B appears in the from declaration of A, or

• B is a superclass of a class appearing in the from declaration of A.

Inheritance is a way to construct new classes from existing classes. It defines what
attributes, features3, and methods are available in the new class. We will restrict our
discussion of inheritance to methods. Nonetheless, the same rules apply to features
and attributes.

The methods available in a class C (i.e. visible) are defined through a precedence
relation on the methods that appear in the class hierarchy. We call this relation the
overriding relation:

• A method in a class C overrides any method, with the same label, in any super
class of C.

Now a class hierarchy with the super-class relation can be seen as a directed graph
with the class being defined as the root. The edges are directed towards the subclasses.
There are two requirements for the inheritance to be valid. First, the inheritance relation
is directed and acyclic. So the following is not allowed:

class A from B ... end

class B from A ... end

Figure 10.5: Illegal class hierarchy

Second, after striking out all overridden methods each remaining method should have
a unique label and is defined only in one class in the hierarchy. Hence, class C in the
following example is not valid because the two methods labeled m remain.

class A1 meth m(...) ... end end

class B1 meth m(...) ... end end

class B from B1 end

class A from A1 end

class C from A B end

Also the class C below is invalid, since two methods m is available in C.
3To be defined shortly
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Figure 10.6: Illegal class hierarchy in method m

class A meth m(...) ... end end

class B meth m(...) ... end end

class C from A B end

Notice that if you run a program with an invalid hierarchy, the system will not com-
plain until an object is created that tries to access an invalid method. Only at this point
of time, you are going to get a runtime exception. The reason is that classes are par-
tially formed at compile time, and are completed by demand, using method caches, at
execution time.

10.4.1 Multiple inheritance or Not

My opinion is the following:

• In general, to use multiple inheritance correctly, one has to understand the total
inheritance hierarchy, which is sometimes worth the effort. This is important
when there is a shared common ancestor.

• Oz restricts multiple inheritance in a way that most the problems with it do not
occur.

• Oz enforces a programming methodology which requres one to override a method
which is defined at more than one superclass, one has to define the method lo-
cally to overrides the conflict-causing methods.

• There is another problem with multiple inheritance when sibling super-classes
share (directly or indirectly) a common ancestor-class that is stateful (i.e. has at-
tributes). One may get replicated operations on the same attribute. This typically
happens when executing an initialization method in a class, one has to initialize
its super classes. The only remedy here is to understand carefully the inheritance
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hierarchy to avoid such replication. Alternatively, you should only inherit from
multiple classes that do not share stateful common ancestor. This problem is
known as the implementation-sharing problem.

10.5 Features

Objects may have features similar to records. Features are stateless components that
are specified in the class declaration:

class C from ...

feat A1 ... AN
...

end

As in a record, a feature of an object has an associated field. The field is a logic variable
that can be bound to any Oz value (including cells, objects, classes etc.). Features of
objects are accessed using the infix ’.’ operator. The following shows an example
using features:

class ApartmentC from BaseObject

meth init skip end

end

class AptC from ApartmentC

feat

streetName: york

streetNumber:100

wallColor:white

floorSurface:wood

end

10.5.1 Feature initialization

The example shows how features could be initialized at the time the class is defined. In
this case, all instances of the class AptC will have the features of the class, with their
corresponding values. Therefore, the following program will display york twice.

declare Apt1 Apt2

Apt1 = {New AptC init}

Apt2 = {New AptC init}

{Browse Apt1.streetName}

{Browse Apt2.streetName}

We may leave a feature uninitialized as in:

class MyAptC1 from ApartmentC

feat streetName

end
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In this case whenever an instance is created, the field of the feature is assigned a new
fresh variable. Therefore, the following program will bind the feature streetName of
object Apt3 to the atom kungsgatan, and the corresponding feature of Apt4 to the
atom sturegatan.

declare Apt3 Apt4

Apt3 = {New MyAptC1 init}

Apt4 = {New MyAptC1 init}

Apt3.streetName = kungsgatan

Apt4.streetName = sturegatan

One more form of initialization is available. A feature may be initialized in the class
declaration to a variable or an Oz-value that has a variable. In the following, the feature
is initialized to a tuple with an anonymous variable. In this case, all instances of the
class will share the same variable. Consider the following program.

class MyAptC1 from ApartmentC

feat streetName:f(_)

end

local Apt1 Apt2 in

Apt1 = {New MyAptC1 init}

Apt2 = {New MyAptC1 init}

{Browse Apt1.streetName}

{Browse Apt2.streetName}

Apt1.streetName = f(york)

If entered incrementally, will show that the statement

Apt1.streetName = f(york)

binds the corresponding feature of Apt2 to the same value as that of Apt1.

What has been said of features also holds for attributes.

10.6 Parameterized Classes

There are many ways to get your classes more generic, which later may be specialized
for specific purposes. The common way to do this in object-oriented programming is
to define first an abstract class in which some methods are left unspecified. Later these
methods are defined in the subclasses. Suppose you have defined a generic class for
sorting where the comparison operator less is needed. This operator depends on what
kinds of data are being sorted. Different realizations are needed for integer, rational, or
complex numbers, etc. In this case, by subclassing we can specialize the abstract class
to a concrete class.

In Oz, we have also another natural method for creating generic classes. Since classes
are first-class values, we can instead define a function that takes some type argument(s)
and return a class that is specialized for the type(s). In Figure 10.7, the function
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Figure 10.7: Parameterized Classes

fun {SortClass Type}

class $ from BaseObject

meth qsort(Xs Ys)

case Xs

of nil then Ys = nil

[] P|Xr then S L in

{self partition(Xr P S L)}

ListC, append({self qsort(S $)} P|{self qsort(L $)} Ys)

end

end

meth partition(Xs P Ss Ls)

case Xs

of nil then Ss = nil Ls = nil

[] X|Xr then Sr Lr in

case Type,less(X P $) then

Ss = X|Sr Lr = Ls

else

Ss = Sr Ls = X|Lr

end

{self partition(Xr P Sr Lr)}

end

end

end

end

SortClass is defined that takes a class as its single argument and returns a sorting
class specialized for the argument.

We can now define two classes for integers and rationals:

class Int

meth less(X Y $)

X<Y

end

end

class Rat from Object

meth less(X Y $)

’/’(P Q) = X

’/’(R S) = Y

in

P*S < Q*R

end

end

Thereafter, we can execute the following statements:
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{Browse {{New {SortClass Int} noop} qsort([1 2 5 3 4] $)}}

{Browse {{New {SortClass Rat} noop}

qsort([’/’(23 3) ’/’(34 11) ’/’(47 17)] $)}}

10.7 Self Application

The program in Figure 10.7 shows in the method qsort an object application using the
keyword self (see below).

meth qsort(Xs Ys)

case Xs

...

{self partition(Xr P S L)}

...

end

We use here the phrase object-application instead of the commonly known phrase mes-
sage sending because message sending is misleading in a concurrent language like Oz.
When we use self instead of a specific object as in

{self partition(Xr P S L)}

We mean that we dynamically pick the method partition that is defined (available)
in the current object. Thereafter we apply the object (as a procedure) to the message.
This is a form of dynamic binding common in all object-oriented languages.

10.8 Attributes

We have touched before on the notion of attributes. Attributes are the carriers of state
in objects. Attributes are declared similar to features, but using the keyword attr

instead. When an object is created each attribute is assigned a new cell as its value.
These cells are initialized very much the same way as features. The difference lies in
the fact that attributes are cells that can be assigned, reassigned and accessed at will.
However, attributes are private to their objects. The only way to manipulate an attribute
from outside an object is to force the class designer to write a method that manipulates
the attribute. In the Figure 10.8 we define the class Point. Note that the attributes x
and y are initialized to zero before the initial message is applied. The method move

uses self-application internally.

Try to create an instance of Point and apply some few messages:

declare P

P = {New Point init(2 0)}

{P display}

{P move(3 2)}
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Figure 10.8: The class Point

class Point from BaseObject

attr x:0 y:0

meth init(X Y)

x <- X

y <- Y % attribute update

end

meth location(L)

L = l(x:@x y:@y) % attribute access

end

meth moveHorizontal(X)

x <- X

end

meth moveVertical(Y)

y <- Y

end

meth move(X Y)

{self moveHorizontal(X)}

{self moveVertical(Y)}

end

meth display

% Switch the browser to virtual string mode

{Browse "point at ("#@x#" , "#@y#")\n"}

end

end

10.9 Private and Protected Methods

Methods may be labeled by variables instead of literals. These methods are private to
the class in which they are defined, as in:

class C from ...

meth A(X) ... end

meth a(...) {self A(5)} ... end

....

end

The method A is visible only within the class C. In fact the notation above is just an
abbreviation of the following expanded definition:

local A = {NewName} in

class C from ...

meth !A(X) ... end

meth a(...) {self A(5)} ... end

...

end

end
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A is bound to a new name in the lexical scope of the class definition.

Some object-oriented languages have also the notion of protected methods. A method
is protected if it is accessible only in the class it is defined or in descendant classes,
i.e. subclasses and subsubclasses etc. In Oz there is no direct way to define a method
to be protected. However there is a programming technique that gives the same effect.
We know that attributes are only visible inside a class or to descendants of a class by
inheritance. We may make a method protected by first making it private and second by
storing it in an attribute. Consider the following example:

class C from ...

attr pa:A

meth A(X) ... end

meth a(...) {self A(5)} ... end

...

end

Now, we create a subclass C1 of C and access method A as follows:

class C1 from C

meth b(...) L=@pa in {self L(5)} ... end

...

end

Method b accesses method A through the attribute pa.

Let us continue our simple example in Figure 10.8 by defining a specialization of the
class that in addition of being a point, it stores a history of the previous movement.
This is shown in Figure 10.9.

There are a number of remarks on the class definition HistoryPoint. First observe
the typical pattern of method refinement. The method move specializes that of class
Point. It first calls the super method, and then does what is specific to being a
HistoryPoint class. Second, DisplayHistory method is made private to the class.
Moreover it is made available for subclasses, i.e. protected, by storing it in the attribute
displayHistory. You can now try the class by the following statements:

declare P

P = {New HistoryPoint init(2 0)}

{P display}

{P move(3 2)}

10.10 Default Argument Values

A method head may have default argument values. Consider the following example.

meth m(X Y d1:Z<=0 d2:W<=0) ... end
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Figure 10.9: The class History Point

class HistoryPoint from Point

attr

history: nil

displayHistory: DisplayHistory

meth init(X Y)

Point,init(X Y) % call your super

history <- [l(X Y)]

end

meth move(X Y)

Point,move(X Y)

history <- l(X Y)|@history

end

meth display

Point,display

{self DisplayHistory}

end

meth DisplayHistory % made protected method

{Browse "with location history: "}

{Browse @history}

end

end

A call of the method m may leave the arguments of features d1 and d2 unspecified. In
this case these arguments will assume the value zero.

We continue our Point example by specializing Point in a different direction. We
define the class BoundedPoint as a point that moves in a constrained rectangular area.
Any attempt to move such a point outside the area will be ignored. The class is shown
in Figure 10.10. Notice that the method init has two default arguments that give a
default area if not specified in the initialization of a new instance of BoundedPoint.

We conclude this section by finishing our example in a way that shows the multiple
inheritance problem. We would like now a specialization of both HistoryPoint and
BoundedPoint as a bounded-history point. A point that keeps track of the history and
moves in a constrained area. We do this by defining the class BHPoint that inherits
from the two previously defined classes. Since they both share the class Point, which
contains stateful attributes, we encounter the implementation-sharing problem. We,
any way, anticipated this problem and therefore created two protected methods stored
in boundConstraint and displayHistory to avoid repeating the same actions. In
any case, we have to refine the methods init, move and display since they occur in
the two sibling classes. The solution is shown in Figure 10.11. Notice how we use the
protected methods. We did not care avoiding the repetition of initializing the attributes
x and y since it does not make any harm. Try the following example:

declare P

P = {New BHPoint init(2 0)}

{P display}
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Figure 10.10: The class BoundedPoint

class BoundedPoint from Point

attr

xbounds: 0#0

ybounds: 0#0

boundConstraint: BoundConstraint

meth init(X Y xbounds:XB <= 0#10 ybounds:YB <= 0#10)

Point,init(X Y) % call your super

xbounds <- XB

ybounds <- YB

end

meth move(X Y)

if {self BoundConstraint(X Y $)} then

Point,move(X Y)

end

end

meth BoundConstraint(X Y $)

(X >= @xbounds.1 andthen

X =< @xbounds.2 andthen

Y >= @ybounds.1 andthen

Y =< @ybounds.2 )

end

meth display

Point,display

{self DisplayBounds}

end

meth DisplayBounds

X0#X1 = @xbounds

Y0#Y1 = @ybounds

S = "xbounds=("#X0#","#X1#"),ybounds=("

#Y0#","#Y1#")"

in

{Browse S}

end

end
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{P move(1 2)}

This pretty much covers most of the object system. What is left is how to deal with
concurrent threads sharing a common space of objects.

Figure 10.11: The class BHPoint

class BHPoint from HistoryPoint BoundedPoint

meth init(X Y xbounds:XB <= 0#10 ybounds:YB <= 0#10)

% repeats init

HistoryPoint,init(X Y)

BoundedPoint,init(X Y xbounds:XB ybounds:YB)

end

meth move(X Y)

L = @boundConstraint in

if {self L(X Y $)} then

HistoryPoint,move(X Y)

end

end

meth display

BoundedPoint,display

{self @displayHistory}

end

end
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Objects and Concurrency

As we have seen, objects in Oz are stateful data structures. Threads are the active com-
putation entities. Threads can communicate either by message passing using ports,
or through common shared objects. Communication through shared objects requires
the ability to serialize concurrent operations on objects so that the object state is kept
coherent after each such an operation. In Oz, we separate the issue of acquiring exclu-
sive access of an object from the object system. This gives us the ability to perform
coarse-grain atomic operation on a set of objects, a very important requirement, e.g.
in distributed database systems. The basic mechanism in Oz to get exclusive access is
through locks.

11.1 Locks

The purpose of a lock is to mediate exclusive access to a shared resource between
threads. Such a mechanism is typically made safer and more robust by restricting
this exclusive access to a critical region. On entry into the region, the lock is secured
and the thread is granted exclusive access rights to the resource, and when execution
leaves the region, whether normally or through an exception, the lock is released. A
concurrent attempt to obtain the same lock will block until the thread currently holding
it has released it.

11.1.1 Simple Locks

In the case of a simple lock, a nested attempt by the same thread to reacquire the same
lock during the dynamic scope of a critical section guarded by the lock will block.
We say reentrancy is not supported. Simple locks can be modeled in Oz as follows,
where Code is a nullary procedure encapsulating the computation to be performed in
the critical section. The lock is represented as a procedure: when applied to some code,
it tries to get the lock by waiting until Old gets bound to unit. Notice that the lock is
released upon normal as well as abnormal exit.

proc {NewSimpleLock ?Lock}

Cell = {NewCell unit}

in

proc {Lock Code}

Old New in

try
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{Exchange Cell Old New}

{Wait Old} {Code}

finally New=unit end

end

end

11.1.2 Atomic Exchange on Object Attributes

Another implementation is using an object as shown below to implement a lock. Notice
the use of the construct:

Old = lck <- New

Similar to the Exchange operation on cells, this is an atomic exchange on an object
attribute.

class SimpleLock

attr lck:unit

meth init skip end

meth ’lock’(Code)

Old New in

try

Old = lck <- New

{Wait Old} {Code}

finally New= unit end

end

end

11.2 Thread-Reentrant Locks

In Oz, the computational unit is the thread. Therefore an appropriate locking mech-
anism should grant exclusive access rights to threads. As a consequence the non-
reentrant simple lock mechanism presented above is inadequate. A thread-reentrant
lock allows the same thread to reenter the lock, i.e. to enter a dynamically nested criti-
cal region guarded by the same lock. Such a lock can be acquired by at most one thread
at a time. Concurrent threads that attempt to get the same lock are queued. When the
lock is released, it is granted to the thread standing first in line etc. Thread-reentrant
locks can be modeled in Oz as follows:

class ReentrantLock from SimpleLock

attr Current:unit

meth ’lock’(Code)

ThisThread = {Thread.this} in

if ThisThread == @Current then

{Code}

else

proc {Code1}

try
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Current <- ThisThread

{Code}

finally

Current <- unit

end

end

in

SimpleLock, ’lock’(Code1)

end

end

end

Thread reentrant locks are given syntactic and implementational support in Oz. They
are implemented as subtype of chunks. Oz provides the following syntax for guarded
critical regions:

lock E then S end

E is an expression that evaluates to a lock. The construct blocks until S is executed. If
E is not a lock, then a type error is raised.

• {NewLock L} creates a new lock L.

• {IsLock E} returns true iff E is a lock.

11.2.1 Arrays

Oz has arrays as chunk subtype. Operations on arrays are defined in module Array.

• {NewArray +L +H +I ?A} creates an array A, where L is the lower-bound in-
dex, H is the higher-bound index, and I is the initial value of the array elements.

• {Array.low +A ?L} returns the lower index.

• {Array.high +A ?L} returns the higher index.

• {Get +A +I ?R} returns A[I] in R.

• {Put +A +I X} assigns X to the entry A[I].

As a simple illustration of the use of locks consider the program in Figure 11.1. The
procedure Switch transforms negative elements of an array to positive, and zero ele-
ments to the atom zero! The procedure Zero resets all elements to zero.

Try the following program.

local X Y in

thread {Zero A} X = unit end

thread {Switch A} Y = X end

{Wait Y}

{For 1 10 1 proc {$ I} {Browse {Get A I}} end}

end
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Figure 11.1: Using a lock

declare A L in

A = {NewArray 1 100 ~5}

L = {NewLock}

proc {Switch A}

{For {Array.low A} {Array.high A} 1

proc {$ I}

X = {Get A I} in

if X<0 then {Put A I ~X}

elseif X == 0 then {Put A I zero} end

{Delay 100}

end}

end

proc {Zero A}

{For {Array.low A} {Array.high A} 1

proc {$ I} {Put A I 0} {Delay 100} end}

end

The elements of the array will be mixed 0 and zero.

Assume that we want to perform the procedures Zero and Switch, each atomically but
in an arbitrary order. To do this we can use locks as in the following example.

local X Y in

thread

{Delay 100}

lock L then {Zero A} end

X = unit

end

thread

lock L then {Switch A} end

Y = X

end

{Wait Y}

{For 1 10 1 proc {$ I} {Browse {Get A I}} end}

end

By Switching the delay statement above between the first and the second thread, we
observe that all the elements of the array either will get the value zero or 0. We have
no mixed values.

*** Write an example of an atomic transaction on multiple objects using multiple
locks.

11.3 Locking Objects

To guarantee mutual exclusion on objects one may use the locks described in the pre-
vious subsection. Alternatively, we may declare in the class that its instance objects
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can be locked with a default lock existing in the objects when they are created. A class
with an implicit lock is declared as follows:

class C from ....

prop locking

....

end

This does not automatically lock the object when one of its methods is called. Instead
we have to use the construct:

lock S end

inside any method to guarantee exclusive access when S is executed. Remember that
our locks are thread-reentrant. This implies that:

• if we take all objects that we have constructed and enclose each method body
with lock ... end, and

• execute our program with only one thread, then

• the program will behave exactly as before

Of course, if we use multiple threads calling methods in multiple objects, we might
deadlock if there is any cyclic dependency. Writing nontrivial concurrent programs
needs careful understanding of the dependency patterns between threads. In such pro-
grams deadlock may occur whether locks are used or not. It suffices to have a cyclic
communication pattern for deadlock to occur.

The program in Figure 10.3 can be refined to work in concurrent environment by re-
fining it as follows:

class CCounter from Counter

prop locking

meth inc(Value)

lock Counter,inc(Value) end

end

meth init(Value)

lock Counter,init(Value) end

end

end

Let us now study a number of interesting examples where threads not only perform
atomic transactions on objects, but also synchronize through objects.
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11.4 Concurrent FIFO Channel

The first example shows a concurrent channel, which is shared among an arbitrary
number of threads. Any producing thread may put information in the channel asyn-
chronously. A consuming thread has to wait until information exists in the channel.
Waiting threads are served fairly. Figure 11.2 shows one possible realization. This
program relies on the use of logical variables to achieve the desired synchronization.
The method put/1 inserts an element in the channel. A thread executing the method
get/1 will wait until an element is put in the channel. Multiple consuming threads will
reserve their place in the channel, thereby achieving fairness. Notice that {Wait I}

is done outside an exclusive region. If waiting was done inside lock ... end the
program would deadlock. So, as a rule of thumb:

• Do not wait inside an exclusive region, if the waking-up action has to acquire
the same lock.

Figure 11.2: An Asynchronous Channel Class

class Channel from BaseObject

prop locking

attr f r

meth init

X in f <- X r <- X

end

meth put(I)

X in lock @r=I|X r<-X end

end

meth get(?I)

X in lock @f=I|X f<-X end {Wait I}

end

end

11.5 Monitors

The next example shows a traditional way to write monitors. We start by defining a
class that defines the notion of events and the monitor operations notify(Event) and
wait(Event) by specializing the class Channel.

class Event from Channel

meth wait

Channel , get(_)

end

meth notify

Channel , put(unit)

end

end
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We show here an example of a unit buffer in the traditional monitor style. The unit
buffer behaves in a way very similar to a channel when it comes to consumers. Each
consumer waits until the buffer is full. In the case of producers only one is allowed to
insert an item in the empty buffer. Other producers have to suspend until the item is
consumed. The program in Figure 11.3 shows a single buffer monitor. Here we had to
program a signaling mechanism for producers and consumers. Observe the pattern in
put/1 and get/1 methods. Most execution is done in an exclusive region. If waiting
is necessary it is done outside the exclusive region. This is done by using an auxiliary
variable X, which gets bound to yes. The get/1 method notifies one producer at a time
by setting the empty flag and notifying one producer (if any). This is done as an atomic
step. The put/1 method does the reciprocal action.

Try the above example by running the following code:

local

UB = {New UnitBufferM init} in

{For 1 15 1

proc{$ I} thread {UB put(I)} {Delay 500} end end}

{For 1 15 1

proc{$ I} thread {UB get({Browse}}{Delay 500} end end}

end

11.5.1 Bounded Buffers Oz Style

In Oz, it is very rare to write programs in the monitor style shown above. In general
it is very awkward. There is a simpler way to write a UnitBuffer class that is not
traditional. This is due to the combination of objects and logic variable, Figure 11.4
shows a simple definition. No locking is needed directly.

A simple generalization of the above program leads to an arbitrary size bounded buffer
class. This is shown in below. The put and get methods are the same as before. Only
the initialization method is changed.

class BoundedBuffer from UnitBuffer

attr prodq buffer

meth init(N)

buffer <- {New Channel init}

prodq <- {New Event init}

{For 1 N 1 proc {$ _} {@prodq notify} end}

end

end

11.6 Active Objects

An active object is a thread whose behavior is described by a class definition. Commu-
nication with active objects is through asynchronous message passing. An active object
reacts to received messages by executing the corresponding methods in its associated
class. An active object executes one method at a time. Therefore locking is not needed
for methods performed by an active object. The interface to an active object is through
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Figure 11.3: A Unit Buffer Monitor

class UnitBufferM

attr item empty psignal csignal

prop locking

meth init

empty <- true

psignal <- {New Event init}

csignal <- {New Event init}

end

meth put(I)

X in

lock

if @empty then

item <- I

empty <- false

X = yes

{@csignal notify}

else X = no end

end

if X == no then

{@psignal wait}

{self put(I)}

end

end

meth get(I)

X in

lock

if {Not @empty} then

I = @item

empty <- true

{@psignal notify}

X = yes

else X = no end

end

if X == no then

{@csignal wait}

{self get(I)}

end

end

end
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Figure 11.4: Unit Buffer

class UnitBuffer from BaseObject

attr prodq buffer

meth init

buffer <- {New Channel init}

prodq <- {New Event init}

{@prodq notify}

end

meth put(I)

{@prodq wait}

{@buffer put(I)}

end

meth get(?I)

{@buffer get(I)}

{@prodq notify}

end

end

Oz ports. Clients of an active object send messages to the object by sending messages
to its associated port. We will show how to create generically this abstraction. Since
active objects resemble servers receiving messages from clients though a network we
call this abstraction the server abstraction. To create a server S from a class Class we
execute:

S = {NewServer Class init}

Here init is the initial object construction method. To get the basic idea we show first
a simplified form of the NewServer function. The following function:

• creates a port Port,

• creates an object Object, and finally

• creates a thread that serves messages sent to the port, by applying the corre-
sponding class methods.

fun {NewServer Class Init}

S % The stream of the port

Port = {NewPort S}

Object = {New Class Init}

in

thread {ForAll S

proc{$ M} {Object M} end}

end

Port

end
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We would like to add the ability of terminating the thread by making a protected
method Close accessible to the method in Class. This leads us to the following ex-
tension of the above function. We use the exception handling mechanism to jump out
of the receiving loop.

local

class Server

attr close:Close

meth Close raise closeException end end

end

in

fun {NewServer Class Init}

S % The stream of the port

Port = {NewPort S}

Object = {New class $ from Server Class end Init}

in

thread

try {ForAll S

proc{$ M} {Object M} end}

catch closeException then skip end

end

Port

end
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Logic Programming

Many problems, especially frequent in the field of Artificial Intelligence, and also
found elsewhere, e.g., in operations research, are currently solvable only by resorting
to some form of search and constraint propagation. Such problems can be specified
very concisely, if the programming language abstracts away the details of search by
providing don’t know nondeterminism. Logic programming and Prolog is considered
a suitable formalism for this class of problems. In this chapter we will talk about how
to express logic programming and concurrent constraint programming in Oz. In logic
programming each procedure can be interpreted as a relation expressed by a logical
statement. We will also discuss the relation between Oz and Prolog, and how most
Prolog programs have a straight forward translation to Oz programs. For more ad-
vanced constraint solving techniques, the reader may look to the companion tutorial on
constraint programming in Oz.

12.1 Constraint Stores

Oz threads share a store where variable bindings are stored in the form of equalities:
X1 = U1, . . . ,Xn = Un where Xi are variables and Ui are either Oz entities or variables.
The constraint store contains the Oz values corresponding to records, numbers, names
or variables, and the names that uniquely idententifies the procedures, cells and the
various types of chunks (classes, objects, functors, etc.). Conceptually the store is
modeled as a conjunctive logical formula: ∃Y1 . . .Ym : X1 = U1 ∧ . . .∧Xn = Un, where
the Xi are the variables and Ui are Oz values or variables, and Yi are the union of all
variables occuring in Xi and Ui. The store is said to be a constraint store. An Oz
computation store consists of a constraint store, a procedure store where procedures
reside, and a cell store where cells and object states reside.

12.2 Computation Spaces

A computation space consists in general of a computation store and a set of executing
threads. What we have seen so far is a single computation space. When dealing with
logic programming a more elaborate structure will arise with multiple nested compu-
tation spaces. The general rules for the structure of computation spaces are as follows.

• There is always a topmost computation space where threads may interact with
the external world. A thread trying to add inconsistent constraints (bindings) to
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the store of the top space will raise a failure exception in the thread. The addition
of the inconsistent constraints will be aborted and the constraint store remains
always consistent.

• A thread may create a local computation space either directly or indirectly as will
be shown in this section. The new computation space will be a child space and
the current one the parent space. In general a hierarchy of computation spaces
may be created.

• A thread belongs always to one computation space. Also, variables belong to
only one computation space.

• A thread in a child space sees and may access variables belonging to its space
as well as to all ancestor spaces. The converse is false. A thread in a parent
space cannot see the variables of a child space, unless the child space is merged
with the parent. In such a case, the child space disappears, and all its content
is added to the parent space. The space merge operation may occur due to an
explicit operation, or indirectly due to a language construct as will be seen in
this section.

• A Thread in a child space my add constraints (bindings) on variables visible to
it. This means that it may bind variables belonging to its space or to its ancestor
spaces. The binding will only be visible in the current space and all its children
spaces if any.

12.3 Constraint Entailment and Disentailment

A condition C is entailed by the store σ if C, considered as a logical formula, is logically
implied by the store σ, again considered as a logical formula. Intuitively entailment
of C means that adding C to the store does not increase the information already there.
Everything is already there.

A condition C is disentailed by the store if the negation of C is logically implied by
the store σ. A disentailed constraint is inconsistent with the information already in the
store.

Since a constraint store is a logical formula, we can also talk of a constraint store being
entailed, or disentailed by another constraint store. A space S0 is entailed (disentailed)
by another space S1 if the constraint store of S0 is entailed (disentailed) by the con-
straint store if S1.

We call a space that is disentailed (normally by a parent space) a failed space .

12.3.1 Examples

Consider the store σ ≡ X = 1∧ . . .∧Y = f (X Z) and the following conditions:

• X = 1 is entailed since adding this binding does not increase the information in
the store.
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• ∃U : Y = f (1 U) is also entailed. Adding this information does not increase our
information. There is a Z that satisfies the above condition. Notice that we do
not know which value Z will assume. But whatever value assumed by Z, the
condition would be still satisfied.

• Y = f (1 2) is not entailed by the store, since adding this equality increases the
information there, namely by making Z = 2.

• X = 2 or Y = f (3 U) are both disentailed since they contradict information al-
ready present. They will cause a failure exception to be raised: in the top space
this is normally reported to the user in an error message, whereas a subordinated
space is merely failed.

12.4 Disjunctions

Now we are in a position to understand the nondeterminate constructs of Oz. Oz pro-
vides several disjunctive constructs for nondeterminate choice, also known as don’t
know choice statements.

12.4.1 or statement

In all the disjunctive statements we are going to use the notion of a clause and a guard.
A clause consists of a guard G and a body S1, and has the following form:

G then S1

The guard G has the form:

X1 ... Xn in S0

where the variables Xi are existentially quantified with scope extending over both the
guard and the body.

The first disjunctive statement has the following form:

or

G1 then S1
[] G2 then S2

...

[] GN then SN
end

An or-statement has the following semantics. Assume a thread is executing the state-
ment in space SP.

• The thread is blocked.

• N spaces are created SP1, . . . ,SPN with N new threads executing the guards
G1, . . . ,GN .
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• Execution of the father thread remains blocked until at most one of the child
spaces is not failed.

• If all children spaces are failed, the parent thread raises a failure condition in its
space. This means that if the space of the parent thread is the top space, a failure
exception is raised. Otherwise the space is local and it becomes a failed space.

• Only one space remains that is not failed which corresponds to the clause G i

then Si. Assume also that Gi has been reduced to the goal G′
i and the constraint

θ. In this case, the space is merged with the parent space. θ and the variables
of the store are added to that of the parent store. G′

i executes in its own thread,
and the original suspending thread resumes executing the statement S i. This
rule of execution is called unit commit in Oz because execution commits to one
alternative disjunct (the only one that is left).

12.4.2 Shorthand Notation

or

...

[] Gi
...

end

Stands for

or

...

[] Gi then skip

...

end

Observe that the or statement does not introduce any don’t know nondeterminism. A
thread executing such a statement waits until things works out in a determinate course
of action.

12.4.3 Prolog Comparison

The or statement just described does not have a corresponding construct in Prolog. The
Prolog disjunct P ; Q always creates a choice point that is subject to backtracking.

12.5 Determinacy Driven Execution

The or-statement of Oz allows a pure logical form of programming style where compu-
tations are synchronized by determinacy conditions. Consider the following program.

proc {Ints N Xs}

or N = 0 Xs = nil

[] Xr in
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N > 0 = true Xs = N|Xr

{Inst N-1 Xr}

end

end

local

proc {Sum3 Xs N R}

or Xs = nil R = N

[] X|Xr = Xs in

{Sum3 Xr X+N R}

end

end

in proc {Sum Xs R} {Sum3 Xs 0 R} end

end

local N S R in

thread {Ints N S} end

thread {Sum S {Browse}} end

N = 1000

end

The thread executing Ints will suspend until N is known, because it cannot decide
on which disjunct to take. Similarly, Sum3 will wait until the list S is known. S will
be defined incrementally and that will lead to the suspension and resumption of Sum3.
Things will start to take off when the main thread binds N to 1000. This shows clearly
that determinacy driven execution gives the synchronization information need to mimic
producer/consumer behavior.

12.6 Conditionals

12.6.1 Logical Conditional

A logical conditional is a statement having the following form.

cond X1 ... XN in S0 then S1 else S2 end

where Xi are newly introduced variables, and Si are statements. X1 ... XN in S0 then S1
is the clause of the conditional, and S2 is the alternative.

A cond-statement has the following semantics. Assume a thread is executing the state-
ment in space SP.

• The thread is blocked.

• A space SP1 is created, with a single thread executing the guard cond X1 ... XN in S0.

• Execution of the father thread remains blocked until SP1 is either entailed or
disentailed. Notice that these conditions may never occur, e.g. when some thread
is suspending or running forever in SP1.

• If SP1 is disentailed, the father thread continues with S2.



94 Chapter 12. Logic Programming

• If SP1 is entailed, assume it has been reduced to the store θ and the set of local
variables SX In this case, the space is merged with the parent space. θ and SX
added to the parent store, and the father thread continues with the execution of
S1.

12.6.2 Prolog Comparison

The cond statement just described corresponds roughly to Prolog’s conditional P -

> Q ; R . Oz is a bit more careful about the scope of variables, so local variables Xi
have to be introduced explicitly. cond X in P then Q else R end always has the
logical semantics ∃X : P∧Q∨ (6 ∃X : P)∧R, given that we stick to the logical part of
Oz. This is not always true in Prolog.

12.6.3 Parallel Conditional

A parallel conditional is of the form

cond G1 then S1
[] G2 then S2
...

else SN end

A parallel conditional is executed by evaluating all conditions G1 ... G(N-1) in an
arbitrary order, possibly concurrently, each in its own space. If one of the spaces,
say Gi, is entailed, its corresponding statement Si is chosen by the father thread. If
all spaces are failed, the else statement SN is chosen, otherwise the executing thread
suspends.

Parallel conditionals are useful mostly in concurrent programming, e.g. for program-
ming time-out on certain events. This construct is the basic construct in concurrent
logic programming languages (also known as committed-choice languages).

As a typical example from concurrent logic programming let us define the indetermin-
istic binary merge, where the arrival timing of elements on the two streams Xs and Ys

determines the order of elements on the resulting stream Zs.

proc {Merge Xs Ys Zs}

cond

Xs = nil then Zs = Ys

[] Ys = nil then Zs = Xr

[] X Xr in Xs = X|Xr then Zr in

Zs = X|Zr {Merge Xr Ys Zr}

[] Y Yr in Ys = Y|Yr then Zr in

Zs = Y|Zr {Merge Xs Yr Zr}

end

end

In general binary-stream merge is inefficient, specially when multiple of these are used
to connect multiple threads to a simple server thread. An efficient way to implement
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a constant-time multi-merge operator is defined below by using cells and streams in-
stread. The procedure {MMerge STs L} has two arguments STs may be either nil, a
list of streams to merged, or of the form merge(ST1 ST2) where each STi is again of
the same form as STs.

proc {MMerge STs L}

C = {NewCell L}

proc {MM STs S E}

case STs

of ST|STr then M in

thread

{ForAll ST proc{$ X} ST1 in {Exchange C X|ST1 ST1} end}

M=S

end

{MM STr M E}

[] nil then skip

[] merge(STs1 STs2) then M in

thread {MM STs1 S M} end

{MM STs2 M E}

end

end

in

thread {MM STs unit E} end

thread if E==unit then L = nil end end

end

A binary-merge {Merge X Y Z} is simply {MMerge [X Y] Z}.

12.7 Nondeterministic Programs and Search

Oz allows much of the nondeterministic and search-oriented programming as Prolog.
This type of programming comes in a little bit different flavour than Prolog. While
Prolog comes ready with a default search strategy based on backtracking, Oz allows
programmers to devise their suitable search strategies in a way that is separate and
orthogonal from the nondeterministic specification of a problem.

To be able to do this Oz has a specific linguistic constructs that create choice point
without specifying how they will be explored. A completely separate program can
then specify the search strategy.

12.7.1 dis Construct

The following program uses the dis construct of Oz to create a choice point when
necessary.

proc {Append Xs Ys Zs}

dis

Xs = nil Ys = Zs then skip
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[] X Xr Zr in

Xs = X|Xr Zs = X|Zr then

{Append Xr Ys Zr}

end

end

It corresponds roughly to the append/3 program of Prolog:

append([], Ys, Ys).

append([X|Xr], Ys, [X|Zr]) :- append(Xr, Yr, Zr).

In fact the same kind of abbreviations that hold for or hold also for dis. That is the
above program have the following abbreviated form.

proc {Append Xs Ys Zs}

dis

Xs = nil Ys = Zs

[] X Xr Zr in

Xs = X|Xr Zs = X|Zr then

{Append Xr Ys Zr}

end

end

Assume the following procedure call:

local X in

{Append [1 2 3] [a b c] X}

{Browse X}

end

This will behave exactly as the or construct, i.e. it will deterministically bind X to
[1 2 3 a b c]. If we on the other hand try:

local X Y in

{Append X Y [1 2 3 a b c]}

{Browse X#Y}

end

the bahavior will look the same as with the or construct; the thread executing this se-
quence of calls will suspend while executing {Append X Y [1 2 3 a b c]}. There
is however a difference. The call of Append will create a choice-point with two alter-
natives:

• X = nil Y = [1 2 3 a b c] then skip

• Xr Xr in

X = 1|Xr Zr = [2 3 a b c] then

{Append Xr Y Zr}
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12.7.2 Define Clause Grammer

Sentence(P) --> NounPhrase(X P1 P) VerbPhrase(X P1)

NounPhrase(X P1 P) --> Determiner(X P2 P1 P) Noun(X P3) RelClause(X P3 P2)

NounPhrase(X P P) --> Name(X)

VerbPhrase(X P) --> TransVerb(X Y P1) NounPhrase(Y P1 P) | InstransVerb(X P)

RelClause(X P1 and(P1 P2)) --> [that] VerbPhrase(X P2)

RelClause(_ P P) --> []

Determiner(X P1 P2 all(X imp(P1 P2))) --> [every]

Determiner(X P1 P2 exits(X and(P1 P2))) --> [a]

Noun(X man(X)) --> [man]

Noun(X woman(X)) --> [woman]

name(john) --> [john]

name(jan) --> [jan]

TransVerb(X Y loves(X Y)) --> [loves]

IntransVerb(X lives(X)) --> [lives]

proc {Sentence P S0#S}

X P1 S1 in

{NounPhrase X P1 P S0#S1}

{VerbPhrase X P1 S1#S}

end

proc {NounPhrase X P1 P S0#S}

choice

P2 P3 S1 S2 in

{Determiner X P2 P1 P S0#S1}

{Noun X P3 S1#S2}

{RelClause X P3 P2 S2#S}

[] {Name X S0#S}

P1 = P

end

end

proc {VerbPhrase X P S0#S}

choice

Y P1 S1 in

{TransVerb X Y P1 S0#S1}

{NounPhrase Y P1 P S1#S}

[] {IntransVerb X P S0#S}

end

end

proc {TransVerb X Y Z S0#S}

S0 = loves|S

Z = loves(X Y)

end

proc {IntransVerb X Y S0#S}

S0 = lives|S

Y = lives(X)

end

proc {Name X S0#S}
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S0 = X|S

choice

X = john

[]

X = jan

end

end

proc {Noun X Y S0#S}

choice

S0 = man|S

Y = man(X)

[] S0 = woman|S

Y = woman(X)

end

end

proc {Determiner X P1 P2 P S0#S}

choice

S0 = every|S

P = all(X imp(P1 P2))

[] S0 = a|S

P = exists(X and(P1 P2))

end

end

proc {RelClause X P1 P S0#S}

P2 in

choice

S1 in

S0 = that|S1

P = and(P1 P2)

{VerbPhrase X P2 S1#S}

[] S0 = S

P = P1

end

end

declare

proc {Main P}

{Sentence P [every man that lives loves a woman]#nil}

end

12.7.3 Some Search Procedures

12.7.4 Dis Construct

declare Edge

proc {Connected X Y}

dis

{Edge X Y}

[] Z in {Edge X Z} {Connected Z Y}
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end

end

proc {Edge X Y}

dis

X = 1 Y = 2

[] X = 2 Y = 1

[] X = 2 Y = 3

[] X = 3 Y = 4

[] X = 2 Y = 5

[] X = 5 Y = 6

[] X = 4 Y = 6

[] X = 6 Y = 7

[] X = 6 Y = 8

[] X = 1 Y = 5

[] X = 5 Y = 1

end

end

{ExploreOne

proc {$ L}

X Y in

X#Y = L {Connected X Y}

end

}

{Browse

{SearchAll

proc {$ L}

X Y in

X#Y = L {Connected X Y}

end

}}

12.7.5 Negation

proc {NotP P}

{SearchOne proc {$ L} {P} L=unit end $} = nil

end

proc {ConnectedEnh X Y Visited}

dis

{Edge X Y}

[] Z in

{Edge X Z}

{NotP proc{$} {Member Z Visited} end}

{ConnectedEnh Z Y Z|Visited}

end

end
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12.7.6 Dynamic Predicates

proc {DisMember X Ys}

dis Ys = X|_ [] Yr in Ys = _|Yr {DisMember X Yr} end

end

class DataBase from BaseObject

attr d

meth init

d <- {NewDictionary}

end

meth dic($) @d end

meth tell(I)

case {IsFree I.1} then

raise database(nonground(I)) end

else

Is = {Dictionary.condGet @d I.1 nil} in

{Dictionary.put @d I.1 {Append Is [I]}}

end

end

meth ask(I)

case {IsFree I} orelse {IsFree I.1} then

{DisMember I {Flatten {Dictionary.items @d}}}

else

{DisMember I {Dictionary.condGet @d I.1 nil}}

end

end

meth entries($)

{Dictionary.entries @d}

end

end

declare

proc {Dynamic ?Pred}

Pred = {New DataBase init}

end

proc {Assert P I}

{P tell(I)}

end

proc {Query P I}

{P ask(I)}

end

EdgeP = {Dynamic}

{ForAll

[edge(1 2)

edge(2 1) % Cycle

edge(2 3)

edge(3 4)
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edge(2 5)

edge(5 6)

edge(4 6)

edge(6 7)

edge(6 8)

edge(1 5)

edge(5 1) % Cycle

]

proc {$ I} {Assert EdgeP I} end

}

12.7.7 The Basic Space Library

12.7.8 Example: A Simple Expert System
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