
System Modules

Denys Duchier
Leif Kornstaedt

Martin Homik
Tobias Müller

Christian Schulte
Peter Van Roy

Version 1.2.3
December 1, 2001



Abstract

The Mozart system consists of two complementary parts: first comes the Oz core language
which lays the semantic foundations and whose programmatic interface is documented in
“The Oz Base Environment” , then come all the extras necessary for practical program-
ming; these are documented here.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.



Contents

I Application Programming 1

1 Application Support: Application 3

1.1 The Application Module . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Parsing Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Parsing of CGI Arguments . . . . . . . . . . . . . . . . . . 4

1.2.2 Parsing of Command Lines . . . . . . . . . . . . . . . . . 4

1.3 Option Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Module Managers: Module 11

2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Module Names and URLs . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Class Module.manager . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Predefined Abstractions . . . . . . . . . . . . . . . . . . . . . . . 13

II Constraint Programming 15

3 Constraints-Specific Type Structure and Modes 17

3.1 Type Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Notational Conventions . . . . . . . . . . . . . . . . . . . 19



4 Search Engines: Search 21

4.1 Basic Search Engines . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 General Purpose Search Engines . . . . . . . . . . . . . . . . . . 23

4.2.1 Single Solution Search . . . . . . . . . . . . . . . . . . . . 24

4.2.2 All Solution Search . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Best Solution Search . . . . . . . . . . . . . . . . . . . . . 26

4.3 Search.object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Parallel Search Engines . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.2 The Class Search.parallel . . . . . . . . . . . . . . . . . 30

5 Finite Domain Constraints: FD 33

5.1 Some Facts About Propagators . . . . . . . . . . . . . . . . . . . 33

5.2 The Concept of Constructive Disjunction . . . . . . . . . . . . . . 34

5.3 Finite Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Telling Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 Watching Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 Generic Propagators . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8 Symbolic Propagators . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 0/1 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Reified Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.11 Miscellaneous Propagators . . . . . . . . . . . . . . . . . . . . . 44

5.12 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.13 Assigning Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Scheduling Support: Schedule 53

6.1 Serialization for Unary Resources . . . . . . . . . . . . . . . . . . 53

6.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Cumulative Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Miscellaneous Propagators . . . . . . . . . . . . . . . . . . . . . 57



7 Finite Set Constraints: FS 59

7.1 Finite Set Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Sets over Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Standard Propagators . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4 Finite Set Interval Variables . . . . . . . . . . . . . . . . . . . . . 62

7.4.1 Declaring a Single Variable . . . . . . . . . . . . . . . . . 62

7.4.2 Declaring a List of Variables . . . . . . . . . . . . . . . . . 62

7.4.3 Declaring a Tuple of Variables . . . . . . . . . . . . . . . . 63

7.4.4 Declaring a Record of Variables . . . . . . . . . . . . . . 63

7.5 Finite Set Constants . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.6 Reified Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.7 Iterating and Monitoring . . . . . . . . . . . . . . . . . . . . . . . 65

7.8 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.9 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Feature Constraints: RecordC 69

9 Deep-guard Concurrent Constraint Combinators: Combinator 71

10 First-class Computation Spaces: Space 73

III Distributed Programming 77

11 Connecting Computations: Connection 79

11.1 One-to-one Connections . . . . . . . . . . . . . . . . . . . . . . . 79

11.2 Many-to-one Connections . . . . . . . . . . . . . . . . . . . . . . 80

12 Spawning Computations Remotely: Remote 81

12.1 Process Termination and Remote Managers . . . . . . . . . . . 84

13 Referring To Distributed Entities: URL 85

13.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14 Resolving URLs: Resolve 89

14.1 From search paths to search methods . . . . . . . . . . . . . . . 89

14.2 Syntax of methods . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14.3 Interface of Resolve Module . . . . . . . . . . . . . . . . . . . . . 91

14.4 Interface of a Resolver . . . . . . . . . . . . . . . . . . . . . . . . 92



15 Detecting and Handling Distribution Problems: Fault 95

15.1 Argument Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

15.2 Fault Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

15.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

15.4 Limitations and Modifications . . . . . . . . . . . . . . . . . . . . 98

15.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

15.6 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

16 Locating services in a network: Discovery 99

16.1 The Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

17 Initializing and instrumenting the distribution layer: DPInit 101

17.1 Interface of DPInit Module . . . . . . . . . . . . . . . . . . . . . . 101

18 Retriving statistical information from the Distribution layer: DPStatistics103

18.1 Interface of DPStatistics Module . . . . . . . . . . . . . . . . . . 103

IV Open Programming 107

19 Files, Sockets, and Pipes: Open 109

19.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

19.2 The Class Open.file . . . . . . . . . . . . . . . . . . . . . . . . . 110

19.3 The Class Open.socket . . . . . . . . . . . . . . . . . . . . . . . . 112

19.4 The Class Open.pipe . . . . . . . . . . . . . . . . . . . . . . . . . 116

19.5 The Class Open.text . . . . . . . . . . . . . . . . . . . . . . . . . 117

20 Operating System Support: OS 119

20.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

20.2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

20.3 Random Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

20.4 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

20.5 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

20.6 Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

20.7 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

20.8 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . 122

20.9 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

20.10Low Level Procedures . . . . . . . . . . . . . . . . . . . . . . . . 123



20.10.1Basic Input and Output . . . . . . . . . . . . . . . . . . . . 123

20.10.2From Blocking to Suspension . . . . . . . . . . . . . . . . 124

20.10.3Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

20.10.4Process Control . . . . . . . . . . . . . . . . . . . . . . . . 126

V System Programming 129

21 Persistent Values: Pickle 131

22 Emulator Properties: Property 133

22.1 Engine Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

22.2 The Programming Interface . . . . . . . . . . . . . . . . . . . . . 139

23 Error Formatting: Error 141

23.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

23.2 The Error Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

23.3 Example Error Formatter . . . . . . . . . . . . . . . . . . . . . . . 143

23.4 The Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

24 System Error Formatters: ErrorFormatters 145

25 Memory Management: Finalize 147

26 Miscelleanous System Support: System 149

26.1 System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

26.2 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

26.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

VI Window Programming 151

27 The Module Tk 153

27.1 Tickles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

27.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

27.1.2 Translation to Virtual Strings . . . . . . . . . . . . . . . . . 153

27.1.3 Sending Tickles . . . . . . . . . . . . . . . . . . . . . . . . 154

27.1.4 Sending Tickles and Returning Values . . . . . . . . . . . 154

27.2 Tickle Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



27.2.1 Action Values . . . . . . . . . . . . . . . . . . . . . . . . . 158

27.2.2 Action Argument Values . . . . . . . . . . . . . . . . . . . 159

27.2.3 Event Argument Values . . . . . . . . . . . . . . . . . . . 159

27.3 No-Action Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . 159

27.4 Action Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

27.5 Toplevel Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

27.6 Menu Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

27.7 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

27.8 Tags And Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

27.9 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

27.10Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

27.11Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

27.12Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

27.13Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

28 Graphical Tools: TkTools 171

28.1 Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

28.2 Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

28.3 Menubar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

28.4 Popup Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

28.5 Textframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

28.6 Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

28.7 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

28.8 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

28.9 Number Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

28.10Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

28.11Resolve Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

VII Miscellaneous 177

29 Support Classes for Objects: ObjectSupport 179

29.1 Classes for Master/Slave Behaviour . . . . . . . . . . . . . . . . 179

29.2 Reflecting Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



Part I

Application Programming

1





1

Application Support: Application

1.1 The Application Module

The Application module provides procedures for accessing the application’s argu-
ments, and for terminating applications.

getCgiArgs

{Application.getCgiArgs +Spec ?R}

acquires the arguments (both GET and POST methods supported) and parses them
according to Spec as described in Section 1.3. Returns the options in R.

getCmdArgs

{Application.getCmdArgs +Spec ?R}

acquires the arguments from the system property ’application.args’ and parses
them according to Spec as described in Section 1.3. Returns the options in R.

getGuiArgs

{Application.getGuiArgs +Spec ?R}

pops up a graphical interface with which the user can interactively and comfortably
edit the possible options described by Spec as described in Section 1.3. Returns the
options in R.

getArgs

{Application.getArgs +Spec ?R}

This is the recommended way of acquiring an application’s arguments. It invokes either
Application.getCmdArgs or Application.getGuiArgs depending on the value of
boolean property ’application.gui’. The latter is set to true when the ozengine

is invoked with option -gui.

processArgv

{Application.processArgv +Spec ?L}

performs argument parsing on the explicitly given list of strings L according to speci-
fication Spec.



4 Chapter 1. Application Support: Application

Error Handling If an error is encountered in the input, an error exception of the
form ap(usage VS) is raised. VS describes the error in textual form.

exit

{Application.exit +I}

terminates the application with return status I, 0 indicating success and non-0 indicat-
ing failure of some kind.

1.2 Parsing Conventions

This section describes how the arguments are acquired and what basic syntax is used
for parsing them.

1.2.1 Parsing of CGI Arguments

The CGI always passes arguments as name/value pairs, where the name is separated
from the value by an equals sign and the individual pairs are separated by ampersands.

Boolean options option may be given as option=yes or option=no. Option names may
be abbreviated, as long as they remain unambiguous.

1.2.2 Parsing of Command Lines

We distinguish between long option names and single character options. Long options
are given as -option or -option=value; option names may be abbreviated as long as they
remain unambiguous. Single-character options are given as -x, eventually followed by
a value. Several single-character options may be combined, e.g., -xy means -x -y

(provided x does not take an argument). The argument to a single-character option
may be attached to the option character, i.e., you can write -xvalue or -x value.

Boolean options option may be given as -option (meaning true) or -nooption (mean-
ing false). A single hyphen - by itself is not considered to be an option and thus is
returned unchanged. Parsing stops at a double hyphen - appearing by itself; the double
hyphen itself does not appear in the output.

In the case of an unrecognized long option name or single-character option, or of an
ambiguous long option prefix, an error is raised.

1.3 Option Specifications

There are several ways to specify the way the arguments are parsed; we present them
in order of increasing processing power.

1.3.1 Plain

Syntax Specification The plain way of command line processing actually in-
volves no processing at all. In CGI parsing, not even escaped characters are translated.

〈spec〉 ::= plain



1.3. Option Specifications 5

Returned Result For CGI scripts, the result consists of a list of pairs of strings (the
name/value pairs), whereas for command lines, it consists of a list of strings.

1.3.2 List

Syntax Specification The list way of processing command line arguments takes
care of determining what is a command line option, whether it takes a value, how its
value to be interpreted, etc.

〈spec〉 += list([mode: 〈mode〉] 〈option〉 . . . 〈option〉)

Using the mode specification, the command line parser can either be instructed to stop
at the first non-option argument it encounters (start) or it can look for options on the
whole command line (anywhere). The latter is the default if no mode is given.

〈mode〉 ::= start | anywhere

The integer fields of the option specification describe the individual options. An option
must as least have an 〈option name〉. Furthermore, it may either be an alias for another
option (if alias is given) or it may be a ‘real’ option actually visible to the application.
Aliases are never returned to the application; they are always replaced by the option
they stand for.

〈option〉 ::= 〈option name〉([char: 〈char or chars〉] [type: 〈type〉])
| 〈option name〉([char: 〈char or chars〉] alias: 〈alias〉)

〈option name〉 ::= 〈atom〉

As mentioned in Section 1.2.2, options may be notated using single-character short
forms. With the char specification one or several single-character short forms may be
assigned to an option.

〈char or chars〉 ::= 〈char〉 | [〈char〉]

If no type is given, then the option does not take an argument. (Note that true will
be used as the associated value in this case.) Boolean options have a special status, as
has already been described in Section 1.2. The remaining type specifications, however,
require an additional argument. The list(〈primary type〉) annotation interprets its
argument as a comma-separated list of elements of a specific type.

〈type〉 ::= bool

| 〈primary type〉
| list(〈primary type〉)

There are four supported basic types and a ‘generic’ type. Integer and float arguments
have to be given in Oz concrete syntax (with the exception that the unary minus sign
may be notated as -); minimum and maximum values may also be specified. For
arguments to be returned as atoms, a set of allowed values may be specified. Strings
are returned as-is.

The generic type simply consists of a binary procedure with the signature {P +S X}
which may arbitrarily transform the argument, given as a string.



6 Chapter 1. Application Support: Application

〈primary type〉 ::= int([min: 〈int〉] [max: 〈int〉])
| float([min: 〈float〉] [max: 〈float〉])
| atom([〈atom〉 . . . 〈atom〉])
| string

| 〈procedure〉

Two different forms of alias are supported. Option name aliases simply state that this
option name is equivalent to some other option name; the other option’s argument
description will be used for parsing this option as well. The second kind of alias
states that this option is equivalent to another option used with the supplied value (or a
combination of several options). In the latter case, the value will be transferred to the
output without any additional transformations.

〈alias〉 ::= 〈option name〉
| 〈option name〉#〈value〉
| [〈option name〉#〈value〉]

Returned Result The result of this processing step is a list of parsed options, in-
terspersed with non-parsed arguments, a so-called 〈option list〉. All option names in
this list are the canonical (i.e., not aliased and unabbreviated) forms. The list respects
the order in which the arguments were given.

〈option list〉 ::= [〈arg or option〉]

〈arg or option〉 ::= 〈option name〉#〈value〉
| 〈string〉

List Examples

The following will give some examples taken from the ozc program, which is the Oz
command-line compiler.

Basics The ozc program has a command line option to tell it to output usage infor-
mation. The easiest way to specify such an option is:

help

Furthermore, we want to support a popular single-character abbreviation for it:

help(char: &h)

We might even support several single-character abbreviations for convenience.

help(char: [&h &?])

We can now write any of -help, -h, or -? for this option. (We might also abbre-
viate the long form to one of -h, -he, or -hel, provided that this would still be
unambiguous.) The returned option list would be [help#true].



1.3. Option Specifications 7

Boolean Options There is another option to tell ozc to be verbose about what it
is doing. Say we specified it as follows:

verbose(char: &v)

This means that we can write -verbose or -v. In contrast, the following specifica-
tion additionally allows for -noverbose:

verbose(char: &v type: bool)

Aliases Some people prefer to write -noverbose as -quiet, so we introduce
an alias for it:

quiet(char: &q alias: verbose#false)

This is an alias with associated value. In contrast, the following option (not supported
by ozc, by the way) would be an alias without value:

gossipy(alias: verbose)

This would allow us to write -gossipy for -verbose and -nogossipy for -noverbose.

String Arguments The following example illustrates another type of argument
than boolean:

include(type: string)

Saying -include=x.oz for instance would tell ozc to load and compile this file
before tackling its ‘real’ job. Together with the following option, we get an example
for when the order beween different arguments may matter:

’define’(char: &D type: atom)

Saying

--define=MYMACRO1 --include=x.oz --include=y.oz

for instance would mean that MYMACRO1 would be defined for both x.oz and y.oz,
whereas in

--include=x.oz --define=MYMACRO1 --include=y.oz

it is only defined for y.oz.

By the way, this option has a single-character abbreviation and an explicit argument (in
contrast to the implicit boolean arguments above): We can thus write either -D MYMACRO1
or -DMYMACRO1 instead of -define=MYMACRO1.



8 Chapter 1. Application Support: Application

List Arguments In ozc, actually, a list of macro names is allowed for this option:

’define’(char: &D type: list(atom))

This also supports, e.g., -DMYMACRO1,YOURMACRO17 x.oz. This would return
the option list [’define’#[’MYMACRO1’ ’YOURMACRO17’] "x.oz"].

Range Limitations Sometimes one wants to limit the range of allowed values:

compress(char: &z type: int(min: 0 max: 9))

This would allow us to write -z9, but not -z17. For atom arguments, sometimes only
a limited set of values is sensible:

mode(type: atom(help core outputcode

feedtoemulator dump executable)

For these, ozc also provides the better known aliases such as:

dump(char: &c alias: mode#dump)

1.3.3 Record

Syntax Specification The additional processing step involved in record kind
specifications is that additional contextual conditions may be checked, and the result is
returned in a different form.

Basically, the record specification is a strict extension of the list specification.

〈spec〉 += record([mode: 〈mode〉] 〈option〉 . . . 〈option〉)

The specifications for ‘real’ (i.e., non-alias) options take some more information into
consideration, namely how often the option may appear and how several occurrences
combine (〈occ〉), and whether it is a required option (optional; the default is true)
or whether it takes a default value (default), which it does not by default. At most
one of default and optional may be given.

〈option〉 += 〈option name〉(
1: 〈occ〉
[char: 〈char or chars〉]
[type: 〈type〉]
[default: 〈value〉 | optional: 〈bool〉])

An option may be allowed to occur at most once (single) or any number of times. In
the latter case, the result may either respect all occurrences (multiple), or it may ig-
nore all but the first (leftmost) or last (rightmost) occurrence. When all occurrences
are respected, a list of them (preserving the order) is returned.

〈occ〉 ::= single | multiple | leftmost | rightmost | accumulate(P)

When accumulate(P) is specified, procedure P is called for each occurrence of the
option. It takes two arguments: the option (as an atom) and the parsed value. This can
be used to accumulate multiple occurrences of related options into one list. See, for
example, options -include and -exclude of the Oz linker ozl1.

1Chapter The Oz Linker: ozl, (Oz Shell Utilities)



1.3. Option Specifications 9

Returned Result The result consists of an option record. All options which had
an explicit 〈occ〉 given in their specification are moved from the option list into this
record, the feature being the option name, the subtree the associated value. Defaulted
options that have not been overridden by the argument list appear in this record with
their default value. Only optional options may be missing from this record, namely
when they have not been specified in the argument list. Those options which did not
have an explicit 〈occ〉 given in their specification are found, interspersed with non-
parsed arguments, in an option list under feature 1 of the option record.

〈option record〉 ::= optRec(1: 〈option list〉
〈option name〉: 〈value〉 . . .
〈option name〉: 〈value〉)

Record Examples

Naturally, all examples given for list are also valid for record, but in order to make
them appear in the resulting option record, we have to specify some additional things.
This section illustrates this.

Basics For example, with the mode as specified earlier, the argument list -mode=dump
would result in the following option record:

optRec(1: [mode#dump])

In order to make it appear, we add the keyword single to the specification, stating at
the same time that this option can be given at most once:

mode(single

type: atom(help core outputcode

feedtoemulator dump executable))

Then the option record for -mode=dump would look like this:

optRec(1: nil mode: dump)

Default or Required Since the mode gives the basic mode of operation for ozc,
we would be lost if was not given in the arguments, because it would not appear in the
option record. To enforce its presence, we can either supply a default:

mode(single type: atom(...) default: feedtoemulator)

or make it a required option:

mode(single type: atom(...) optional: false)



10 Chapter 1. Application Support: Application

Multiple Occurrences The keyword single stated that an option may appear at
most once in the option record. For some options, this in inadequate. If we want an
option to be allowed to occur multiply in the argument list, we have to specify what
this means. For instance,

verbose(rightmost char: &v type: bool)

means that all but the last occurrences of verbose are ignored. By the way, in ozc,
verbose actually has a non-boolean default:

verbose(rightmost char: &v type: bool default: auto)

This allows for three modes of operation: The default is to only output messages if
they are ‘interesting’. When being -verbose, also uninteresting messages are output,
whereas being -quiet, even the interesting messages are suppressed.

Collecting in Lists It is also possible to state that one wished all occurrences of
the same option to be collected in a list. This does not occur in ozc, so we give a
fictitious example here:

cattle(multiple type: list(atom) default: nil)

Giving this argument several times, say, -cattle=angus,belgianred, -cattle=charolais,
and -cattle=dexter,highland on one command line would result in the fol-
lowing option record:

optRec(1: nil

cattle: [angus belgianred charolais dexter highland])



2

Module Managers: Module

Module managers grant access to modules identified by urls. Examples and more
information on module managers can be found in “Application Programming”.

2.1 Basics

A module manager maintains a module table, that maps urls to modules. To be more
precise, the table maps a url to a module or to a future for a module (this is explained
later).

A module manager supports the following operations:

link Linking takes a url U as input and returns a module M or a future F for a module.

We say that M or F is linked from U. Most of the time we will not distinguish between
M and F.

Depending on whether the module table already contains an entry for M, the following
happens:

1. If the module table already contains an entry M for the url U, linking just returns
M.

2. If no entry for U is available, a new future F is created and stored under U in the
module table. F is returned.

As soon as the value for the future F is requested, a new thread is created that
installs a module from the url U. This is called dynamic linking or linking on
demand.

If under the url U a pickled functor is stored, the module is computed by first
loading the functor G. Then G is applied with respect to the url U (this is ex-
plained later) which yields a module to which the future F is bound. This also
explains why it is okay to not make a distinction between module and future for
a module, since the distinction does not has any consequences as it comes to
module access.

If the url U refers to a system module (see also Chapter Module Managers, (Ap-
plication Programming)) the system module is returned.

The url U can also refer to a native functor, this is described in detail in Part
Native C/C++ Extensions, (Application Programming).



12 Chapter 2. Module Managers: Module

apply Application takes a functor F and a base url U and returns a module M.

First the import urls of F are resolved with respect to the base url U. Then the resolved
urls are used for linking. The returned modules are called argument modules. Then the
body of the functor is applied to the argument modules.

enter Entering takes a url U and a module M as input.

The module M is added to the module table under U. If the module table already
contains an entry for U, an exception is raised.

A module manager is implemented as an instance of the class Module.manager. The
class provides methods to link and apply functors and to enter modules into the module
manager’s module table.

2.2 Module Names and URLs

As has been explained above, each module is refered to by a url U, some of which are
Oz specific in that they refer to system modules. We just say that the module has the
url U.

A module name is a shortcut for a module url. The mapping of module names to full
urls is explained in detail in Chapter Module Managers, (Application Programming) .

2.3 The Class Module.manager

Module managers are created as instances of the class Module.manager. For prede-
fined abstractions that are build on top of module managers see Section 2.4.

init

init()

Initializes the module manager.

link

link(url:+UrlV ModuleR <= _)

link(name:+NameV ModuleR <= _)

Links the module identified either by a url UrlV (a virtual string) or a module name
NameV (a virtual string). Returns the module ModuleR (which might be a future to a
module).

The argument for the module is optional, if it is omitted the module is requested im-
mediately.

apply

apply(+Functor ModuleR <= _)

apply(url:+UrlV +Functor ModuleR <= _)

apply(name:+NameV +Functor ModuleR <= _)



2.4. Predefined Abstractions 13

Applies the functor Functor, where the url UrlV (a virtual string) or the module
name NameV (a virtual string) serve as base url for linking the functor’s import. If
neither a module name nor a url is given, the current working directory is taken as base
url.

The argument for the module is optional.

Please note that the resulting module is not added to the module table, the URL argu-
ment only serves as base url for the functor’s import.

enter

enter(url:+UrlV ModuleR)

enter(name:+NameV ModuleR)

Installs the module ModuleR under the url UrlV (a virtual string) or the module name
NameV (a virtual string).

Raises an exception if the module manager already has a module under that particular
url installed.

2.4 Predefined Abstractions

link

{Module.link +UrlVs Rs}

Takes a list UrlVs of urls (as virtual strings) and and returns the list of modules created
by linking.

All functors are linked by the same module manager, however each application of
Module.link employs a new module manager. This has the following consequences:

• Modules imported by several functors are shared.

• Each application of Module.link links required functors anew. That is, after
replacing a functor on the file system, an application of Module.link considers
the new functor for linking.

Module.link is defined as follows:

fun {Module.link UrlVs}

ModMan = {New Module.manager init}

in

{Map UrlVs fun {$ Url}

{ModMan link(url:Url $)}

end}

end

apply

{Module.apply +Xs Rs}

Takes a list of functors or pairs of urls (as virtual strings) as input. The url in a pair
of url and functor describes the base url with which the import urls of the functor gets
resolved. If it is missing the current working directory is used for url resolution.

Returns a list of modules computed by functor application.

Module.apply is defined as follows:



14 Chapter 2. Module Managers: Module

fun {Module.apply UFs}

ModMan = {New Module.manager init}

in

{Map UFs fun {$ UF}

case UF of U#F then

{ModMan apply(url:U F $)}

else

{ModMan apply(UF $)}

end

end}

end



Part II

Constraint Programming

15





3

Constraints-Specific Type Structure
and Modes

This section presents those types and modes which are specific for the constraint ex-
tensions.

3.1 Type Structure

There are two additional secondary types.

Vector A vector is a record with a label different from ’|’ or a list. The elements of
the list or the fields of the record are called the elements of the vector. A finite domain
vector is a vector all of whose elements are finite domain integers.

Specification of Sets of Integers A specification of sets of integers Spec is
used in cointext of finite domain and finite set constraints. It is recursively defined as
follows.

Spec ::= simpl_spec
| compl(simpl_spec)

simpl_spec ::= range_descr
| [range_descr+]
| nil

range_descr ::= integer
| integer#integer

integer ::= FD.inf,...,FD.sup
| FS.inf,...,FS.sup

A specification of sets of integers denotes a set of integers which is either the union of
integer singletons i and integer intervals i#i, or the complement compl(...) of such
a set relative to {FD.inf, . . . ,FD.sup} resp. {FS.inf, . . . ,FS.sup}. Note that an
empty set is specified by nil.



18 Chapter 3. Constraints-Specific Type Structure and Modes

In context of finite domain constraints for example, 2#5 denotes the set {2, . . . ,5},
the specification [1 10#20] denotes the set {1,10, . . . ,20}, and compl(2#5) denotes
{0,1,6, . . . ,FD.sup}.

The value of FD.inf and FS.inf is 0 and the value of FD.sup and FS.sup is 134217726.
These values are implementation-dependent.

Weight Specifications Weight specifications SpecW occur in conjunction with set
constraints (see Section 7.9) and are defined as follows.

SpecW ::= nil

| [ElemDescr]+

ElemDescr ::= Int#Int
| (Int#Int)#Int
| default#Int

3.2 Signatures

Types

The additional type abbreviations are listed in Figure Figure 3.1.

Figure 3.1: Type Abbreviations

Abbreviation Type
D finite domain integer
M finite set of integers
Xr records of type X
Xt tuples of type X
Xv vectors of type X
Xvv vectors of vectors of type X
Xrr records of records of type X

Modes

Given a constraint store, every variable is in exactly one of the following three states. It
is free if the store knows nothing about the variable apart from equalities, determined if
the store knows the top-level constructor, and kinded if the variable is neither free nor
determined. Variables which are either determined or kinded are called constrained.

The base language does not allow to constrain a variable without determining it. Most
procedures of the base language wait until their arguments are determined.



3.2. Signatures 19

Input Modes ∗, + In the constraint extension, a variable can be constrained before
it becomes determined. Accordingly, the constraint extensions use additional input
modes ∗ and $ which synchronize more weakly than +. The application of a proce-
dure P waits until its inputs (+, ∗) are determined or constrained, respectively. If the
input arguments are well-typed, P returns outputs of the specified types. Ill-typed input
arguments produce a runtime type error (on completion of P).

Propagators Note that it is perfectly possible that an input argument is constrained
further. This is the case for many propagators, which have the following typical mod-
ing.

{P ∗X ∗Y ∗Z}

Note also that modes only partially specify the synchronisation behavior of a proce-
dure.

Nestable Input Mode $ The mode $ slightly weakens ∗ to allow for nesting of
propagators. When n arguments of a propagator have input mode $, then this propaga-
tor waits until n− 1 of them are constrained and then it constrains the remaining nth
argument according to its type.

3.2.1 Notational Conventions

Notational conventions are explained in context of finite domain constraints but apply
of course for finite set constraints too.

Specification Input The signature

{FD.int +Spec ?D}

specifies that an application of FD.int waits until +Spec is ground, i.e., contains no
free variables. Arguments of the form +Spec never occur. The signature

{FD.distinct ∗Dv}

specifies that an application of FD.distinct waits until its argument Dv is determined
and all its elements are constrained to finite domain integers. Analogously, +Iv speci-
fies that the application waits until Iv and all its elements are determined. The scheme

{FD.sumCN +Iv ∗Dvv +A ∗D}

specifies that the application waits until ∗Dvv and all its elements are determined, and
until their elements are constrained to finite domain integers.



20 Chapter 3. Constraints-Specific Type Structure and Modes

Generic Propagators For some procedures like that for generic propagators, an
atom occurring as an argument denotes a relation symbol. For example,

{FD.sum [X Y Z] ’=:’ D}

denotes the constraint
X +Y +Z = D

If A is the atomic argument, ∼A is the corresponding arithmetic relation. For A the
atoms ’=:’, ’>:’, ’>=:’, ’<:’, ’=<:’, and ’\\=:’ are allowed. The relations are =,
>, ≥, <, ≤, and 6=, respectively.



4

Search Engines: Search

This chapter describes various search engines. The engines fall into the following
categories.

Basic Search Engines Easy to use engines for single, all, and best solution search.

General Purpose Search Engines Engines that offer additional support for:

Recomputation Recomputation allows to trade space for time, allowing to solve problems which
otherwise would use too much memory.

Killing The execution of engines can be killed.

Output Solutions computed can be returned as procedures or first-class computation spaces.

Search Object (page 27) The search object supports demand-driven search for
single, all, and best solutions. Search can be stopped and resumed as needed. The
object supports recomputation and the different kinds of output as described above.

Parallel Search Engines (page 28) Parallel search engines use multiple net-
worked computers to speed up the exploration of search trees. During exploration of a
search tree entire subtrees are delegated to Oz engines that run on different computers
in parallel.

Oz Explorer Besides of the engines described here, Mozart features the OzEx-
plorer, an interactive graphical search engine. A short description of its use can be
found in Section The Explorer, (Finite Domain Constraint Programming in Oz. A Tu-
torial.) . Reference information on the Oz Explorer can be found in “Oz Explorer –
Visual Constraint Programming Support” , a research paper is [9].

4.1 Basic Search Engines

All these engines take a script as input and return a list of its solutions.

base.one

{Search.base.one +ScriptP ?Xs}



22 Chapter 4. Search Engines: Search

returns a singleton list containing the first solution of the script +ScriptP (a unary
procedure) obtained by depth-first search. If no solution exists, nil is returned.

As an example,

{Search.base.one proc {$ X}

choice

choice X=ape [] X=bear end

[] X=cat

end

end}

returns the list [ape].

base.all

{Search.base.all +ScriptP ?Xs}

returns the list of all solutions of the script +ScriptP (a unary procedure) obtained
by depth-first serach. As an example,

{Search.base.all proc {$ X}

choice

choice X=ape [] X=bear end

[] X=cat

end

end}

returns the list [ape bear cat].

Search.base.best

{Search.base.best +ScriptP +OrderP ?Xs}

returns a singleton list containing the best solution with respect to the order +OrderP
(a binary procedure) of the script +ScriptP (a unary procedure) obtained by branch
and bound search. If no solution does exist, nil is returned.

The branch and bound strategy works as follows. When a solution is found, all the
remaining alternatives are constrained to be better with respect to the order +OrderP.
The binary procedure +OrderP is applied with its first argument being the previous
solution, and its second argument the root variable of a space for one of the remaining
alternatives.

For instance, the following script constrains its root variable to a pair of integers, such
that a certain equation holds between its components.

proc {Script Root}

X={FD.int 1#10} Y={FD.int 1#10}

in

Y =: 10 - X - 2*Y

Root = X#Y

{FD.distribute split Root}

end

With the order



4.2. General Purpose Search Engines 23

proc {MaxSum Old New}

Old.1 + Old.2 <: New.1 + New.2

end

we can search for a solution with maximal sum of X and Y by

{SearchBest Script MaxSum}

This returns the singleton list [7#1].

Similarly, we can search for the solution with the maximal product, by using the order:

proc {MaxProduct Old New}

Old.1 * Old.2 <: New.1 * New.2

end

in:

{SearchBest Script MaxProduct}

This returns the singleton list [4#2].

4.2 General Purpose Search Engines

This section describes the search engines found in the module Search. All of these
engines support recomputation, the possibility to stop their execution and various kinds
of output.

Recomputation. Scripts which create a large number of variables or propagators
or scripts for which the search tree is very deep might use too much memory to be
feasible. The search engines described in this section feature support for so-called
recomputation. Recomputation reduces the space requirements for these scripts in that
it trades space for time.

Search engines that do not use recomputation, create a copy of a computation space in
each distribution step. This copy is needed such that the engine is able to follow more
than one alternative of a choice.

If, for instance, a single solution search engine finds a solution after 200 distribution
steps (i.e. the search tree has a depth of 201), 200 copies are created and stored by the
engine.

Recomputation reduces the number of copies needed: Instead of creating a copy in each
distribution step, only every n-th distribution step a copy is created. A space for which
no copy has been created can be recomputed from a copy located higher above in the
search tree by recomputing some distribution steps. In the worst case, n−1 distribution
steps have to be recomputed. The parameter n is the so-called recomputation distance.
A recomputation distance of n means that the space needed decreases by a factor of n
and that the time needed increases by a factor of n.

The following search engines take the recomputation distance as an argument (it is
denoted by RcdI). A value of 2 for RcdI means that only each second distribution step
a copy is created. The value 1 for RcdI means that in each distrbution step a copy is



24 Chapter 4. Search Engines: Search

created, that is no recomputation is used. Values less than 1 mean that none but an
initial copy is created: from this initial copy all other spaces are recomputed.

Recomputation can also reduce both space and time requirements. Searching a sin-
gle solution of a script which features a good heuristic (i.e. there are only very few
failures) creates copies which are not used. Recomputation avoids this, resulting in
improvement with respect to both space and time.

Recomputation requires that the distribution strategy used in the script be deterministic.
Deterministic means that the created choices and their order are identical in repeated
runs of the script. This is true for all strategies in the finite domain module, but for
example not for strategies with randomized components.

Killing the Engine. All engines described in this section return a nullary proce-
dure, which is denoted by +KillP. Applying this procedure kills the search engine.

A search engine, which can be stopped and resumed is described in Section Section 4.3.

Different Types of Output. Each of the engines is provided with three different
types of output. The first kind returns a list of solutions as the engines in Section 4.1.
The second kind returns a list of unary procedures. Applying one of these procedures
merges a copy of the succeeded space and gives reference to its root variable variable
by the actual argument of the procedure application. The third kind returns a list of
succeeded spaces.

4.2.1 Single Solution Search

one.depth

{Search.one.depth +ScriptP +RcdI
?KillP ?Xs}

returns a singleton list containing the first solution of the script +ScriptP (a unary
procedure) obtained by depth-first search. If no solution exists, nil is returned.

For instance, the procedure Search.base.one (see Section 4.1) can be defined as:

fun {Search.base.one ScriptP}

{Search.one.depth ScriptP 1 _}

end

Suppose that Script is a script for which search does not terminate because it keeps
on creating choices forever. It could look like the following:

proc {Script X}

· · ·
choice {Script X} [] {Script X} end

end

If Search.one.depth is applied to this particular script by

Solutions={Search.one.depth Script 1 KillP}

the search engine can be killed by applying KillP as follows:



4.2. General Purpose Search Engines 25

{KillP}

Note that a script which keeps on computing forever even without search (i.e., because
it contains an infinite recursion or loop) can not be killed.

one.depthS

{Search.one.depthS +ScriptP +RcdI
?KillP ?Spaces}

returns a singleton list containing the first succeeded space for the script +ScriptP (a
unary procedure) obtained by depth-first search. If no solution exists, nil is returned.

one.depthP

{Search.one.depthP +ScriptP +RcdI
?KillP ?Ps}

Similar to Search.one.depthS, but returns a list of unary procedures as output.

Search.one.depthP can be defined using Search.one.depthS as follows:

fun {Search.one.depthP Script RcdI ?KillP}

{Map thread

{Search.one.depthS Script RcdI ?KillP}

end

fun {$ SuccSpace}

proc {$ Root}

{Space.merge SuccSpace Root}

end

end}

end

one.bound

{Search.one.bound +ScriptP +BoundI +RcdI ?KillP ?Xs}

one.boundS

{Search.one.boundS +ScriptP +BoundI +RcdI ?KillP ?Spaces

one.boundP

{Search.one.boundP +ScriptP +BoundI +RcdI ?KillP ?Ps

returns a singleton list containing the first solution of the script +ScriptP (a unary
procedure) obtained by depth-first search, where the depth of the search tree explored
is less than or equal to +BoundI.

If there is no solution in a depth less than or equal to +BoundI, but there might be
solutions deeper in the tree, cut is returned. In case the entire search tree has a depth
less than +BoundI and no solution exists, nil is returned.

Otherwise the output is a singleton list containing the solution (Search.one.bound),
a succeeded space (Search.one.boundS), or a procedure (Search.one.boundP).

For instance

{Search.one.bound proc {$ X}

choice fail [] fail end

end

1 1 _}



26 Chapter 4. Search Engines: Search

returns the output nil, whereas

{Search.one.bound proc {$ X}

choice

choice fail [] fail end

[] choice fail [] fail end

end

end

1 1 _}

returns the output cut.

one.iter

{Search.one.iter +ScriptP +RcdI ?KillP ?Xs}

one.iterS

{Search.one.iterS +ScriptP +RcdI ?KillP ?Spaces}

one.iterP

{Search.one.iterP +ScriptP +RcdI ?KillP ?Ps}

returns a singleton list containing the first solution of the script +ScriptP (a unary
procedure) obtained by iterative deepening depth-first search. If no solution exists, nil
is returned.

Iterative deepening applies Search.one.bound to +ScriptP with depth-bounds 1,
2, 4, 8, . . . until either a solution is found or Search.one.bound returns nil.

4.2.2 All Solution Search

all

{Search.all +ScriptP +RcdI ?KillP ?Xs}

allS

{Search.allS +ScriptP +RcdI ?KillP ?Spaces}

allP

{Search.allP +ScriptP +RcdI ?KillP ?Ps}

returns the list of all solutions of the script +ScriptP (a unary procedure) obtained
by depth-first search.

The output is a list of solutions (Search.all), a list of succeeded spaces (Search.allS),
or a list of procedures (Search.allP).

4.2.3 Best Solution Search

best.bab

{Search.best.bab +ScriptP +OrderP +RcdI ?KillP ?Xs}

best.babS

{Search.best.babS +ScriptP +OrderP +RcdI ?KillP ?Spaces}



4.3. Search.object 27

best.babP

{Search.best.babP +ScriptP +OrderP +RcdI ?KillP ?Ps}

returns a singleton list containing the best solution with respect to the order +OrderP
(a binary procedure) of the script +ScriptP (a unary procedure) obtained by branch
and bound search. If no solution does exist, nil is returned.

The branch and bound strategy works as follows. When a solution is found, all the
remaining alternatives are constrained to be better with respect to the order +OrderP.
The binary procedure +OrderP is applied with its first argument being the previous
solution, and its second argument the root variable of a space for one of the remaining
alternatives.

best.restart

{Search.best.restart +ScriptP +OrderP +RcdI ?KillP ?Xs}

best.restartS

{Search.best.restartS +ScriptP +OrderP +RcdI ?KillP ?Spaces}

best.restartP

{Search.best.restartP +ScriptP +OrderP +RcdI ?KillP ?Ps}

returns a singleton list containing the best solution with respect to the order +OrderP
(a binary procedure) of the script +ScriptP (a unary procedure) obtained by branch
and bound search. If no solution does exist, nil is returned.

The restart strategy works as follows. When a solution is found, search is restarted for
+ScriptP with the additional constraint stating that the solution must be better with
respect to the order +OrderP. The binary procedure +OrderP is applied with the
previous solution as first argument, and the root variable of the script +ScriptP as
its second argument.

4.3 Search.object

The object Search.object implements a demand driven search engine which supports
recomputation, single, all, and best solution search and different kinds of output in the
same way as the search engines in the previous section.

script

script(+ScriptP
+OrderP <= _

rcd:+RcdI <= 1)

Initializes the object for the script +Script (a unary procedure). If the optional
argument +OrderP (a binary procedure) is given, the object uses a branch and bound
strategy for best solution search.

+RcdI is the recomputation distance (see Section 4.2).

next

next(?Xs)

nextS



28 Chapter 4. Search Engines: Search

nextS(?Spaces)

nextP

nextP(?Ps)

returns a singleton list which contains the next solution. If no further solution exists,
nil is returned. If the search is stopped by a message stop, stopped is returned.

The object releases its state immediately.

last

last(?Xs)

lastS

lastS(?Spaces)

lastP

lastP(?Ps)

returns a singleton list which contains the last solution. If no further solution exists,
nil is returned. If the search is stopped by a message stop, stopped is returned.

The object releases its state immediately. If the object has been initialized for best
solution search, the last solution is the best solution.

stop

stop

stops the search engine. The search engine can be restarted by next, nextS, nextP,
last, lastS, and lastP.

4.4 Parallel Search Engines

Parallel search engines use multiple networked computers to speed up the exploration
of search trees. During exploration of a search tree entire subtrees are delegated to
multiple workers. Each worker is powered by a single Oz engine. This means that all
worker run in parallel: subtrees are explored in parallel rather than sequentially. Each
engine runs on a networked computer, or multiple engines can even run on a single
networked computer. The latter makes sense if the computer has more than a single
processor and can run the engines in parallel.

When to use? Delegating subtrees for exploration to workers incurs some over-
head. But if the number of subtrees is significant, parallel execution can gain over the
required overhead. If no subtrees exist (the search tree is just a single path) or the
subtrees are small (just a small search tree), parallel search engines do not improve.
Branch and bound search for hard problems (like scheduling problems) in particular
can take advantage. Currently, you can expect linear speedup for up to six workers
(that is, six times faster!) with well suited problems.

What to do? Your scripts do not need rewriting. They must be wrapped into a
functor definition.



4.4. Parallel Search Engines 29

4.4.1 An Example

Let us take as small constraint problem the fraction problem, which is explained in
Section Example: Fractions, (Finite Domain Constraint Programming in Oz. A Tuto-
rial.) . However we will choose here a formulation that artificially increases the search
tree in that we do not impose a canonical order and leave out redundant constraints.

The script as you can try it from the OPI1, looks as follows:

29a 〈Fractions script 29a〉≡
proc {Script Root}

sol(a:A b:B c:C d:D e:E f:F g:G h:H i:I) = Root

BC = {FD.decl}

EF = {FD.decl}

HI = {FD.decl}

in

Root ::: 1#9

{FD.distinct Root}

BC =: 10*B + C

EF =: 10*E + F

HI =: 10*H + I

A*EF*HI + D*BC*HI + G*BC*EF =: BC*EF*HI

{FD.distribute ff Root}

end

It is wrapped into a functor that must export a single feature script under which the
script (Fraction in our case) is available. This is easy, the following does the job:

29b 〈Fractions functor 29b〉≡
functor Fractions

import FD

export Script

define

〈Fractions script 29a〉
end

If you want to learn more about functors, you should consult “Application Program-
ming” .

After executing the functor definition in the OPI, we can now start the search engine.

Let us assume that we want to create two processes on the computers with hostname
godzilla (because it is a double processor machine), and a single process on both
orca and grizzly. We create a parallel search engine that runs on these hosts as
follows:

E={New Search.parallel init(godzilla:2 orca:1 grizzly:1)}

A list of all solutions Xs can now be computed as follows:
1“The Oz Programming Interface”



30 Chapter 4. Search Engines: Search

Xs={E all(Fractions $)}

Similarly, a single solution Ys can be computed by

Xs={E one(Fractions $)}

Here, Ys is either a singleton list containg the solution, or nil if no solution does
exist. Note that the first solution returned is not necessarily the solution found by the
non-parallel search engines first.

Parallel search engines support a (rudimentary) form of tracing. After

{E trace(true)}

a window appears as that gives graphical information on how many nodes each Oz en-
gine explored. The graphical information is in a very early beta stage and will improve
soon.

{E trace(false)}

switches tracing off again.

Rather than using a functor as an argument for the methods one and all a url can be
used that refers to a pickled functor stored under that url.

Search for best solution works similar. Let us consider as a more interesting example
the really hard scheduling problem MT10 (for more information on that problem see
Section Solving Hard Scheduling Problems, (Finite Domain Constraint Programming
in Oz. A Tutorial.) ). A functor for best solution search must export both script and
order. How this is done you can see in the functor definition MT10.oz2 for the MT10
problem.

Now the list of solutions Zs in strictly increasing order can be computed by

Zs={E best(’x-oz://doc/system/MT10.ozf’ $)}

The best solution is the last element of the list Zs. The speed up you can expect is
almost a factor of six with six processes started!

Parallel search engines only work properly, if your computing environment is set up
such that the facilities for remote module managers work. The requirements are de-
scribed in Chapter 12.

4.4.2 The Class Search.parallel

The class Search.parallel provides the following methods.

init

init(+HostA1:+I1#+ForkA1 ... +HostAn:+In#+ForkAn)

2MT10.oz



4.4. Parallel Search Engines 31

Creates and initializes a new parallel search engine by forking new Oz processes.
At host HostA1 the number of newly forked processes is I1 and the fork method
ForkA1 is used (see Chapter 12 for a discussion of fork methods), and so on.

For example,

E={New Search.parallel init(wallaby: 1#automatic

godzilla: 2#ssh

grizzly: 1#ssh)}

creates a single process at the computer wallaby, two processes at godzilla, and one
process at grizzly. The fork method for wallaby is automatically determined, for
godzilla and grizzly the method ssh (secure shell) is used.

Equivalently, this can be abbreviated as follows:

E={New Search.parallel init(wallaby godzilla:2#ssh grizzly:ssh)}

That is, a field with integer feature is assumed to be a host where a single process is to
be forked, and the atom automatic for a fork method or the number 1 as number of
processes to be forked can be left out.

one

one(+FunctorOrUrl ?Xs)

Searches a single solution for the script specified by FunctorOrUrl. FunctorOrUrl
must be either a functor or a url given as virtual string that refers to a pickled functor.
The engine runs the script that must be exported by the field script.

Returns in Xs either nil in case no solution does exists, or a singleton list containing
the solution.

Blocks until search terminates.

all

all(+FunctorOrUrl ?Xs)

Searches all solutions for the script specified by FunctorOrUrl. FunctorOrUrl
must be either a functor or a url given as virtual string that refers to a pickled functor.
The engine runs the script that must be exported by the field script.

Returns in Xs the list of solutions.

Blocks until search terminates.

best

best(+FunctorOrUrl ?Xs)

Searches the best solution for the script and order specified by FunctorOrUrl.
FunctorOrUrl must be either a functor or a url given as virtual string that refers
to a pickled functor. The engine runs the script that must be exported by the field
script and uses as order for branch and bound search the fields order.

Returns in Xs either nil in case no solution does exists, or a list containing the solu-
tions in increasing order. That is the last element (if any) is the best solution.

Blocks until search terminates.

stop



32 Chapter 4. Search Engines: Search

stop()

Stops the current search started by one, all, or best.

Blocks until search has been terminated.

close

close()

Closes the object and terminates all forked Oz processes.

trace

trace(+B)

Switches graphical tracing of search tree delegation on or off, depending on +B.

Method is highly speculative and is subject to change.



5

Finite Domain Constraints: FD

The procedures in this module have the following properties.

Each of their applications creates a new thread except for basic constraints which may
block.

Most of the propagators perform interval propagation. Only some do domain propaga-
tion (i.e. cut holes into domains).

Equality between variables is exploited, except for some non-linear propagators. For
example, A+A=:B is equivalent to 2*A=:B (for notation see sec.infix-ps).

The constraint store is amplified with constraints X::Spec and equality between vari-
ables, e.g., X=:Y is equivalent to X=Y.

relation symbols There are generic procedures who take an atomic argument A to
denote an arithmetic relation ∼A. The possible atoms and the associated relations are
summarized below.

A ’=:’ ’>:’ ’>=:’ ’<:’ ’=<:’ ’\\=:’

∼A = > ≥ < ≤ 6=

5.1 Some Facts About Propagators

domain propagation, interval propagation If a propagator is invoked, it tries
to narrow the domains of the variables it is posted on. The amount of narrowing of
domains depends on the operational semantics of the propagator. There are two main
schemes for the operational semantics of a propagator. Domain propagation means
that the propagator narrows the domains such that all values are discarded, which are
not contained in a solution of the modeled constraint. But due to efficiency reasons,
most propagators provide only interval propagation, i.e. only the bounds of domains
are narrowed. For some propagators, there is an operational semantics in between both
schemes.

A propagator ceases to exist at least if all the variables it is posted on are determined.
In the following sections, only exceptions from this rule are mentioned, i.e. if the prop-
agator ceases to exist earlier. For example, {X =<: Y} ceases to exist if the current
upper bound of X is smaller than or equal to the current lower bound of Y.



34 Chapter 5. Finite Domain Constraints: FD

5.2 The Concept of Constructive Disjunction

The operational semantics of some propagators is based on the concept of construc-
tive disjunction which allows to lift common information from different clauses of a
disjunctive constraint.

Constructive disjunction is not available as program combinator in Oz. Anyway, we
use it in Oz program fragments (by the keyword condis) to describe the operational se-
mantics of certain propagators. For example such propagators are FD.tasksOverlap

(page 47) and FD.disjoint (page 47).

Constructive disjunction adopts the operational semantics of the nondistributable dis-
junction of Oz (or ... end) concerning entailment and failure of clauses. Further-
more, it extends the semantics as follows: Assume a disjunction with n clauses and let
S be the constraint store of the computation space in which it resides. Let S1, . . . ,Sn

denote the local stores of the n clauses. Then the strongest constraint C consisting of
basic constraints X ∈ D with Si |= C for 1 ≤ i ≤ n is lifted and added to S.

As an example consider the store X, Y∈ {0, . . . ,10} and

condis X + 9 =<: Y

[] Y + 9 =<: X

end

Constructive disjunction narrows the domains of X and Y to {0,1,9,10}.

5.3 Finite Domains

inf

FD.inf

is a constant integer. Its concrete value is implementation dependent. In Mozart
FD.inf is 0.

sup

FD.sup

is a constant integer. Its concrete value is implementation dependent. In Mozart
FD.sup is 134 217 726.

is

{FD.is ∗D ?B}

tests whether D is an integer between 0 and FD.sup.

5.4 Telling Domains

::

?D::+Spec
{FD.int +Spec ?D}

tells the constraint store that D is an integer in Spec.



5.5. Reflection 35

:::

Dv:::+Spec
{FD.dom +Spec ?Dv}

tells the constraint store that Dv is a vector of integers in Spec. Waits until Dv is
constrained to a vector.

list

{FD.list +I +Spec ?Ds}

tells the constraint store that Ds is a list of integers in Spec of length I.

tuple

{FD.tuple +L +I +Spec ?Dt}

tells the constraint store that Dt is a tuple of integers in Spec of width I and label L.

record

{FD.record +L +Ls +Spec ?Dr}

tells the constraint store that Dr is a record of integers in Spec with features Ls and
label L.

decl

{FD.decl ?D}

Abbreviates {FD.int 0#FD.sup D}.

5.5 Reflection

reflect.min

{FD.reflect.min ∗D1 ?D2}

returns the current lower bound of D1.

reflect.max

{FD.reflect.max ∗D1 ?D2}

returns the current upper bound of D1.

reflect.mid

{FD.reflect.mid ∗D1 ?D2}

returns the integer which is closest to the middle of the current domain (the arithmetical
means of the lower and upper bound of D1). In case of ties, the smaller element is
selected.

reflect.nextLarger

{FD.reflect.nextLarger ∗D1 +D2 ?D3}

returns the smallest integer in the domain of D1 which is larger than D2.

reflect.nextSmaller

{FD.reflect.nextSmaller ∗D1 +D2 ?D3}

returns the largest integer in the domain of D1 which is smaller than D2.

reflect.size



36 Chapter 5. Finite Domain Constraints: FD

{FD.reflect.size ∗D1 ?D2}

returns the size of the current domain of D1.

reflect.domList

{FD.reflect.domList ∗D ?Ds}

returns the current domain of D as an ordered list of integers.

reflect.dom

{FD.reflect.dom ∗D ?Spec}

returns the current domain of D as a domain specification.

reflect.nbSusps

{FD.reflect.nbSusps ∗D ?I}

returns the current number of suspensions on D.

5.6 Watching Domains

watch.min

{FD.watch.min ∗D1 +D2 ?B}

Returns true when D1 ∈ {D2+ 1, . . . ,FD.sup} and false when D1 ∈ {0, . . . ,D2} is
entailed by the constraint store.

watch.max

{FD.watch.max ∗D1 +D2 ?B}

Returns true when D1 ∈ {0, . . . ,D2−1} and false when D1 ∈ {D2, . . . ,FD.sup} is
entailed by the constraint store.

watch.size

{FD.watch.size ∗D1 +D2 ?B}

Returns true when the size of the domain of D1 becomes smaller than D2.

5.7 Generic Propagators

The generic propagators FD.sum, FD.sumC and FD.sumCN do interval propagation. The
propagators FD.sumAC and FD.sumACN do interval propagation but may also cut holes
into domains. For example,

{FD.dom 0#10 [X Y]}

{FD.sumAC [1 ~1] [X Y] ’>:’ 8}

will reduce the domains of X and Y to {0,1,9,10}. Except for propagators FD.sumCN
and FD.sumACN, equality is exploited, e.g. {FD.sumC [2 3] [A A] ’=:’ 10} is equiv-
alent to {FD.sumC [5] [A] ’=:’ 10}.

x,x Let S denote the current constraint store and x a finite domain integer.x denotes
the largest integer such that S |= x ≥ x holds. Analogously, x denotes the smallest
integer such that S |= x ≤ x holds.



5.7. Generic Propagators 37

bnc, dne Let n denote a real number. bnc denotes the largest integer which is equal or
smaller than n. Analogously, dne denotes the smallest integer which is equal or larger
than n.

sum

{FD.sum ∗Dv +A ∗D}
creates a propagator for

1∗D1 + . . .+1∗Dn +(−1)∗D ∼A 0

For the operational semantics see FD.sumC. For the relation symbol ’\=:’, the prop-
agator waits until at most one non-determined variable is left. Then the appropriate
value is discarded from the variable’s domain. For the other relations, the propagator
does interval propagation.

sumC

{FD.sumC +Iv ∗Dv +A ∗D}
creates a propagator for the scalar product of the vectors Iv and Dv:

I1 ∗D1 + . . .+In ∗Dn +(−1)∗D ∼A 0

Let Dn+1 be D and In+1 be −1. Then, the operational semantics is defined as follows.
For each product Ik ∗Dk, an isolation (projection) is computed:

Ik ∗Dk ∼A −
n+1

∑
i=1,i6=k

Ii ∗Di

︸ ︷︷ ︸

RHSk

.

For the right hand side RHSk, the upper RHSk and lower limit RHSk are defined as
follows.

RHSk = −
n+1

∑
i=1,i6=k,Ii>0

Ii ∗Di −
n+1

∑
i=1,i6=k,Ii<0

Ii ∗Di

RHSk = −
n+1

∑
i=1,i6=k,Ii>0

Ii ∗Di −
n+1

∑
i=1,i6=k,Ii<0

Ii ∗Di

These values are used to narrow the domain of Dk until a fixed point is reached. We
describe the propagation for the different possible values of A.

=<:

Narrowing is done according to the following inequalities.

Dk ≤
⌊

RHSk
Ik

⌋

if Ik > 0

Dk ≥
⌈

RHSk
Ik

⌉

if Ik < 0

Here x ≤ n denotes the basic constraint x ∈ {0, . . . ,n} and x ≥ n denotes the basic
constraint x ∈ {n, . . . ,FD.sup}.

The propagator ceases to exist, if the following condition holds.

∑n+1
i=1,Ii>0 Ii ∗Di + ∑n+1

i=1,Ii<0 Ii ∗Di ≤ 0

As an example consider



38 Chapter 5. Finite Domain Constraints: FD

X - Y =<: Z - V

We have the following narrowing.
X≤ Z−V+Y Y≥ X−Z+V Z≥ X−Y+V V≤ Z−X+Y

The propagator ceases to exist if X−Y≤ Z−V holds.

>=:

This case can be reduced to =<: due to the observation that
I1 ∗D1 + . . .+In ∗Dn +(−1)∗D ≥ 0
is equivalent to
(−I1)∗D1 + . . .+(−In)∗Dn +1∗D ≤ 0
Alternatively, RHSk can be used for the definition.

<:

Analogous to =<:

>:

Analogous to >=:

=:

In this case, the operational semantics is defined by conjunction of the formulas given
for =<: and >=:. Furthermore, coreferences are realized in that, e.g. the propagator
3*X=:3*Y tells the basic constraint X=Y.

\=:

In this case, the propagator waits until at most one non-determined variable is left, say
Dk. Then, RHSk denotes a unique integer value which is discarded from the domain of
Dk.

Additional propagation is achieved through the realization of coreferences, i.e. equality
between variables. If the store S entails (without loss of generality) D1 = D2, the generic
propagator evolves into:

(I1 +I2)∗D2 + . . .+In ∗Dn +(−1)∗D ∼A 0

sumCN

{FD.sumCN +Iv ∗Dvv +A ∗D}
creates a propagator for

I1 ∗D11 ∗ . . .∗D1m1 + . . .+In ∗Dn1 ∗ . . .∗Dnmn +(−1)∗D ∼A 0

Let D(n+1)1 be D, In+1 be -1, and mn+1 be 1. Then, the operational semantics is defined
as follows. For k,1 ≤ k ≤ n+1, an isolation (projection) is computed:

Ik ∗Dk1 ∗ . . .∗Dkmk ∼A −
n+1

∑
i=1,i6=k

Ii ∗
mi

∏
j=1

Di j

︸ ︷︷ ︸

RHSk

For the right hand side RHSk, the upper RHSk and lower limit RHSk are defined as
follows.

RHSk = −
n+1

∑
i=1,i6=k,Ii>0

Ii ∗
mi

∏
j=1

Di j −
n+1

∑
i=1,i6=k,Ii<0

Ii ∗
mi

∏
j=1

Di j

RHSk = −
n+1

∑
i=1,i6=k,Ii>0

Ii ∗
mi

∏
j=1

Di j −
n+1

∑
i=1,i6=k,Ii<0

Ii ∗
mi

∏
j=1

Di j



5.7. Generic Propagators 39

These values are used to narrow the domain of Dkl ,1 ≤ l ≤ mk, until a fixed point is
reached. We describe the propagation for the different possible values of A.

=<:

The narrowing is done according to the following inequalities.

Dkl ≤
⌊

RHSk

Ik∗∏
mk
j=1, j 6=l Dk j

⌋

if Ik > 0

Dkl ≥
⌈

RHSk

Ik∗∏
mk
j=0, j 6=l Dk j

⌉

if Ik < 0

Here x ≤ n denotes the basic constraint x ∈ {0, . . . ,n} and x ≥ n denotes the basic
constraint x ∈ {n, . . . ,FD.sup}.

The propagator ceases to exist, if the following condition holds.

∑n+1
i=1,Ii>0 Ii ∗∏mi

j=1 Di j +∑n+1
i=1,Ii<0Ii ∗∏mi

j=1Di ≤ 0

As an example consider

3*X*Y - Z =<: A

We have the following formulas.

X≤
⌊
A+Z
3∗Y

⌋

Y≤
⌊
A+Z
3∗X

⌋

Z≥ X∗Y−A A≥ X∗Y−Z

The propagator ceases to exist if 3∗X∗Y−Z≤ A holds.

>=:

This case can be reduced to =<: due to the observation that

I1 ∗D11 ∗ . . .∗D1k1 + . . .+In ∗Dn1 ∗ . . .∗Dnkn +(−1)∗D(n+1)1 ≤ 0

is equivalent to

(−I1)∗D11 ∗ . . .∗D1k1 + . . .+(−In)∗Dn1 ∗ . . .∗Dnkn +1∗D(n+1)1 ≥ 0

Alternatively, RHSk can be used for the definition.

<:

Analogous to =<:

>:

Analogous to >=:

=:

In this case, the operational semantics is defined by conjunction of the formulas given
for =<: and >=:.

\=:

In this case, the propagator waits until at most one non-determined variable is left, say
Dkl . Then, RHSk denotes a unique integer, and if

RHSk

Ik∗∏
mk
j=1, j 6=l Dk j

denotes an integer value, this value is discarded from the domain of Dkl .

Coreferences are not exploited for nonlinear generic constraints. The only exception is
the expression

X * X =: Y

which has the same operational semantics as {FD.times X X Y} (but note that the
occurring variables are not automatically constrained to finite domain integers).



40 Chapter 5. Finite Domain Constraints: FD

sumAC

{FD.sumAC +Iv ∗Dv +A ∗D}
creates a propagator for the absolute value of the scalar product of the vectors Iv and
Dv:

|Iv∗Dv|= |I1 ∗D1 + . . .+In ∗Dn| ∼A D

The operational semantics is as follows. If A is ’<:’, ’=<:’ or ’\=:’, the following
definition holds.

Iv∗Dv∼A D ∧ (−Iv)∗Dv∼A D

If A is ’>:’, ’>=:’ or ’=:’, the following definition holds.

Iv∗Dv∼A D ∨ (−Iv)∗Dv∼A D

where the disjunction is realized by constructive disjunction.

sumACN

{FD.sumACN +Iv ∗Dvv +A ∗D}
creates a propagator for

|I1 ∗D11 ∗ . . .∗D1k1 + . . .+In ∗Dn1 ∗ . . .∗Dnkn | ∼A D

The operational semantics is defined analogously to FD.sumAC.

sumD

{FD.sumD ∗Dv +A ∗D}
creates a propagator analogous to FD.sum but performs domain-consistent propagation.
Note that only equality (A is ’=:’) and disequality (A is ’\=:’) are supported, as for
inequalities domain and bounds propagation are equivalent.

sumCD

{FD.sumCD +Iv ∗Dv +A ∗D}
creates a propagator analogous to FD.sumC but performs domain-consistent propaga-
tion. Note that only equality (A is ’=:’) and disequality (A is ’\=:’) are supported,
as for inequalities domain and bounds propagation are equivalent.

5.8 Symbolic Propagators

The following propagators do domain propagation or amplify the store by constraints
X::Spec, where Spec may also contain holes.

distinct

{FD.distinct ∗Dv}
All elements in Dv are pairwise distinct. If one element becomes determined, the
remaining elements are constrained to be different from it. If two variables become
equal, the propagator fails, e.g. {FD.distinct [A A B]} will fail even if A is not
determined.

distinct

{FD.distinctB ∗Dv}



5.8. Symbolic Propagators 41

All elements in Dv are pairwise distinct. Uses bounds propagation, but does not use
value propagation as FD.distinct. Also fails, if two variables are equal. Currently
uses the quadratic algorithm for propagation by Puget described in [7].

distinct

{FD.distinctD ∗Dv}
All elements in Dv are pairwise distinct. Uses full domain propagation. Also fails, if
two variables are equal. Is based on Régin’s algorithm [8].

distinctOffset

{FD.distinctOffset ∗Dv +Iv}

All sums Di + Ii are pairwise distinct, i.e. for all i 6= j holds Di + Ii 6= D j + I j. If one
Di becomes determined, the remaining elements D j are constrained to be different from
Di +Ii−I j.

distinct2

{FD.distinct2 ∗Dv1 +Iv1 ∗Dv2 +Iv2}

Assume that all arguments are tuples of width n. Then the propagator’s operational
semantics is defined as follows.

or Dv1.i + IV1.i =<: Dv1.j
[] Dv1.j + IV1.j =<: Dv1.i
[] Dv2.i + IV2.i =<: Dv2.j
[] Dv2.j + IV2.j =<: Dv2.i
end

This propagator may be used to express that a number of rectangles must not overlap
in the two-dimensional space. In this case Dv1 and Dv2 may denote the x-coordinates
and y-coordinates of the lower left corner of the rectangles, respectively. Iv1 and Iv2
may denote the widths and heights of the rectangles, respectively.

atMost

{FD.atMost ∗D ∗Dv +I}

atLeast

{FD.atLeast ∗D ∗Dv +I}

exactly

{FD.exactly ∗D ∗Dv +I}

At most, at least, exactly D elements of Dv are equal to I. The operational semantics
is defined as follows. Let VFoldL be either FoldL or Record.foldL depending on the
type of Dv and

S = {VFoldL Dv fun{$ In D1} {FD.plus In D1=:I} end 0}

The propagator FD.atMost, FD.atLeast and FD.exactly are defined by D>=:S, D=<:S
and D=:S, respectively.

element

{FD.element ∗D1 +Iv ∗D2}



42 Chapter 5. Finite Domain Constraints: FD

The D1-th element of Iv is D2.

It propagates as follows. For each integer i in the domain of D1, the i-th element of
Iv is in the domain of D2; and no other values. For each value j in the domain of D2,
all positions where j occurs in Is are in the domain of D1; and no other values. For
example,

{FD.int [1 3] X} {FD.element X [5 6 7 8] Y}

will constrain Y to {5,7}. D1 is constrained to be greater than 0.

5.9 0/1 Propagators

Using the mapping from 0 and 1 to the truth values false and true, respectively, logical
connectives between finite domain integers are defined. If at most one argument is a
free variable, it will be constrained to a finite domain integer in {0,1}. Such a finite
domain integer is also called a 0/1-integer. The propagators exploit equality and may
also post equality between variables.

The operational semantics is detailed only for FD.conj. For the remaining propagators,
the operational semantics is defined accordingly, exploiting as much information as
possible (including coreferences).

conj

{FD.conj $D1 $D2 $D3}

D3 is the conjunction of D1 and D2. The operational semantics can be described by
the following code

[D1 D2 D3] ::: 0#1

cond D1=0 then D3=0

[] D1=1 then D2=D3

[] D2=0 then D3=0

[] D2=1 then D1=D3

[] D3=1 then D1=1 D2=1

[] D1=D2 then D1=D3

end

disj

{FD.disj $D1 $D2 $D3}

D3 is the disjunction of D1 and D2.

exor

{FD.exor $D1 $D2 $D3}

D3 is the exclusive disjunction of D1 and D2.

nega

{FD.nega $D1 $D2}

D2 is the negation of D1.

impl

{FD.impl $D1 $D2 $D3}



5.10. Reified Constraints 43

D3 is the implication of D2 by D1 (‘D1→ D2’).

equi

{FD.equi $D1 $D2 $D3}

D3 is the equivalence of D1 by D2 (‘D1↔ D2’).

5.10 Reified Constraints

Reified constraints reflect the validity of a constraint C into a 0/1-valued finite domain
integer. The propagator realizing a reified constraint is called the reification propaga-
tor. The reification propagators wait in the same way as their non-reified counterparts.
All reification propagators constrain their last argument to a 0/1-valued finite domain
integer.

Let C be a constraint and P the corresponding propagator. Reifying C into a 0/1-valued
variable D is defined by

(C ↔ D= 1)∧D ∈ {0,1}.
This is implemented by

D::0#1

or P D=1

[] P^N D=0

end

Here, PN denotes the negation of P (i.e. a propagator for the negation of the denota-
tional semantics of P).

If P is one of {FD.reified.int Spec X} and {FD.reified.dom Spec Xv}, then
PN denotes {FD.reified.int ComplSpec X} and {FD.reified.dom ComplSpec Xv},
respectively (where ComplSpec = compl(Spec) if Spec is a simple domain specifi-
cation, and ComplSpec = SSpec if Spec = compl(SSpec)).

For the propagators P wich are parameterized by a relation symbol A, the symbol of
the negated relation occurs in PN . For instance, if P is {FD.sum Ds ’<:’ X Y}, then
PN is {FD.sum Ds ’>=:’ X Y}.

reified.int

{FD.reified.int +Spec ∗D1 D2}

reifies {FD.int Spec D1} into D2.

reified.dom

{FD.reified.dom +Spec Dv D}

reifies {FD.dom Spec Dv} into D.

reified.sum

{FD.reified.sum ∗Dv +A ∗D1 D2}

reifies {FD.sum Dv A D1} into D2.

reified.sumC



44 Chapter 5. Finite Domain Constraints: FD

{FD.reified.sumC +Iv ∗Dv +A ∗D1 D2}

reifies {FD.sumC Iv Dv A D1} into D2.

reified.sumCN

{FD.reified.sumCN +Iv ∗Dvv +A ∗D1 D2}

reifies {FD.sumCN Iv Dvv A D1} into D2.

reified.sumAC

{FD.reified.sumAC +Iv ∗Dv +A ∗D1 D2}

reifies {FD.sumAC Iv Dv A D1} into D2.

reified.sumACN

{FD.reified.sumACN +Iv ∗Dvv +A ∗D1 D2}

reifies {FD.sumACN Iv Dvv A D1} into D2.

reified.distance

{FD.reified.distance ∗D1 ∗D2 +A ∗D3 D4}

reifies {FD.distance D1 D2 A D3} into D4.

reified.card

{FD.reified.card ∗D1 ∗Dv ∗D2 D3}

creates a propagator for

((D1≤ D1 + . . .+Dn ≤ D2)↔ (D3 = 1)) ∧ D3 ∈ {0,1}.
which reifies into D3 the conjunction

D1 =<: D1 + ... + Dn

D1 + ... + Dn =<: D2

More specifically, its operational semantics is defined through

D3 :: 0#1

or D1 =<: D1 + ... + Dn

D1 + ... + Dn =<: D2

D3 = 1

[] or D1 >: D1 + ... + Dn

[] D1 + ... + Dn >: D2

end

D3 = 0

end

5.11 Miscellaneous Propagators

plus

{FD.plus $D1 $D2 $D3}

D3 is the sum of D1 and D2. The propagator constrains its arguments as D1+D2=:D3.

plusD

{FD.plusD $D1 $D2 $D3}



5.11. Miscellaneous Propagators 45

D3 is the sum of D1 and D2. The propagator constrains its arguments as D1+D2=:D3.

Does domain propagation, which can be very expensive.

minus

{FD.minus $D1 $D2 $D3}

D3 is the difference between D1 and D2. The propagator constrains its arguments as
D1-D2=:D3.

minusD

{FD.minusD $D1 $D2 $D3}

D3 is the difference between D1 and D2. The propagator constrains its arguments as
D1-D2=:D3.

Does domain propagation, which can be very expensive.

times

{FD.times $D1 $D2 $D3}

D3 is the product of D1 and D2. Coreferences are exploited. If the store entails
D1 = D3, the propagator ceases to exist and the constraint D2=1 is imposed. If the
store entails D2 = D3, the propagator ceases to exist and the constraint D1=1 is im-
posed. If the store entails D1 = D2, the propagator ceases to exist and a propagator is
imposed instead, which constrains the variables D1 and D2 as follows.

D12 ≤ D3≤ D1
2 d√D3e ≤ D1≤ b

√
D3c

For notation see Section 5.7n.

timesD

{FD.timesD $D1 $D2 $D3}

D3 is the product of D1 and D2.

Does domain propagation, which can be very expensive.

power

{FD.power $D1 +I $D2}

$D2 is the result of D1 raised to the power of I, i.e. D1I = D2. The propagator con-
strains the variables D1 and D2 as follows.

D1I ≤ D2≤ D1
I d D2

√
D1e ≤ D2≤ b D2

√
D1c

For notation see Section 5.7.

divI

{FD.divI $D1 +I $D2}

D2 is the result of the integer division of D1 by I.

A domain bound is discarded from the domain of one variable, if there is no value
between the lower and upper bound of the domain of the other variable, such that the
constraint holds. Additionally, if D1 = D2, the propagator is replaced by I=1.

modI

{FD.modI $D1 +I $D2}



46 Chapter 5. Finite Domain Constraints: FD

D2 is the result of D1 modulus I.

A domain bound is discarded from the domain of one variable, if there is no value
between the lower and upper bound of the domain of the other variable, such that the
constraint holds. Additionally, if D1 = D2, the propagator is replaced by D1<:I. If the
current upper bound of D1 is less than I, the propagator is replaced by D1=D2.

divD

{FD.divD $D1 +I $D2}

D2 is the result of the integer division of D1 by I.

Does domain propagation, which can be very expensive.

modD

{FD.modD $D1 +I $D2}

D2 is the result of D1 modulus I.

Does domain propagation, which can be very expensive.

max

{FD.max $D1 $D2 $D3}

D3 is the maximum of D1 and D2.

Its operational semantics is defined through

D3>=:D1 D3>=:D2

condis D3=<:D1

[] D3=<:D2

end

if D1=D2 then D3=D1

else skip

end

min

{FD.min $D1 $D2 $D3}

D3 is the minimum of D1 and D2. Its operational semantics is defined through

D3=<:D1 D3=<:D2

condis D3>=:D1

[] D3>=:D2

end

if D1=D2 then D3=D1

else skip

end

distance

{FD.distance ∗D1 ∗D2 +A ∗D3}
creates a propagator for | D1−D2 | ∼A D3. May cut holes into domains. For example,

{FD.dom 0#10 [X Y]}

{FD.distance X Y ’>:’ 8}



5.11. Miscellaneous Propagators 47

will reduce the domains of X and Y to {0,1,9,10}.

The propagator is equivalent to {FD.sumAC [1 ~1] [D1 D2] A D3} but is more ef-
ficient.

less

{FD.less ∗D1 ∗D2}
Equivalent to D1<:D2.

lesseq

{FD.lesseq ∗D1 ∗D2}
Equivalent to D1 =<: D2.

greater

{FD.greater ∗D1 ∗D2}
Equivalent to D1>:D2.

greatereq

{FD.greatereq ∗D1 ∗D2}
Equivalent to D1>=:D2.

disjoint

{FD.disjoint ∗D1 +I1 ∗D2 +I2}

creates a propagator for D1+I1 ≤ D2 ∨ D2+I2 ≤ D1. May cut holes into domains.
For example,

{FD.dom 0#10 [X Y]}

{FD.disjoint X 9 Y 9}

will reduce the domains of X and Y to {0,1,9,10}.

Its operational semantics is defined through

condis D1 + I1 =<: D2

[] D2 + I2 =<: D1

end

disjointC

{FD.disjointC ∗D1 +I1 ∗D2 +I2 D3}

creates a propagator for

((D1+I1≤ D2∧D3 = 0) ∨ (D2+I2≤ D1∧D3 = 1)) ∧ (D3 ∈ {0,1}).
Its operational semantics is defined through

condis D1 + I1 =<: D2

D3 =: 0

[] D2 + I2 =<: D1

D3 =: 1

end

tasksOverlap

{FD.tasksOverlap ∗D1 +I1 ∗D2 +I2 D3}



48 Chapter 5. Finite Domain Constraints: FD

creates a propagator for

((D1+I1> D2 ∧ D2+I2> D1 ∧ D3= 1) ∨ (D1+I1≤ D2 ∧ D3= 0) ∨ (D2+I2≤
D1 ∧ D3 = 0)) ∧ (D3 ∈ {0,1}).
Its operational semantics is defined through

condis

D1 + I1 >: D2

D2 + I2 >: D1

D3 =: 1

[]

D1 + I1 =<: D2

D3 =: 0

[]

D2 + I2 =<: D1

D3 =: 0

end

Note that the disjunction is constructive (page 34). Informally, in case D3 is 0 the
propagator behaves like FD.disjoint, i.e., in context of task scheduling two tasks
must not overlap. Otherwise, if D3 is 1, the two tasks must overlap. This propagator is
used in applications which shall be able to deal with overlapping tasks.

5.12 Distribution

In this section it is shown how Oz supports distribution with constraints. The follow-
ing procedure creates binary choice-points for variables. The choice is delayed until
propagation has reached a fixed point. Assume Dv to be a vector of finite domain in-
tegers. The distribution differs in the order of the choice-points and in the constraint
with which is distributed. Essentially, it works as follows

• Select an element D of Dv which is not determined.

• Select a value or a domain specification Spec in the current domain of D.

• Create a choice point for X::Spec and X::compl(Spec).

• If not all elements of Dv are determined, go to step 1.

The order of Dv is preserved.

distribute

{FD.distribute +Dist +Xv}

The vector Xv is distributed according to the specification Dist. Dist may be either
the atom naive, ff (for first-fail), split or a record with label generic:

• naive: Xv must be a vector of finite domain integers. Considers only non-
determined elements of Xv. Chooses the leftmost variable X in Xv. Creates a
choice point for X=L and X\=:L, where L is the lower bound of the domain of X.



5.12. Distribution 49

• ff: Xvmust be a vector of finite domain integers. Considers only non-determined
elements of Xv. Chooses the leftmost variable X in Xv, whose domain size is
minimal. Creates a choice point for X=L and X\=:L, where L is the lower bound
of the domain of X.

• split: Xv must be a vector of finite domain integers. Considers only non-
determined elements of Xv. Chooses the leftmost variable X in Xv, whose do-
main size is minimal. Creates a choice point for X=<:M and X>:M, where M is the
middle of the domain of X (see FD.reflect.mid).

• generic(order: +Order <= size

filter: +Filter <= undet

select: +Select <= id

value: +Value <= min

procedure: +Proc <= proc {$} skip end)

Considers only those elements in Xv, for which Filter is true. Chooses the
leftmost element, which is minimal with respect to Order and selects the cor-
responding variable D by Select. Creates a choice point for D::Spec and
D::compl(Spec), where Spec is selected by Value.

The values under the respective features must be as follows:

– Order:

∗ Binary boolean function P: Selects the leftmost element in Xv which is
minimal with respect to the order relation P.

∗ naive: Selects the leftmost variable.

∗ size: Selects the leftmost variable, whose domain is minimal.

∗ min: Selects the leftmost variable, whose lower bound is minimal.

∗ max: Selects the leftmost variable, whose upper bound is maximal.

∗ nbSusps: Selects the variable with the largest number of suspensions.
If several variables suspend on the maximal number of constraints, the
leftmost variable whose domain is minimal is selected.

– Filter:

∗ Unary boolean function P: Considers only the elements X in Xv, for
which {P X} yields true.

∗ undet: Considers only undetermined variables.

– Select:

∗ Unary function P: Selects the variable to enumerate from the selected
element by Order and Filter.

∗ id: The variable to enumerate is the selected element.

– Value:

∗ Ternary procedure P: Selects a value from the domain of the selected
variable. The first argument is the domain of the selected variable. The
second argument is the vector Xv converted to a list and the third argu-
ment is a procedure used as continuation.

∗ min: Selects the lower bound of the domain.

∗ max: Selects the upper bound of the domain.

∗ mid: Selects the element, which is closest to the middle of the domain
(the arithmetical means between the lower and upper bound of the do-
main). In case of ties, the smaller element is selected.



50 Chapter 5. Finite Domain Constraints: FD

∗ splitMin: Selects the interval from the lower bound to the middle of
the domain (see mid).

∗ splitMax: Selects the interval from the element following the middle
to the upper bound of the domain (see mid).

– Proc: Is applied when stability is reached. Since this application may cause
instability, distribution is continued when stability is reached again.

Note, that in case Det is det or in case Order is size, lower, upper, or
nbSusps, the elements of Xv must be finite domain integers.

For example, {FD.distribute ff Dv} can be expressed as

{FD.distribute generic Dv},

{FD.distribute split Dv} as

{FD.distribute generic(value: splitMin) Dv},

and {FD.distribute naive Dv} as

{FD.distribute generic(order: naive) Dv}

The naive distribution can also be defined as follows using the value feature.

{FD.distribute

generic(value: proc{$ D Ds Cont}

Min={FD.reflect.min D}

in

choice D=Min

choice {Cont Ds} end

[] {‘Nec‘ D Min}

choice {Cont Ds} end

end

end) Ds}

choose

{FD.choose +Dist +Xv ?X ?Spec}

Chooses the element X in Xv according to the description Dist. A specification Spec
for the element X is returned according to the description Dist. The parameter Dist
is defined in the same way as for FD.distribute except for the value selection. If the
feature value is used for generic distribution, the field must be constrained to a unary
function P which selects a value from the domain of the selected variable (see below
for an example). For example,

{FD.choose ff Xs E S}

selects the element E in the list Xs according to the first-fail strategy and binds S to the
current lower bound of E.

{FD.choose generic(value:splitMin) Xv E S}

selects the element E in the list Xs according to the first-fail strategy and binds S to
the pair 0#M, where M is the result of {FD.reflect.mid E}. For the naive distribution
strategy, the following may be used.



5.13. Assigning Values 51

{FD.choose generic(value: fun{$ X}

{FD.reflect.min X}

end)

Xv E S}

5.13 Assigning Values

Special support is available for assigning particular values to vectors of variables. As-
signment interleaves the assignment of a value proper to a variable and synchronization
until stability after each assignment.

The selection of variables and the selection of values is as with distribution Sec-
tion 5.12.

assign

{FD.assign +ValA +Xv}

The vector Xv is assigned according to the specification ValA. ValA may be either
the atom min, mid, or max. That is, the smallest, medium, or largest element is assigned
to each variable.

Is equivalent to (for a list of variables Xs):

proc {FD.assign ValA Xs}

for X in Xs do

{Space.waitStable}

X = {FD.reflect.A X}

end

end



52 Chapter 5. Finite Domain Constraints: FD



6

Scheduling Support: Schedule

This chapters describes propagators and distributors for scheduling applications. More
information on scheduling in Oz can be found in [10] and [11]. A tutorial account on
scheduling can be found in Chapter Scheduling, (Finite Domain Constraint Program-
ming in Oz. A Tutorial.) .

6.1 Serialization for Unary Resources

Serializing a unary resource which can execute at most one task simultaneously means
that the tasks must be scheduled non-overlapping in time.

The following conventions hold. The argument StartR is a record of finite domain inte-
gers denoting start times of tasks. The argument DurR is a record of integers denoting
durations of tasks. The arities of StartR and DurR must be equal.

The integers and literals occurring in TasksLIvv denote the tasks to be scheduled. Each
element of TasksLIvv must occur in the arity of StartR. The tasks occurring in the
vectors TasksLIv are scheduled on the same resource.

serializedDisj

{Schedule.serializedDisj +TasksLIvv +StartR +DurR}

creates a propagator, which states that all tasks TasksLIv scheduled on the same re-
source must not overlap in time.

The propagator does the same propagation as the conjunction of all reified constraints
modelling that two tasks must not overlap in time, i.e.

(StartR.T1 + DurR.T1 =<: StartR.T2) +

(StartR.T2 + DurR.T2 =<: StartR.T1) =: 1

where T1 and T2 are two tasks out of TasksLIvv.

Assume the following tasks and durations:

Task Resource Duration
a r 4

b r 6

c r 7

d s 7

e s 4



54 Chapter 6. Scheduling Support: Schedule

In addition let us assume that no further restriction on the start times is given.

Then

Dur = dur(a:4 b:6 c:7 d:7 e:4)

Start = {FD.record start [a b c d e] 0#FD.sup}

Tasks = (a#b#c)#(d#e)

{Schedule.serializedDisj Tasks Start Dur}

serializes the tasks for the resources r and s (for FD.record see (page 35)). Note
that the resources are kept anonymous, they are just reflected by the vector elements in
Tasks. If we would like to make the resources more explicit we could use for Tasks
the following:

Tasks = tasks(r:[a b c] s:[d e])

It also possible to use integers or names rather than atoms for the tasks.

serialized

{Schedule.serialized +TasksLIvv +StartR +DurR}

creates a propagator, which states that all tasks TasksLIv scheduled on the same re-
source must not overlap in time.

The propagator does stronger propagation than Schedule.serializedDisj by using
so-called edge-finding. This type of edge-finding is a generalization of a technique
described in [4].

taskIntervals

{Schedule.taskIntervals +TasksLIvv +StartR +DurR}

creates a propagator, which states that all tasks TasksLIv scheduled on the same re-
source must not overlap in time.

The propagator does even stronger propagation than Schedule.serialized by using
so-called task-intervals [2]. The propagation of this propagator is slightly weaker than
the propagation described in [2].

6.2 Distribution

In addition to the conventions used in Section 6.1 the record of start times StartR must
have the feature pe. This feature denotes the task which is to be scheduled last, i.e. the
makespan of the schedule.

firstsDist

{Schedule.firstsDist +TasksLIvv +StartR +DurR}

distributes the tasks occurring in TasksLIvv, such that every resource is serialized.

More details can be found in [1].

lastsDist

{Schedule.lastsDist +TasksLIvv +StartR +DurR}

distributes the tasks occurring in TasksLIvv, such that every resource is serialized.

More details can be found in [1].



6.3. Cumulative Scheduling 55

firstsLastsDist

{Schedule.firstsLastsDist +TasksLIvv +StartR +DurR}

distributes the tasks occurring in TasksLIvv, such that every resource is serialized.

More details can be found in [1].

taskIntervalsDistP

{Schedule.taskIntervalsDistP +TasksLIvv +StartR
+DurR}

distributes the tasks occurring in TasksLIvv, such that every resource is serialized. This
strategy is well suited for proving optimality.

More details can be found in [2]. The distribution strategy implemented in Oz differs
slightly from the one described in [2].

taskIntervalsDistO

{Schedule.taskIntervalsDistO +TasksLIvv +StartR
+DurR}

distributes the tasks occurring in TasksLIvv, such that every resource is serialized. This
strategy is well suited for finding good solutions in combination with local search tech-
niques.

More details can be found in [2]. The distribution strategy implemented in Oz differs
slightly from the one described in [2].

6.3 Cumulative Scheduling

The following conventions hold. The argument StartR is a record of finite domain inte-
gers denoting start times of tasks. The argument DurR is a record of integers denoting
durations of tasks. The argument UseR is a record of integers denoting the resource
usage of tasks. The arities of StartR, DurR, and UseR must be equal.

The integers and literals occurring in TasksLIvv denote the tasks to be scheduled. Each
element of TasksLIvv must occur in the arity of StartR. The tasks occurring in the
vectors TasksLIv are scheduled on the same resource. The vector CapIv is a vector of
integers denoting the capacity of the resources. The number of elements in the vectors
TasksLIvv and CapIv must be equal.

cumulative

{Schedule.cumulative +TasksLIvv +StartR +DurR
+UseR +CapIv}

creates a propagator, which states that for all resources i and time instants x, the re-
source usage does not exceed the available capacity:

∑
{t∈TasksAi|StartR.t≤x<StartR.t+DurR.t}

UseR.t ≤ CapIi

The propagator does not use edge-finding.

Assume that we have the following resources and tasks:



56 Chapter 6. Scheduling Support: Schedule

Resource Capacity
r 5

s 2

Task Resource Duration Usage
a r 5 5

b r 2 3

c s 7 2

d s 4 3

e s 9 5

Provided that no limit on the start times of the tasks are given, the following

Tasks = tasks([a b] [c d e])

Start = {FD.record start [a b c d e] 0#FD.sup}

Dur = dur(a:5 b:2 c:7 d:4 e:9)

Use = use(a:5 b:3 c:2 d:3 e:5)

Cap = cap(5 2)

{Schedule.cumulative Tasks Start Dur Use Cap}

propagates that the resource usage does not exceed the resources’ capacities (for FD.record
see (page 35)).

cumulativeEF

{Schedule.cumulativeEF +TasksLIvv +StartR +DurR
+UseR +CapIv}

creates a propagator, which states that for all resources i and time instants x, the re-
source usage does not exceed the available capacity:

∑
{t∈TasksAi|StartR.t≤x<StartR.t+DurR.t}

UseR.t ≤ CapIi

This propagator generalizes the edge-finding propagation in Schedule.serialized

to deal with non-unary resources.

cumulativeTI

{Schedule.cumulativeTI +TasksLIvv +StartR +DurR
+UseR +CapIv}

creates a propagator, which states that for all resources i and time instants x, the re-
source usage does not exceed the available capacity:

∑
{t∈TasksAi|StartR.t≤x<StartR.t+DurR.t}

UseR.t ≤ CapIi

This propagator generalizes the edge-finding propagation in Schedule.taskIntervals
to deal with non-unary resources.

cumulativeUp

{Schedule.cumulativeUp +TasksLIvv +StartR +DurR
+UseR +CapIv}



6.4. Miscellaneous Propagators 57

creates a propagator, which states that for all resources i and time instants x, the re-
source is at least as large as the available capacity:

∑
{t∈TasksAi|StartR.t≤x<StartR.t+DurR.t}

UseR.t ≥ CapIi

6.4 Miscellaneous Propagators

disjoint

{Schedule.disjoint ∗D1 +I1 ∗D2 +I2}

creates a propagator for D1 + I1 ≤ D2 ∨ D2 + I2 ≤ D1. Its operational semantics is
defined by

or D1 + I1 =<: D2
[] D2 + I2 =<: D1
end



58 Chapter 6. Scheduling Support: Schedule



7

Finite Set Constraints: FS

We use the following notation for operations and relations on sets. We write ∪,∩, and
\ for set union, intersection, and difference, ⊆ and ‖ for inclusion and disjointness, #
for the set cardinality, and ∈ for the element relation. Furthermore, we write /0 and U
for the empty set and the universal set.

For every set specification Spec we write the set M specified by Spec as M =

set(Spec). For example, set( [1#3 5 7]) denotes {1,2,3,5,7}. Further, for every
set S we denote with D = set−1(S) a set description D such that set(D) = S.

For more information on the finite set constraint system see [5].

7.1 Finite Set Intervals

inf

FS.inf

An integer constant that denotes the smallest possible element of a set. Its value is
implementation-dependent. In Mozart FS.inf is 0.

sup

FS.sup

An integer constant that denotes the greatest possible element of a set. Its value is
implementation-dependent. In Mozart FS.sup is 134 217 726.

compl

{FS.compl $M1 $M2}

M2= {FS.inf, . . . ,FS.sup}\M1

complIn

{FS.complIn $M1 $M2 $M3}

M3= M2\M1

include

{FS.include +D *M}

D ∈ M∧FS.inf≤ D≤ FS.sup

exclude



60 Chapter 7. Finite Set Constraints: FS

{FS.exclude +D *M}

D /∈ M

card

{FS.card *M ?D}

D= #M

cardRange

{FS.cardRange +I1 +I2 *M}

I1≤ #M ≤ I2

isIn

{FS.isIn +I *M ?B}

(E ∈ M)→ B

makeWeights

{FS.makeWeights +SpecW ?P}

Returns a procedure with signature {P +I1 ?I2}. This procedure maps an element to
a weight according to the weight description passed to FS.makeWeights.

7.2 Sets over Integers

int.min

{FS.int.min *M $D}

D is the minimal element within M.

int.max

{FS.int.max *M $D}

D is the maximal element within M.

int.convex

{FS.int.convex *M}

Whenever I1 and I2 are elements of M, then every I between I1 and I2, I1 < I < I2,
is also in M.

int.match

{FS.int.match *M *Dv}

Dv is a vector of integer variables that denotes the elements of M in ascending order.

int.minN

{FS.int.minN *M *Dv}

Dv is a vector of n integer variables that denotes the n minimal elements of M in ascend-
ing order.

int.maxN

{FS.int.maxN *M *Dv}

Dv is a vector of n integer variables that denotes the n maximal elements of M in as-
cending order.



7.3. Standard Propagators 61

int.seq

{FS.int.seq *Mv}

Mv is a vector of disjoint sets such that for distinct sets M1 and M2, where M1 precedes
M2 in Mv, all elements of M1 are smaller than any element of M2.

7.3 Standard Propagators

diff

{FS.diff $M1 $M2 $M3}

M3= M1\M2

intersect

{FS.intersect $M1 $M2 $M3}

M3= M1∩M2

intersectN

{FS.intersectN *Mv *M}

M=
⋂{M’ | M’ ∈ Mv}

union

{FS.union $M1 $M2 $M3}

M3= M1∪M2

unionN

{FS.unionN $Mv $M}

M=
⋃{S | S ∈ Mv}

subset

{FS.subset $M1 $M2}

M1⊆ M2

disjoint

{FS.disjoint $M1 $M2}

M1‖M2

disjointN

{FS.disjointN *Mv}

All elements of the vector Mv are pairwise disjoint.

distinct

{FS.distinct $M1 $M2}

M1 6= M2

distinctN

{FS.distinctN *MV}

All elements of the vector Mv are pairwise distinct.

partition



62 Chapter 7. Finite Set Constraints: FS

{FS.partition $MV $M}

Mv is a partition of M; that is, Mv contains pairwise disjoint sets such that their union
yields M.

7.4 Finite Set Interval Variables

var.is

{FS.var.is +M ?B}

Tests whether M is a finite set variable.

7.4.1 Declaring a Single Variable

var.decl

{FS.var.decl ?M}

/0 ⊆ M⊆ U

var.upperBound

{FS.var.upperBound +Spec ?M}

/0 ⊆ M⊆ set(Spec)

var.lowerBound

{FS.var.lowerBound +Spec ?M}

set(Spec)⊆ M⊆ U

var.bounds

{FS.var.bounds +Spec1 +Spec2 ?M}

set(Spec1)⊆ M⊆ set(Spec2)

7.4.2 Declaring a List of Variables

The following functions return a list Ms of length I and all its elements are constrained
to finite set interval variables according to the following specifications.

var.list.decl

{FS.var.list.decl +I ?Ms}

For all elements M of Ms: /0 ⊆ M⊆ U

var.list.upperBound

{FS.var.list.upperBound +I +Spec ?Ms}

For all elements M of Ms: /0 ⊆ M⊆ set(Spec)

var.list.lowerBound

{FS.var.list.lowerBound +I +Spec ?Ms}

For all elements M of Ms: set(Spec)⊆ M⊆ U

var.list.bounds

{FS.var.list.bounds +I +Spec1 +Spec2 ?Ms}

For all elements M of Ms: set(Spec1)⊆ M⊆ set(Spec2)



7.5. Finite Set Constants 63

7.4.3 Declaring a Tuple of Variables

The following functions return a tuple Mt with label L and width I and all its elements
are constrained to finite set interval variables according to the following specifications.

var.tuple.decl

{FS.var.tuple.decl +L +I ?Mt}

For all elements M of Mt: /0 ⊆ M⊆ U

var.tuple.upperBound

{FS.var.tuple.upperBound +L +I +Spec ?Mt}

For all elements M of Mt: /0 ⊆ M⊆ set(Spec)

var.tuple.lowerBound

{FS.var.tuple.lowerBound +L +I +Spec ?Mt}

For all elements M of Mt: set(Spec)⊆ M⊆ U

var.tuple.bounds

{FS.var.tuple.bounds +L +M +Spec1 +Spec2 ?Mt}

For all elements M of Mt: set(Spec1)⊆ M⊆ set(Spec2)

7.4.4 Declaring a Record of Variables

The following functions return a record Mrwith label L and the fields Ls and all its fields
are constrained to finite set interval variables according to the following specifications.

var.record.decl

{FS.var.record.decl +L +Ls ?Mr}

For all elements M of Mr: /0 ⊆ M⊆ U

var.record.upperBound

{FS.var.record.upperBound +L +Ls +Spec ?Mr}

For all elements M of Mr: /0 ⊆ M⊆ set(Spec)

var.record.lowerBound

{FS.var.record.lowerBound +L +Ls +Spec ?Mr}

For all elements M of Mr: set(Spec)⊆ M⊆ U

var.record.bounds

{FS.var.record.bounds +L +Ls +Spec1 +Spec2 ?Mr}

For all elements M of Mr: M ∈ [set(Spec1),set(Spec2)]

7.5 Finite Set Constants

value.empty

FS.value.empty

Denotes /0.



64 Chapter 7. Finite Set Constraints: FS

value.universal

FS.value.universal

Denotes U.

value.singl

{FS.value.singl +I ?M}

M = {I}

value.make

{FS.value.make +Spec ?M}

M = set(Spec)

value.is

{FS.value.is +M ?B}

Tests whether M is a finite set value or not.

value.toString

{FS.value.toString +M ?S}

Converts M to a string and returns it in M.

7.6 Reified Propagators

reified.isIn

{FS.reified.isIn +I *M $D}

D ∈ {0,1}∧ ((I ∈ M)↔ D= 1)

reified.areIn

{FS.reified.areIn +Spec *M $Ds}

Spec describes a list of individual elements Is. Is and Ds are lists of the same length
such that every element Di of Ds reifies the presence of the corresponding element Ii

of Is in the set M.

reified.include

{FS.reified.include +D1 *M $D2}

D2 reifies the presence of D1 in the set M. This propagator detects in contrast to
FS.reified.isIn earlier if D1 is or is not constained in M.

reified.equal

{FS.reified.equal *M1 *M2 $D}

D reifies the equality of M1 and M2.

reified.partition

{FS.reified.partition +MVs +Is +MV $Ds}

The propagator partitions the set value MV by selecting elements from the list of set val-
ues MVs. The positive integers in Is denote the cost resp. benefit of the corresponding
set value in MVs if it is selected for the partition. Each element of Ds is either 0 or the
corresponding integer value in Is depending on whether the corresponding set value
in MVs is part of the partition or not. Excluding a set value from the partition is done



7.7. Iterating and Monitoring 65

by constraining the corresponding element of Ds to 0. An element in Ds not equal to 0

includes the corresponding set value in MVs in the partition. The propagator ensures a
valid partition according to the values of Ds.

7.7 Iterating and Monitoring

monitorIn

{FS.monitorIn *M ?Is}

This procedure writes all elements of M to Is as soon as I ∈ M becomes known. When
M becomes determined the stream Is will be closed.

monitorOut

{FS.monitorOut *M ?Is}

This procedure writes all elements of M to Is as soon as I∈ M becomes unknown. When
M becomes determined the stream Is will be closed.

forAllIn

{FS.forAllIn *M +P/1}

This procedure applies P/1 to all elements of M.

7.8 Reflection

The result of a reflective procedure depends on the current state of the constraint store
and is non-deterministic.

reflect.card

{FS.reflect.card *M ?Spec}

returns a description Spec of the current information on the cardinality of M.

reflect.lowerBound

{FS.reflect.lowerBound *M ?Spec}

Returns a specification of the greatest lower bound that is currently known about the
set M.

reflect.upperBound

{FS.reflect.upperBound *M ?Spec}

Returns a specification of the least upper bound that is currently known about the set
M.

reflect.unknown

{FS.reflect.unknown *M ?Spec}

Returns a specification of the set of elements that are neither known to included in M
no excluded from M.

reflect.lowerBoundList

{FS.reflect.lowerBoundList *M ?Spec}



66 Chapter 7. Finite Set Constraints: FS

Returns an expanded specification (i.e., every individual element is represented) of the
greatest lower bound that is currently known about the set M.

reflect.upperBoundList

{FS.reflect.upperBoundList *M ?Spec}

Returns an expanded specification (i.e., every individual element is represented) of the
least upper bound that is currently known about the set M.

reflect.unknownList

{FS.reflect.unknownList *M ?Spec}

Returns an expanded specification (i.e., every individual element is represented) of the
set of elements that are neither known to included in M no excluded from M.

reflect.cardOf.lowerBound

{FS.reflect.cardOf.lowerBound *M ?I}

Returns the cardinality of the current greatest lower bound for M.

reflect.cardOf.upperBound

{FS.reflect.cardOf.upperBound *M ?I}

Returns the cardinality of the current greatest lower bound for M.

reflect.cardOf.unknown

{FS.reflect.cardOf.unknown *M ?I}

Returns the number of elements that are currently not known to be included or excluded
from M.

7.9 Distribution

Given a set M, let lowerBound(M) and upperBound(M) denote the greatest lower bound
and the least upper bound currently known for M. Also define unknown(M)= upperBound(M)\lowerBound(M).

distribute

{FS.distribute +Dist *Ms}

The vector Ms is distributed according to the specification Dist. The following values
for Dist are supported:

• naive is equivalent to generic, i.e. the default settings apply.

• generic(order: +Order <= order

filter: +Filter <= true

select: +Select <= id

element: +Element <= element

rrobin: +RRobin <= false

weights: +Weights <= {FS.makeWeights nil}

procedure:+Proc <= proc {$} skip end)

– Order

∗ naive selects the left-most variable.



7.9. Distribution 67

∗ order(sel: +Sel <= min

cost: +Cost <= card

comp: +Comp <= unknown)

· Sel = min selects the left-most variable S from Ss with the minimal
cost according to Cost.

· Sel = max selects the left-most variable S from Ss with the maximal
cost according to Cost.

· Cost = card: The cost is the cardinality of the set determined by
Comp.

· Cost = weightSum: The cost is the sum of the weights associated
with the elements of the set determined by Comp.

· Cost = weightMin: The cost is the minimal weight determined by
Comp.

· Cost = weightMax: The cost is the maximal weight associated with
an element of the set determined by Comp.

· Comp = unknown selects unknown(S).

· Comp = lowerBound selects lowerBound(S).

· Comp = upperBound selects upperBound(S).

∗ fun {Order +Ss} ... end

– Filter determines if an element S of Ss is choosen for distribution. That is
the case if {IsDet S} and the filter yields true.

∗ true skips values in Ss.

∗ fun {Filter +E} ... end

– Select is used to access the actual finite set variable. Self-defined func-
tions resp. procedures have to apply an appropriate selection function by
themselves.

∗ id is the identity function.

∗ fun {Select +E} ... end

– Element

∗ element(sel: +Sel <= min

wrt: +Wrt <= unknown)

· Sel = min selects the minimal element with respect to Wrt.

· Sel = max selects the maximal element with respect to Wrt.

· Wrt = unknown chooses an element from unknown(S). and interprets
it as an integer.

· Wrt = weight chooses an element from unknown(S) and takes its
weight as selection criterion.

∗ fun {Element +E} ... end

– RRobin

∗ true causes the distribution to step through the variable list in a round-
robin fashion.

∗ false causes the distribution to completely enumerate the head of the
variable list and then proceeds with the head of the tail of the variable
list.



68 Chapter 7. Finite Set Constraints: FS

– Weights must be a list of the form [E#W ...]. The variable E denotes an
element and W the element’s weight. An list element of the form default#W

assigns to all not explicitely mentioned elements the weight W. If there is no
element default#W then default#0 is implicitely added.

– Proc is applied when stability is reached. Since this application may cause
instability, distribution is continued when stability is reached again.



8

Feature Constraints: RecordC

This chapter explains procedures dedicated to feature constraints.

is

{RecordC.is ∗X ?B}

tests whether X has kind record.

tell

{RecordC.tell +L ?R}

tells the constraint store that R is a record with label L.

tellSize

{RecordC.tellSize +L +I ?R}

tells the constraint store that R is a record with label L.

Signals the implementation that it is likely that I features are told to R. RecordC.tellSize
is semantically equivalent to RecordC.tell, but the current implementation optimizes
memory allocation.

^

{RecordC.’^’ R +LI X}

tells the constraint store that R is a FC having field X at feature LI.

Is supported by the infix operator ^, that is

{RecordC.’^’ R LI X}

can also be written as

R^LI=X

width

{RecordC.width ∗R ?D}

posts a propagator for the constraint that D is the width of R. Also tells the constraint
store that D is a finite domain integer.

reflectArity

{RecordC.reflectArity ∗R ?LIs}

returns a list LIs containing the currently known features of R.



70 Chapter 8. Feature Constraints: RecordC

monitorArity

{RecordC.monitorArity ∗R ?P ?LIs}

returns a nullary procedure P and a stream LIs containing the currently known features
of R.

Features appear in the stream as soon as they become known to the constraint store.
Application of P closes the stream and deletes the propagator. The stream is automati-
cally closed once the constraint store determines R.

hasLabel

{RecordC.hasLabel ∗R ?B}

blocks until R becomes a feature structure. Tests whether R has been told a label with
RecordC.tell.



9

Deep-guard Concurrent Constraint
Combinators: Combinator

This chapter describes deep-guard concurrent constraint combinators such as condi-
tional and disjunction. Most combinators implemented by the module Combinator

are available by convenient syntax and are described in Chapter Logic Programming,
(Tutorial of Oz) .

’not’

{Combinator.’not’ +P}

implements deep-negation where the nullary procedure P gives the statement to negate.

Is supported by special syntax. The statement

not S end

expands to

{Combinator.’not’ proc {$} S end}

’reify’

{Combinator.’reify’ +P $D}

implements deep-reification where the nullary procedure P gives the statement to reify.

’cond’

{Combinator.’cond’ +T +P}

implements parallel concurrent conditional.

’or’

{Combinator.’or’ +T}

implements disjunction.

’choice’

{Combinator.’choice’ +T}

implements choice point construction.

’dis’

{Combinator.’dis’ +T}

implements andorra-style disjunction.



72 Chapter 9. Deep-guard Concurrent Constraint Combinators: Combinator



10

First-class Computation Spaces:
Space

First-class computation spaces can be used to program inference engines for problem
solving.

is

{Space.is +X ?B}

tests whether X is a space.

new

{Space.new +P ?Space}

returns a newly created space, in which a thread containing an application of the unary
procedure P to the root variable of Space is created.

ask

{Space.ask +Space ?T}

waits until Space becomes stable or merged and then returns the status of Space.

If Space is merged, the atom merged is returned.

If Space is stable and:

failed the atom failed is returned.

succeeded and there are no threads in Space synchronizing on choices, the atom succeeded is
returned.

succeeded and there is at least one thread in Space which synchronizes on a choice the tuple
alternatives(I) is returned, where I gives the number of alternatives of the selected
choice.

Synchronizes on stability of Space.

Raises a runtime error if the current space is not addmissible for Space.

askVerbose

{Space.askVerbose +Space ?T}



74 Chapter 10. First-class Computation Spaces: Space

returns the status of Space in verbose form. Reduces immediately, even if Space is
not yet stable.

If Space becomes merged, the atom merged is returned.

If Space becomes suspended (that is, blocked but not stable), T is bound to the tuple
suspended(T1). T1 is a future that is bound to the status of Space when Space
becomes unblocked again.

If Space is stable and:

failed the atom failed is returned.

succeeded and there are no threads in Space synchronizing on choices, the tuple succeeded(A)
is returned. The atom A is either stuck, when Space still contains threads, or entailed
otherwise.

succeeded and there is at least one thread in Space which synchronizes on a choice the tuple
alternatives(I) is returned, where I gives the number of alternatives of the selected
choice.

Does not synchronize on stability of Space.

Raises a runtime error if the current space is not addmissible for Space.

merge

{Space.merge +Space X}

merges Space with the current space and constrains X to the root variable of Space.

Does not synchronize on stability of Space.

Raises a runtime error if Space is already merged, or if the current space is not ad-
dmissible for Space.

clone

{Space.clone +Space1 ?Space2}

blocks until Space1 becomes stable and returns a new space which is a copy of
Space1.

Synchronizes on stability of Space.

Raises a runtime error if Space is already merged, or if the current space is not ad-
dmissible for Space.

inject

{Space.inject +Space +P}

creates a thread in the space Space which contains an application of the unary proce-
dure P to the root variable of Space.

Does not synchronize on stability of Space.

Raises a runtime error if Space is already merged, or if the current space is not ad-
dmissible for Space.

kill

{Space.kill +Space}

kills a space by injecting failure into Space.

Can be defined by



75

proc {Space.kill S}

{Space.inject S proc {$ _} fail end}

end

Does not synchronize on stability of Space.

Raises a runtime error if Space is already merged, or if the current space is not ad-
dmissible for Space.

commit

{Space.commit +Space +IT}

blocks until Space becomes stable and then commits to alternatives of the selected
choice of Space.

If IT is a pair of integers l#r then all but the l, l + 1, . . . , r alternatives of the selected
choice of Space are discarded. If a single alternative remains, the topmost choice is
replaced by this alternative. If no alternative remains, the space is failed.

An integer value for IT is an abbrevation for the pair IT#IT.

Synchronizes on stability of Space.

Raises a runtime error, if Space has been merged already, if there exists no selected
choice in Space, or if the current space is not addmissible for Space.

waitStable

{Space.waitStable}

blocks until the current space (the space that hosts the current thread) becomes sta-
ble. Space.waitStable is used mainly for programming distribution strategies (see
for example Chapter User-Defined Distributors, (Finite Domain Constraint Program-
ming in Oz. A Tutorial.) ), where for accurate variable selection it is required that all
propagation has been carried out.

If executed in the toplevel space, it will block forever.

choose

{Space.choose +I1 ?I2}

blocks until the current space becomes stable. When the current space becomes stable
it creates a choice point with I1 alternatives. I2 is bound to the value selected by
Space.commit. Reduces as soon as I2 becomes bound.

Space.choose is a primitive intended for programming abstractions. For example, the
Mozart-compiler expands the following choice-statement

choice S1 [] S2 end

to the following statement

case {Space.choose 2}

of 1 then S1
[] 2 then S2
end

If executed in the toplevel space, it will block forever.



76 Chapter 10. First-class Computation Spaces: Space



Part III

Distributed Programming

77





11

Connecting Computations:
Connection

Oz uses a ticket-based mechanism to establish connections between independent Oz
processes. One process (called server) creates a ticket with which other sites (called
clients) can establish a connection.

A ticket is a character string which can be stored and transported through all media
that can handle text, e.g., phone lines, electronic mail, paper, and so forth. Tickets are
insecure, in that they can be forged (albeit some luck is required, since they offer some
security against typos). The following is an example ticket encoded as an Oz atom:

’x-ozticket://134.96.186.115:9000:egbj0:DS/v:s:kn’

The ticket identifies both the server and the value to which a remote reference will be
made. Independent connections can be made to different values on the same server.
Once an initial connection is established by the value exchanged, then further con-
nections as desired by applications can be built from programming abstractions, like
object, classes, ports or procedures.

Two different types of connections and tickets are supported:

One-to-one connections and one-shot tickets. Allow to establish a single connection only.

Many-to-one connections and many-shot tickets. Allow multiple connections with the same ticket
to the same value. Values for many-to-one connections are offered through gates.

The module Connection provides procedures and classes that support both one-to-one
and many-to-one connections.

11.1 One-to-one Connections

offer

{Connection.offer X TicketA}

Returns the single-shot ticket TicketA (an atom) under which the value X is offered.

The value X is exported immediately. An exception is raised, if exportation of X fails,
because X refers to sited entities.



80 Chapter 11. Connecting Computations: Connection

take

{Connection.take +TicketV X}

Returns the value X offered under the ticket TicketV (a virtual string).

Waits until the connection to the offering process is established and the ticket has been
acknowledged by that process.

Raises an exception if the ticket is illegal, or if the offering process does not longer
exist.

Also works for many-shot tickets, where an exception might be raised if the same ticket
is used more than once.

11.2 Many-to-one Connections

Values for many-to-one connections can be offered through gates. Values offered
through gates can be taken with Connection.take as described for one-to-one con-
nections. Gates can be closed which implies that the associated ticket becomes invalid.

The special case and frequently occuring case that the gate never gets closed is sup-
ported by the procedure Connection.offerUnlimited which is as follows:

offerUnlimited

{Connection.offerUnlimited X ?TicketA}

offers the value X under the returned many-shot ticket TicketA (an atom).

The value X is exported immediately. An exception is raised, if exportation of X fails,
because X might refer to sited entities.

The ticket remains valid until the current Oz process terminates.

Gates are provided as instances of the class Connection.gate. The methods of
Connection.gate are as follows.

init

init(X TicketA <= _)

Optionally returns the many-shot ticket TicketA (an atom) under which the value X
is offered.

The value X is exported immediately. An exception is raised, if exportation of X fails,
because X might refer to sited entities.

getTicket

getTicket(TicketA)

Returns the many-shot ticket TicketA (an atom) of the gate.

close

close()

Closes the gate, which makes further use of the associated ticket illegal.



12

Spawning Computations Remotely:
Remote

The module Remote provides the class Remote.manager by which new Oz processes
on arbitrary networked computers that also have Mozart installed can be created. Cre-
ating an instance of that class does the following two things:

• A new Oz process with a module manager M is created on a networked computer.

• The newly created object O serves as a proxy to M. O is called a remote module
manager. This allows to start applications remotely that access remote resources
by local system modules.

The methods of the class Remote.manager are as follows.

init

init(host: +HostV <= localhost

fork: +ForkA <= automatic

detach: +DetachB <= false)

Creates a new Oz process at the computer with host name HostV (specified by a virtual
string), where localhost is the computer running the current Oz process.

ForkA (an atom) determines an operating system command to fork the remote Oz
process. The atoms ’automatic’ and ’sh’ have special meaning. ’automatic’ is
the default method. Other useful values for ForkA are ’rsh’ (remote shell command)
and ’ssh’ (secure shell command).

sh configuration If ’sh’ is used as fork method, a new Oz engine is created on the
current host by using the Unix sh command. You can test whether this method works
on your computer by:

sh -c ’ozengine x-oz://system/RemoteServer.ozf --test’

This should be always the case, if Mozart has been installed properly on your computer.
This in particular requires that $OZHOME/bin is in your path of executables ($OZHOME
refers to the directory where Mozart has been installed).

Note that the value of HostV is ignored (the hostname is assumed to be localhost),
if ’sh’ is used as fork method.



82 Chapter 12. Spawning Computations Remotely: Remote

If HostV is ’localhost’ and ForkA is ’automatic’ (which is the default), then on
some platforms the forked and forking processes communicate through shared memory
rather than sockets, which is more efficient. The system property ’distribution.virtualsites’
carries a boolean telling whether this facility, called virtual sites, is supported in the
running Mozart process; the ’sh’ fork method is used as a fall-back.

If HostV is different from ’localhost’ and the method is ’automatic’ the com-
mand ’rsh’ is used. ’rsh’ creates a shell remotely by using the Unix rsh command,
which in turn creates the new Oz engine.

rsh configuration Remote managers with method rsh only work properly, if the
rsh command has been set up properly. You can test it for the host Host by executing
the following command in the operating system shell:

rsh Host ozengine x-oz://system/RemoteServer.ozf --test

If the message

Remote: Test succeeded...

is printed, your configuration is okay. This requires two things:

1. Execution of rsh Host must not prompt for a password. This is usually achieved
by having a special file .rhosts in your home directory. Each entry in that file
must be a host name. For those hosts having an entry in that file, rsh does not
prompt for a password.

Take the following sample .rhosts file at the computer wallaby.ps.uni-sb.de:

godzilla.ps.uni-sb.de

bamse.sics.se

If rsh wallaby.ps.uni-sb.de is executed on bamse.sics.se or godzilla.ps.uni-sb.de,
then rsh does not prompt for a password.

With other words, all host names that you ever want to use with Remote.manager

should be in .rhosts.

2. After the login performed by rsh the command ozengine must be executable.
This should be always the case, if Mozart has been installed properly on your
computer. This in particular requires that $OZHOME/bin is in your path of exe-
cutables ($OZHOME refers to the directory where Mozart has been installed).

Other commands Rather than using rsh, any value for ForkA is possible. In that
case the following operating system command:

ForkA Host ozengine x-oz://system/RemoteServer.ozf --test

should print the message

Remote: Test succeeded...

A prominent example of a different command and a very recommended substitute for
rsh is ssh (secure shell) which is a more powerful and secure replacement for rsh.
For more information on ssh, see www.ssh.fi1.

1http://www.ssh.fi



83

If DetachB is false, a non-detached process is created. A non-detached process
terminates as soon as the creating process does (think of crashes, there will be no
orphaned processes). The lifetime of a detached process (that is, DetachB is true) is
independent of the creating process.

On some platforms (in particular on solaris-sparc) the operating system in its de-
fault configuration does not support virtual sites efficiently. Namely, the Solaris OS
limits the total number of shared memory pages per process to six and the number of
shared memory pages system-wide to 100, while each connected Mozart process re-
quires at least two shared memory pages for efficient communication. Please ask your
system administrator to increase those limits with respect to your needs.

The Mozart system tries to do its best to reclaim shared memory identifiers, even upon
process crashes, but it is still possible that some shared memory pages become unac-
counted and thus stay forever in the OS. In these cases please use Unix utilities (on
Solaris and Linux these are ipcs and ipcrm) to get rid of them.

link

link(url:+UrlV ModuleR <= _)

link(name:+NameV ModuleR <= _)

Links the module identified either by a url UrlV (a virtual string) or a module name
NameV (a virtual string). Returns a module ModuleR.

For explanation see Chapter 2.

apply

apply(+Functor ModuleR <= _)

apply(url:+UrlV +Functor ModuleR <= _)

apply(name:+NameV +Functor ModuleR <= _)

Applies the functor Functor, where the url UrlV (a virtual string) or the module
name NameV (a virtual string) serve as base url for resolving the functor’s import.

For explanation see Chapter 2.

enter

enter(url:+UrlV ModuleR)

enter(name:+NameV ModuleR)

Installs the module ModuleR under the url UrlV (a virtual string) or the module name
NameV (a virtual string).

For explanation see Chapter 2.

ping

ping()

Raises exception if remote process is dead. Blocks until executed by remote process.

close

close()

Performs a controlled shutdown of all remote processes (for a discussion of con-
trolled shutdown see Section Controlled system shutdown, (Distributed Programming
in Mozart - A Tutorial Introduction) ).



84 Chapter 12. Spawning Computations Remotely: Remote

12.1 Process Termination and Remote Managers

Here are some tentative explanations of what happens to the children of a process when
the latter is terminated.

• if a process is properly shutdown, then detached children survive and non-detached
children are terminated.

• if a process is killed with kill -INT, then its children are terminated whether
they are detached or not.

• if a process is killed with kill -KILL, then no child is terminated because the
proper shutdown sequence is not executed.

• if a process is killed by typing C-c, then the INT signal is sent to the process
group to which both parent and children belong.2 Thus all are terminated.

2This is the case in the current regime, but could be changed if desired



13

Referring To Distributed Entities: URL

In the age of the World Wide Web, resources needed by a running system don’t just
reside in files, they reside at URLs. The URL module provides an interface for creating
and manipulating URLs as data-structures. It fully conforms to URI syntax as defined
in RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax1 by T. Berners-Lee,
R. Fielding, and L. Masinter (August 1998), and passes all 5 test suites published by
Roy Fielding.

The only derogations to said specification were made to accommodate Windows-style
filenames: (1) a prefix of the form C: where C is a single character is interpreted as
Windows-style device notation rather than as a uri scheme – in practice, this is a com-
patible extension since there are no legal single character schemes, (2) path segments
may indifferently be separated by / or \; this too is compatible since non-separator
forward and backward slashes ought to be otherwise escape encoded.

There is additionally a further experimental extension: all urls may be suffixed by a
string of the form "{foo=a,bar=b}". This adds an info record to the parsed represen-
tation of the url. Here, this record would be info(foo:a bar:b). Thus properties
can be attached to urls. For example, we may indicate that a url denotes a native func-
tor thus: file:/foo/bar/baz.so{native}. Here {native} is equivalent to
{native=}, i.e. the info record is info(native:”).

13.1 Examples

Here are a few examples of conversions from url vstrings to url records. Return values
are displayed following the function call.

{URL.make "http://www.mozart-oz.org/home-1.1.0/share/FD.ozf"}

url(

absolute : true

authority : "www.mozart-oz.org"

device : unit

fragment : unit

info : unit

path : ["home-1.1.0" "share" "FD.ozf"]

query : unit

scheme : "http")

1ftp://ftp.isi.edu/in-notes/rfc2396.txt



86 Chapter 13. Referring To Distributed Entities: URL

The absolute feature has value true to indicate that the path is absolute i.e. began
with a slash. The path feature is simply the list of path components, as strings.

{URL.make "foo/bar/"}

url(

absolute : false

authority : unit

device : unit

fragment : unit

info : unit

path : ["foo" "bar" nil]

query : unit

scheme : unit)

The above illustrates a relative url: the absolute feature has value false. Note that
the trailing slash results in the empty component nil.

{URL.make "c:\\foo\\bar"}

url(

absolute : true

authority : unit

device : &c

fragment : unit

info : unit

path : ["foo" "bar"]

query : unit

scheme : unit)

Here the leading c: was parsed as a Windows-style device notation and the back-
slashes as component separators.

{URL.make "foo.so{native}"}

url(

absolute : false

authority : unit

device : unit

fragment : unit

info : info(native:nil)

path : ["foo.so"]

query : unit

scheme : unit)

The {native} annotation is entered into the info feature.

13.2 Interface

URL.make

{URL.make +VR ?UrlR}



13.2. Interface 87

Parses virtual string VR as a url, according to the proposed uri syntax modulo Windows-
motivated derogations (see above). Local filename syntax is a special case of scheme-
less uri. The parsed representation of a url is a non-empty record whose features hold
the various parts of the url, it has the form url(...). We speak of url records and url
vstrings: the former being the parsed representation of the latter. A url record must be
non-empty to distinguish it from the url vstring consisting of the atom url. The empty
url record can be written e.g. url(unit). VR may also be a url record, in which case
it is simply returned.

URL.is

{URL.is +X}

Returns true iff X is a non-empty record labeled with url.

URL.toVirtualString

{URL.toVirtualString +VR ?V}

VR may be a url record or a virtual string. The corresponding normalized vstring
representation is returned. #FRAGMENT and {INFO} segments are not included (see
below). This is appropriate for retrieval since fragment and info sections are meant for
client-side usage.

URL.toVirtualStringExtended

{URL.toVirtualStringExtended +VR +HowR ?V}

Similar to the above, but HowR is a record with optional boolean features full, cache,
and raw. full:true indicates that #FRAGMENT and {INFO} sections should be in-
cluded if present. cache:true requests that cache-style syntax be used (see Chap-
ter 14): the : following the scheme and the // preceding the authority are both re-
placed by single /. raw:true indicates that no escape encoding should take place; this
is useful e.g. for Windows filenames that may contain spaces or other characters illegal
in URIs.

URL.toString

{URL.toString +VR ?S}

Calls URL.toVirtualString and converts the result to a string.

URL.toAtom

{URL.toAtom +VR ?A}

Calls URL.toVirtualString and converts the result to an atom.

URL.resolve

{URL.resolve +BaseVR +RelVR ?UrlR}

BaseVR and RelVR are url records or vstrings. RelVR is resolved relative to BaseVR
and a new url record is returned with the appropriate fields filled in.

URL.normalizePath

{URL.normalizePath +Xs ?Ys}

Given a list Xs of string components (see path feature of a url record), returns a list
Ys that results from normalizing Xs. Normalization is the process of eliminating oc-
currences of path components . and .. by interpreting them relative to the stack of
path components. A leading . is preserved because ./foo and foo should be treated



88 Chapter 13. Referring To Distributed Entities: URL

differently: the first one is an absolute path anchored in the current directory, whereas
the second one is relative.

URL.isAbsolute

URL.isRelative

{URL.isAbsolute +VR ?B}
{URL.isRelative +VR ?B}

A url is considered absolute if (1) it has a scheme, or (2) it has a device, or (3) its path
started with /, ~ (user home directory notation), . (current directory), or .. (parent
directory). For example, ~rob/foo/baz is absolute.

URL.toBase

{URL.toBase +VR ?UrlR}

Turns a url vstring or record into a url record that can safely be used as a base for
URL.resolve without loosing its last component. Basically, it makes sure that there is
a slash at the end.



14

Resolving URLs: Resolve

The Resolve module generalizes the idea of a search path and simplifies read-oriented
operations on arbitrary files and urls. The reader should be warned that this module
has not yet reached full maturity.

14.1 From search paths to search methods

A search path is a list of directores sequentially searched to resolve a relative pathname.
On Unix a search path is traditionally specified by an environment variable whose value
is of the form:

Dir1:Dir2:...:DirN

On Windows, the colons : would be replaced by semi-colons ;. In the age of the World
Wide Web, the classical notion of a search path is too limited: we want to search for
arbitrary urls in arbitrary networked locations, and not simply for relative pathnames
in local directories. For this reason, the notion of a directory to be searched is replaced
by that of a method to be applied. A sequence of search methods can be specified by
an environment variable whose value is of the form:

Meth1:Meth2:...:MethN

where each MethK is of the form KIND=ARG. KIND selects the method to be applied and
ARG is its parameters. On Windows, the colons might be replaced by semi-colons, we
support both notations on all platforms. The idea is of course that each method should
be tried until one of them succeeds in locating the desired resource.

14.2 Syntax of methods

We now describe the syntax of KIND=ARG for the supported methods. For each one, we
use a concrete example. ARG can normally be indifferently a directory or a url.

Any character of ARG can be escaped by preceding it with a backslash \: this is useful
e.g. to prevent an occurrence of a colon in a url to be interpreted as a method separator.
However, it means that, if you insist on using \ as a path component separator (à la
Windows) instead of / (à la Unix), then you will have to escape them in ARG. Further-
more, \ is also an escape character for the shell, which means that you will normally
have to double each escape character.



90 Chapter 14. Resolving URLs: Resolve

all=/usr/local/oz/share

The last component in the input url is extracted and looked up in the location supplied
as the methods argument. If the input url is http://www.mozart-oz.org/home/share/Foo.ozf,
then we try to look up /usr/local/oz/share/Foo.ozf instead.

root=~/lib/oz

This applies only to a relative pathname: it is resolved relative to the base url or di-
rectory supplied as argument to the method. If the input url is share/Foo.ozf
then ~/lib/oz/share/Foo.ozf is looked up instead. For convenience, and to
be compatible with search path notation, you can omit root= and simply write this
method as ~/lib/oz

cache=/usr/local/oz/cache

Applies only to a full url: it is transformed into a relative pathname and looked up in the
specified location. If the input url is: http://www.mozart-oz.org/home/share/Foo.ozf,
then /usr/local/oz/cache/http/www.mozart-oz.org/home/share/Foo.ozf
is looked up instead. This method is typically used to permit local caching of often used
functors. The cache location could also be the url of some sort of mirroring server.

prefix=http://www.mozart-oz.org/home/=~/oz/

This method has the form prefix=LOC1=LOC2. Whenever the input url begins with the
string LOC1, this prefix is replaced by LOC2 and the result is looked for instead. Thus,
if the input url is http://www.mozart-oz.org/home/share/Foo.ozf, we
would look for ~/oz/share/Foo.ozf.

pattern=http://www.?{x}/home/?{y}=ftp://ftp.?{x}/oz/?{y}

The patternmethod is more general than the prefixmethod. LOC1 can contain match
variables, such as ?{x} and ?{y} that should match arbitrary sequences of characters,
and LOC2 can also mention these variables to denote the value they have been assigned
by the match. Thus, if the input url is http://www.mozart-oz.org/home/share/Foo.ozf,
we would look for ftp://ftp.mozart-oz.org/oz/share/Foo.ozf.

=

Normally, the default handler is implicitly appended to your search methods. This is
the handler that simply looks up the input url itself, when all previous methods have
failed. Sometimes it is desirable to disallow this default: for example this is the case
when building the mozart distribution; the build process should be self contained and
should not attempt to access resources over the network. You can disallow the default
by appending = as the very last of your search methods. Thus

.:all=~/oz/bazar:=

would first try to resolve relative pathnames with respect to the current directory, then
all urls by looking up their final component in directory ~/oz/bazar, and that’s it. If
neither of these two methods succeeds, the resolution would simply raise an exception,
but it would not attempt to retrieve the input url from the net.



14.3. Interface of Resolve Module 91

14.3 Interface of Resolve Module

A resolver is a module that encapsulates and exports the resolving services of a se-
quence of search methods. For different purposes, you may need to apply different
resolution strategies. For this reason, you may create arbitrarily many resolvers, each
implementing an arbitrary resolution strategy.

Resolve.make

{Resolve.make +VS +Spec ?R}

Creates a new resolver R, identified by virtual string VS in trace messages, and whose
strategy is initialized according to Spec which is one of:

init(L)

where L is a list of handlers (see later).

env(V)

where V names an environment variable whose value provides the search methods. If
it is not set, the initial strategy simply looks up the input url itself.

env(V S)

same as above, but, if the environment variable is not set, then use S as its value.

vs(S)

simply get the search methods from virtual string S.

Resolve.trace.get

Resolve.trace.set

{Resolve.trace.get ?Bool}
{Resolve.trace.set +Bool}

Obtain or set the trace flag. When tracing is enabled, every resolve method that is
attempted prints an informative message. Furthermore, all messages are prefixed by
the virtual string identifying the resolver in which these methods are being invoked.

Resolve.expand

{Resolve.expand +Url1 ?Url2}

Takes a Url or virtual string as input and returns a Url with "~" expanded to the full
user’s home directory path, "~john" expanded to john’s home directory, "." and
".." expanded to the current directory and parent directory. This functionality really
belongs in the URL module, but is put here instead to keep module URL stateless.

Resolve.handler

You don’t have to specify your methods as virtual strings, instead you can directly
construct them using the following procedures:

Resolve.handler.default

This is the default handler that simply looks up the given url as is.

Resolve.handler.all

{Resolve.handler.all +LOC ?Handler}

This creates a handler that implements the all method for location LOC. The final
component in the input url is looked up in LOC.



92 Chapter 14. Resolving URLs: Resolve

Resolve.handler.root

{Resolve.handler.root +LOC ?Handler}

This creates a handler that implements the root method for location LOC. A relative
pathname is resolved relative to LOC.

Resolve.handler.cache

{Resolve.handler.cache +LOC ?Handler}

This creates a handler that implements the cache method for location LOC. A full url
is transformed into a relative pathname and resolved relative to LOC.

Resolve.handler.prefix

{Resolve.handler.prefix +Prefix +Subst ?Handler}

This creates a handler that implements the prefix method. If the input url begins with
string Prefix, then this is replaced by Subst and looked up instead.

Resolve.handler.pattern

{Resolve.handler.prefix +Pattern +Subst ?Handler}

This creates a handler that implements the pattern method. If the input url matches
the string pattern Pattern, then this is replaced by the corresponding instantiation of
Subst and looked up instead.

14.4 Interface of a Resolver

Each resolver R exports the following methods

R.getHandlers

{R.getHandlers ?L}

obtains R’s current list of handlers.

R.setHandlers

{R.setHandlers +L}

install’s L as R’s current list of handlers.

R.addHandler

{R.addHandler front(H)} {R.addHandler back(H)}

adds H at the front (resp. at the back) of R’s list of handlers.

R.localize

{R.localize +Url ?Rec}

the return value Rec is old(Filename) if Url resolves to local file Filename, else it
is new(Filename) where Filename is a new local file created by retrieving the data at
Url.

R.open

{R.open +Url ?FdI}

returns FdI, which is an integer file descriptor open for read on the data available from
Url.

R.load

{R.load +Url ?V}



14.4. Interface of a Resolver 93

returns the value V obtained from the pickle available at Url.

R.native

{R.native +Url ?M}

returns the native module M obtained by dynamically linking the native functor avail-
able in file Url.



94 Chapter 14. Resolving URLs: Resolve



15

Detecting and Handling Distribution
Problems: Fault

This section summarizes the operations of the Fault module and their argument types.
Please refer to the Distribution Tutorial for a full specification of the operations and
examples of how to use them. This section carefully indicates where the current release
is incomplete with respect to the specification (called a limitation) or has a different
behavior (called a modification).

15.1 Argument Types

We summarize the argument types for the operations in the Fault module.

Entity

A reference to any Oz language entity that has distributed fault modes, namely any
object, cell, lock, port, or logic variable.

Level

Either site or ’thread’(T), where T is a thread reference or the atom this.1

FStates

A set of fault states, i.e., a list that can contain at most one of each of the elements
tempFail, permFail, remoteProblem(tempSome), remoteProblem(permSome), remoteProblem(tempAll),
and remoteProblem(permAll).

OP

A record that indicates which attempted operation caused the exception or handler
invocation. The value of OP is one of:

• bind(T), wait, isDet (for logic variables).

• cellExchange(Old New), cellAssign(New), cellAccess(Old) (for cells).

• ’lock’ (for locks).

• send(Msg) (for ports).
1Since thread is already used as a keyword in the language, it has to be quoted to make it an atom.



96 Chapter 15. Detecting and Handling Distribution Problems: Fault

• objectExchange(Attr Old New), objectAssign(Attr New), objectAccess(Attr Old),
objectFetch (for objects). A limitation of the current release is that an attempted
operation on an object cannot be retried.

HandlerProc

A handler, i.e., a three-argument procedure that is called as {HandlerProc Entity FStates OP},
where FStates is a set of currently active fault states. A handler replaces an attempted
operation on an entity.

WatcherProc

A watcher, i.e., a two-argument procedure that is called in its own thread as {WatcherProc Entity FStates},
where FStates is a set of currently active fault states. A watcher is invoked as soon as
the site detects a fault.

15.2 Fault Information

When there is a distribution problem, then three items of information are made avail-
able:

• Entity: the faulty entity.

• ActualFStates: the fault states that are currently active. This is always a subset
of the states that the entity is set up to detect. For objects, cells, and locks, the
fault states tempFail(info:I) and permFail(info:I) are possible, where I

is in {state, owner}. This tells whether the fault is due to a lost state pointer
(state) or a crashed owner (owner).

• OP: the operation that is attempted but does not succeed.

The system can be configured (see below) so that these three items appear in one or
more of the following three ways:

• In an exception with format system(dp(entity:Entity conditions:FStates op:OP) ...).

• As arguments to a handler call, {HandlerProc Entity FStates OP}.

• As arguments to a watcher call, {WatcherProc Entity FStates}.

A limitation of the current release is that the Entity argument is undefined for an
object operation. For handlers and watchers, this limitation can be bypassed by giving
the handler and watcher procedures a reference to the object.

15.3 Operations

The Fault module contains the following operations. All operations return a boolean
flag B that is true if the operation succeeds and false otherwise. All enable and
install operations succeed if nothing was enabled or installed at that level. An entity
with a successful enable or install at a given level is said to have fault detection at
that level. All disable and deInstall operations succeed if nothing was disabled or



15.3. Operations 97

deinstalled at that level. The system starts up as if {Fault.defaultEnable [tempFail permFail] _}

was executed.

All the following operations that have an Entity argument will do nothing if entity
does not have distributed fault modes. If a logic variable with fault detection is bound
to a nonvariable entity, then the fault detection is transferred to the entity, provided the
latter has no fault detection at that level.

{Fault.defaultEnable FStates ?B}

Sets the default fault detection to FStates on the current site. When an operation is
attempted on an entity and there is no fault detection on the site or thread level for the
entity, then the default fault detection is used. This always succeeds.

{Fault.defaultDisable ?B}

Sets the default fault detection to nil on the current site. This always succeeds.

{Fault.enable Entity Level FStates ?B}

Enables fault detection on a given entity at a given level for a given set of fault states.
An exception is raised if a fault is detected when an operation is attempted on the entity.

{Fault.disable Entity Level ?B}

Disables fault detection on a given entity at a given level.

{Fault.install Entity Level FStates HandlerProc ?B}

Installs a handler for fault detection on a given entity at a given level for a given set of
fault states. The handler {HandlerProc Entity AFStates OP} is called if a fault is
detected when an operation is attempted on the entity. A modification of the current
release with respect to the specification is that handlers installed on variables always
retry the operation after they return.

{Fault.deInstall Entity Level ?B}

Deinstalls a handler for fault detection on a given entity at a given level.

{Fault.installWatcher Entity FStates WatcherProc ?B}

Installs a watcher for fault detection on a given entity for a given set of fault states.
Any number of watchers can be installed on an entity. It is always possible to install a
watcher, so therefore this always succeeds. The watcher {WatcherProc Entity AFStates}

is called in its own thread as soon as the site detects a fault.

{Fault.deInstallWatcher Entity WatcherProc ?B}

Deinstalls the given watcher on a given entity. This call succeeds if WatcherProc was
installed on the entity. If there is more than one instance of WatcherProc installed on
the entity, then exactly one is deinstalled.

On a given entity at the global level, at most one enable can be done or one handler
installed. For a given entity, the site level can have at most one fault detection per
site. The ’thread’(T) can have at most one fault detection per thread. To have another
fault detection, it is necessary to do a disable or deinstall first.



98 Chapter 15. Detecting and Handling Distribution Problems: Fault

15.4 Limitations and Modifications

The current release has the following limitations and modifications with respect to
the failure model specification. A limitation is an operation that is specified but not
possible in the current release. A modification is an operation that is specified but
behaves differently in the current release.

Most of the limitations and modifications listed here will be removed in future releases.

15.5 Limitations

The limitations are:

• The fault state tempFail is indicated only after a long delay. In future releases,
the delay will be very short and based on adaptive observation of actual network
behavior.

• If an exception is raised or a handler or watcher is invoked for an object, then the
Entity argument is undefined. For handlers and watchers, this limitation can be
bypassed by giving the handler and watcher procedures a reference to the object.

• If an exception is raised or a handler is invoked for an object, then the attempted
object operation cannot be retried.

15.6 Modifications

The modifications are:

• A handler installed on a variable will retry the operation (i.e., bind or wait) after
it returns. That is, the handler is inserted before the operation instead of replacing
the operation.



16

Locating services in a network:
Discovery

In order to make it easier to find a service (an Oz server application) one might want to
have some sort of yellow pages, or a directory. While a directory is easy to implement
in Oz, the Discovery module allows to locate it in a local area network.

The current implementation may be incomplete on certain platforms. Notably, only on
Linux and Solaris it is guaranteed that broadcasts are sent to all the available networks.
On other platforms this depends on the operating system.

The Discovery service consists of two parts, a server and a client. The server is
initialized with a value. The server waits for inquiries from clients and sends the value
as an answer. The client sends a broadcast message to all available networks (for
example, ethernet and ip over serial link). Then the client waits for answers from
servers.

A value the server holds would typically be a ticket to an Oz port that a directory server
listens to.

16.1 The Module

The module has three features:

1. server The server class.

2. client The client class.

3. defaultServerPort The number of the default ip port that the server listens
to.

The server class Discovery.server has following methods:

init

init(info:Info port:PortNr <= DefaultServerPort)

Info is the answer to be send on request by clients. It must be a virtual string. The
server listens to the ip port PortNr. If the field port is not present, the default port
number will be used.



100 Chapter 16. Locating services in a network: Discovery

replace

replace(info:Info)

Replaces the answer to be send to clients.

close

close()

Closes the operation of the server.

The client class Discovery.client has following methods:

init

init(port:ServerPortNr <= DefaultServerPort)

This method broadcasts a message. Answers to that message can be obtained using
the methods getOne and getAll. The port that the server listens can be specified as
ServerPortNr. If the field port is not present, the default port number will be
used.

getOne

getOne(timeOut:TimeOut <= 1000 info:?Info)

There could be several servers listening to broadcasts from a client, therefore there
can be several answers. If an answer is received before TimeOut milliseconds the
variable Info will hold that answer. Otherwise Info will be timeout. Answers are
Oz strings.

Instead of a time in milliseconds TimeOut can be inf. This means that the method
will suspend until an answer is received (or forever if no answer is received).

If this method is called again the next answer (if such answer exists) will be returned.

getAll

getAll(timeOut:TimeOut <= 1000 info:?Info)

Method getAll can be used instead of method getOne. After calling this method,
Info will hold a list of all answers received before TimeOut milliseconds has gone
by.

This method is implemented using getOne. So any answers fetched by calling getOne

will not reappear in the list Info, and vice versa.

TimeOut can be inf here too. In this case a stream will be returned instead of a list.

close

close()

Closes the operation of the client class.



17

Initializing and instrumenting the
distribution layer: DPInit

The distribution layer of Mozart is dynamicly loaded when used. Some parameters can
be defined at loading time. This section gives a brief description of the interface and
what is possible to do with it.

17.1 Interface of DPInit Module

DPInit.init

{DPInit.init +Spec ?B}

Initializes the distribution layer of Mozart parameterized according to Spec. The dis-
tribution layer can only be initialized once, DPInit.init returns a boolean flag B that
is true if the settings was accepted and false otherwise. The distribution layer can only
be initialized once. Spec is an record of the following type:

init(ip:IpString <= SystemIp port:IpPort <= 9000 acceptproc:AccProc <= DefaultAccProc connectProc:ConProc <= DefaultConProc firewall:FW <= false)

All entries in the Spec record are optional, if DPInit.init is called with just the atom
init as parameter the system will start with all values as default values. The fields and
their implication on the system is defined here:

IpString

Defines the ip number that the Mozart site should expose as its home address to the
outside world. Must be on the form "193.10.66.192". The system will map the host
name of the computer to an ip number if this field is not given. The Ip number should
only be set if the operating system by some reason returns a faulty ip number.

IpPort

Sets the port number that should be used for listening on incomming connection atempts.
If the choosen port number is unavailable a higher port number will be tired. The de-
fault value is 9000.

AccProc

Connection atempts comming in to the Site are handled by a piece of Mozart code
called the AcceptProcedure. The AcceptProcedure defines a handshaking prototcol
that the connecter must follow to be accepted. It can be replaced if other needs are
present than what the default AcceptProcedure can give.



102 Chapter 17. Initializing and instrumenting the distribution layer: DPInit

ConProc

Connection atempts done to other Sites are performed by a Mozart procedure called
the ConnectionProcedure. The ConnectionProcedure used must be compatible with
the othtre machine’s AcceptProcedure for the connection to be established. The Con-
nectionProcedure can be replaced with a custimzed ConnectionProcedure.

FW

The default schema for connection handeling is not realy suited for one-way firewalls.
Sites sitiuated behind one-way firewalls should set the firewall flagg to true. If the fire-
wall flag is true the Site will be reluctant to close down its connection due to resource
shortage.

DPInit.getSettings

{DPInit.getSettings ?AnsSpec}

Returns the settings of the distribution layer. If the distribution layer was initialized a
record of the same format as Spec is returned otherwise the atom not_initilaized

is returned.



18

Retriving statistical information from
the Distribution layer: DPStatistics

To be able to understand and tune distributed Mozart programs the distribution layer
can produce log files and exposes interfaces to it’s inner state.

18.1 Interface of DPStatistics Module

DPStatistics.siteStatistics

{DPStatistics.siteStatistics ?SiteList}

Returns a list of all currently know remote sites. SiteList contains records that has
the following fields:

ip

The ip number of the remote site in string format.

lastRTT

The last measured round trip to the remote site in ms. If no connection is established
the value is ~1.

pid

The proces identifier of the remote sites proces.

port

The tcp port of the remote site. It is used for accepting connection atempts.

received

Number of received messages from the remote site. This number will be cleared at
each invokation to DPStatistics.siteStatistics

sent

Number of messages sent to the remote site from this site. This number will be cleared
at each invokation to DPStatistics.siteStatistics

state

The state of the remote site from the current sites point of view.

table

Internal information.

siteid

The unique string identifying the remote site.



104 Chapter 18. Retriving statistical information from the Distribution layer: DPStatistics

timestamp

The time when the remote site was created.

DPStatistics.getTablesInfo

{DPStatistics.getTablesInfo ?TableInfo }

Returns information about the tables holding imported and exported entities. TableInfo
is a list containing of the following format:

[bt(list:BTlist size:BTsize) ot(list:OTlist size:OTsize)]

BTlist

A list of all currently imported entities, each entry in the list are of the following format:

be(index:OTindex na:NetAddress primCred:PrimCredit secCred:SecCredit type:Type)

BTsize

The size of the Borrow table. The borrow table will grow and shrink to fit the number
of imported entities.

OTlist

A list of all currently exported entities, each entry in the list are of the following format:

oe(credit:PrimCredit index:OTindex type:Type)

OTsize

The size of the Owner table. The owner table will grow and shrink to fit the number of
exported entities.

DPStatistics.getNetInfo

{DPStatistics.getNetInfo ?NetInfo }

Returns information about internaly allocated object in the distribution layer. NetInfo
is a list containing records with the following fields

type

The type of the object

nr

The number of allocated objects of this type

size

The size of this object in bytes.

DPStatistics.perdioStatistics

{DPStatistics.perdioStatistics ?Ans }

The distribution layer keeps information of the number of received and sent messages
per message type basis as the number of marshaled and unmarshaled marshaling types.
This information is returned in record with the following fields:

recv

Contains a record with the total number of unmarshaled dif’s per type and received
messages per message type.

sent

Contains a record with the total number of marshaled dif’s per type and sent messages
per message type.



18.1. Interface of DPStatistics Module 105

DPStatistics.createLogFile

{DPStatistics.createLogFile +File}

Directs the loging output from the distribution layer to the file File.



106 Chapter 18. Retriving statistical information from the Distribution layer: DPStatistics



Part IV

Open Programming

107





19

Files, Sockets, and Pipes: Open

This chapter gives reference documentation for the Open module. The module contains
the following classes:

1. Open.file for reading and writing files.

2. Open.socket for Internet socket connections.

3. Open.pipe for creation of operating system processes.

4. Open.text for reading and writing text line by line and character by character. It
is a mixin class that can be combined with any of the classes of the Open module.

A tutorial account on open programming can be found in “Open Programming in
Mozart” .

19.1 Exceptions

The methods of any of the Open module classes can raise three different exceptions.

operating system When an operating system exception occurs the Oz exception

system(os(A I S) debug:X)

is raised, where:

1. The atom A gives the category of the error (e.g. os for operating system or net
for network layer).

2. The integer I gives an operating system dependent error number.

3. The string S describes the exception by some text.

4. The value X might contain some additional debug information.



110 Chapter 19. Files, Sockets, and Pipes: Open

already initialized An exception of the format

system(open(alreadyInitialized O M) debug:X)

is raised if an already initialized object O is initialized again by applying it to the
message M.

already closed An exception of the format

system(open(alreadyClosed O M) debug:X)

is raised if a method other than close of an already closed object O is applied. M is as
above the message the object has been applied to.

19.2 The Class Open.file

The class Open.file has the following public methods.

init

init(name: +NameV
flags:+FlagsAs <= [read]

mode: +ModeR <= mode(owner:[write] all:[read]))

init(url: +UrlV
flags:+FlagsAs <= [read]

mode: +ModeR <= mode(owner:[write] all:[read]))

Initializes the file object and associates it with a Unix file.

NameV is either a valid filename or one of the atoms stdin, stdout, and stderr.
In this case, the standard input, standard output, or standard error stream is opened,
respectively.

In addition to using a filename to open a file also a url UrlV can be used. Only one of
the features name or url is allowed.

The value of FlagsAs must be a list, with its elements chosen from the following
atoms:

read, write, append, create, truncate, exclude

For reading a file, the atom read must be included in FlagsAs. Similarly, the atom
write must be included for writing. It is possible to include both atoms, giving both
read and write access to the file. For files attached to an url, only reading access is
possible.

When a file object is opened, the seek pointer, pointing to the current position in the
file, is initialized to point to the start of the file. Any subsequent read or write takes
place at the position given by this pointer.

The remaining atoms make sense only if the file is opened for writing. If the atom
append is included, the seek pointer is moved to the end of the file prior to each attempt
to write to the file.



19.2. The Class Open.file 111

If the file to be opened already exists, the presence of the atom create has no effect.
Otherwise, the file is created. Including truncate resets the length of an existing file
to zero and discards its previous content.

An attempt to open an existing file fails, if exclude is contained. Thus, this flag grants
exclusive access of the file object to the operating system file.

If the file is opened for writing and the atom create is included, the access rights are
set as specified by ModeR. This must be a record with fields drawn from all, owner,
group and others. Its subterms must be lists of the atoms read, write and execute.

More detailed information can be found in open(2), chmod(2), and umask(2).

read

read(list: ?ListS
tail: TailX <= nil

size: +SizeAI <= 1024

len: ?LenI <= _)

Reads data from a file. SizeAI specifies how much data should be read from the file.
If the field len is present, LenI is bound to the number of bytes actually read. LenI
may be less than SizeAI. The atom all is also a legal value for SizeAI. In this case
the entire file is read.

The data read binds ListS to a list of characters. The tail of the list can be given by
TailX. The value for TailX defaults to nil, which means that in this case the list
ListS is a string.

See also read(2).

write

write(vs: +V
len: ?I <= _)

Writes the virtual string V to a file.

See write(2).

seek

seek(whence: +WhenceA <= set

offset: +OffsetI <= 0)

Sets the file object’s seek pointer

Allowed values for WhenceA are the atoms set, current, or ’end’.

In case of set the position of the seek pointer is moved to the absolute position from
the beginning of the file given by the value of OffsetI.

In case of current the pointer is moved ahead by OffsetI. Notice, that the pointer
can be moved backward by a negative OffsetI, and forward by a positive OffsetI.

If ’end’ is given, the pointer is moved by OffsetI with respect to the current end of
the file.

In particular, invoking seek with the default parameters moves the pointer to the be-
ginning of the file.

See lseek(2).

tell



112 Chapter 19. Files, Sockets, and Pipes: Open

tell(offset: ?OffsetI)

Returns the current position of the seek pointer counting from the beginning of the
file.

See lseek(2).

close

close

Closes the file object as well as the file.

See close(2).

dOpen

dOpen(+ReadFileDescI +WriteFileDescI)

Initializes the object. ReadFileDescI and WriteFileDescI must be integers
of already open file descriptors (in the usual operating system sense). Note that this
method should only be used for advanced purposes.

getDesc

getDesc(?ReadFileDescIB ?WriteFileDescIB)

Returns the internally used file descriptors.

If the object is not yet initialized, ReadFileDescIB and WriteFileDescIB are
bound to false, otherwise to the respective integers. Note, that this method is only for
advanced purposes.

19.3 The Class Open.socket

The class Open.socket has the following public methods.

init

init(type: +TypeA <= stream

protocol: +ProtoV <= ""

time: +TimeI <= ~1)

Initializes a socket object.

The type of the socket TypeA determines the type of the socket, which can be either
stream or datagram.

The protocol is described by ProtoV where the empty string "" means to choose an
appropriate protocol automatically. Other possible values are the TCP protocol (you
have to give "tcp") for stream sockets, and UDP (you have to give "udp") for datagram
sockets.

The integer TimeI specifys for how long a time (in milliseconds) the socket attempts
to accept a connection. The value ~1 means infinite time. See the following description
of the accept method for more details.

See also socket(2).



19.3. The Class Open.socket 113

bind

bind(takePort: +TakePortI <= _

port: ?PortI <= _)

Names a socket globally.

If the field takePort is present, its value is chosen for binding. Otherwise, a fresh port
number value is generated by the object. This port number is accessible at the field
port.

See also bind(2).

listen

listen(backLog: +LogI <= 5)

Signals that a socket is willing to accept connections.

LogI describes the maximum number of pending connections to be buffered by the
system.

See also listen(2).

accept

accept(accepted: ?Object <= _

acceptClass: +Class <= _

host: ?HostSB <= _

port: ?PortIB <= _)

Accepts a connection from another socket.

The method suspends until a connection has been accepted or the number of millisec-
onds as specified by the time value in the init method has elapsed. After this period,
no connection will be accepted, and both PortIB and HostSB are bound to false.

If a connection is accepted within the given time, the following happens: HostSB and
PortIB are bound accordingly if their fields are present.

If the fields accepted and acceptClass are present, Object is bound to an object
created from the class Class. Class must be a sub class of Open.socket. Then the
accepted connection is available with Object.

Otherwise, the access to the socket at which the connection was accepted, because any
subsequent message will refer to the accepted socket connection.

See also accept(2).

connect

connect(host: +HostV <= localhost

port: +PortI)

Connects to another socket.

The address of the socket to connect to is given by HostV and PortI.

Be very careful in using this method: it blocks the entire Oz system until it succeeds.

See connect(2).

server

server(port: ?PortI
host: ?HostV <= localhost)



114 Chapter 19. Files, Sockets, and Pipes: Open

Initializes a stream socket as a server.

client

client(port: +PortI
host: +HostV <= localhost)

Initializes a stream socket as a client.

read

read(list: ?ListS
tail: TailX <= nil

size: +SizeAI <= 1024

len: ?LenI <= _)

Receives data from a stream-connected socket or from a datagram socket with peer
specified.

An attempt is made to read SizeAI bytes from the socket. ListS is constrained to
the data while the tail of ListS is constrained to TailX. The atom all is also a legal
value for SizeAI. In this case the entire input is read.

LenI is bound to the number of bytes actually read. If the socket is of type stream and
the other end of the connection has been closed LenI is bound to 0.

See also read(2).

receive

receive(list: ?ListS
tail: TailX <= nil

len: ?LenI <= _

size: +SizeI <= 1024

host: ?HostS <= _

port: ?PortI <= _)

Receives data from a socket.

An attempt is made to read SizeI bytes from the socket. ListS is bound to the data
while the tail of the list is bound to TailX.

LenI is bound to the number of bytes actually read. If the socket is of type stream and
the other end of the connection has been closed LenI is bound to 0.

The source of the data is signaled by binding HostS and PortI.

See also recvfrom(2).

write

write(vs: +V
len: ?I <= _)

Writes the virtual string V to a stream-connected socket or to a datagram socket with
peer specified.

I is bound to the number of characters written.

See also write(2).

send



19.3. The Class Open.socket 115

send(vs: +V
len: ?I <= _)

send(vs: +V
len: ?I <= _

port: +PortI
host: +HostV <= localhost)

Sends data as specified by V to a socket.

The destination of the data may be given by HostV and PortI. If they are omitted,
the data is sent to the peer of a datagram socket or to the other end of a connection in
case of a stream socket. I is bound to the number of characters written.

See also send(2).

shutDown

shutDown(how: +HowAs <= [receive send])

Disallows further actions on the socket.

HowAs has to be a non-empty list which must contain only the atoms receive and
send. The atom send signals that no further data transmission is allowed, while
receive signals that no further data reception is allowed.

See also shutdown(2).

close

close

Closes the socket.

See also close(2)

flush

flush(how: +HowAs <= [receive send])

Blocks until all requests for reading, receiving, writing, and sending have been ful-
filled.

HowAs must be a non-empty list which may include the atoms receive and send.
The atom send signals that the method should block until all send (or write) requests
are fulfilled, while receive signals the same for receive (or read).

dOpen

dOpen(+ReadFileDescI +WriteFileDescI)

Initializes the object. ReadFileDescI and WriteFileDescI must be integers of
already open file descriptors (in the usual operating system sense).

Note that this method should only be used for advanced purposes.

getDesc

getDesc(?ReadFileDescIB ?WriteFileDescIB)

Returns the internally used file descriptors.

If the object is not yet initialized, ReadFileDescIB and WriteFileDescIB are
bound to false, otherwise to the respective integers.

Note, that this method is only for advanced purposes.



116 Chapter 19. Files, Sockets, and Pipes: Open

19.4 The Class Open.pipe

The class Open.pipe has the following public methods.

init

init(cmd: +CmdV
args: +ArgsVs <= nil

pid: ?PidI <= _)

Initilizes the object and forks a process with process identification PidI executing
the command CmdV with arguments ArgsVs.

The environment of the forked process is inherited from the process which runs the Oz
Emulator. The standard input of the forked process is connected to sending and writing
data, the standard output and standard error to reading and receiving data.

See also execv(3), fork(2).

read

read(list: ?ListS
tail: TailX <= nil

size: +SizeAI <= 1024

len: ?LenI <= _)

Reads data ListS from the standard output or standard error of the forked process.

An attempt is made to read SizeI bytes. ListS is bound to the data read while the
tail of ListS is bound to TailX. The atom all is also a legal value for SizeAI. In
this case the entire input is read.

LenI is bound to the number of bytes actually read. If the socket is of type stream and
the other end of the connection has been closed LenI is bound to 0.

See also read(2).

write

write(vs: +V
len: ?I <= _)

Writes the virtual string V to the standard input of the forked process.

I is bound to the number of characters written.

See also write(2).

flush

flush(how: +HowAs <= [receive send])

Blocks until all requests for reading and writing have been performed.

HowAsmust be a non-empty list which may include the atoms receive and send. The
atom send signals that the method should block until all write requests are fulfilled,
while receive signals the same for read.

close

close(+KillB<=false)



19.5. The Class Open.text 117

Closes the object.

If KillB is false (the default) the method blocks until all pending read and write re-
quests have been executed. If the started process is still running, it is killed by sending
the SIGTERM signal. However, note that the inverse direction is not supported, which
means the object is not automatically closed if the process terminates.

If KillB is true the possibly running process is immediately terminated by sending
the SIGKILL signal.

See also wait(2) and kill(1).

dOpen

dOpen(+ReadFileDescI +WriteFileDescI)

Initializes the object. ReadFileDescI and WriteFileDescI must be integers of
already open file descriptors (in the usual operating system sense).

Note that this method should only be used for advanced purposes.

getDesc

getDesc(?ReadFileDescIB ?WriteFileDescIB)

Returns the internally used file descriptors.

If the object is not yet initialized, ReadFileDescIB and WriteFileDescIB are
bound to false, otherwise to the respective integers.

Note that this method is only for advanced purposes.

19.5 The Class Open.text

The mixin class Open.text has the following methods.

getC

getC(?I)

Returns the next character, or false if the input is at the end.

Note that if an object is created that inherits from both Open.text and Open.file, the
methods read and seek from the classes Open.file, Open.socket, and Open.pipe

and do not work together with this method.

putC

putC(+I)

Writes the character I.

unGetC

unGetC

The last character read is written back to the input buffer and may be used again by
getC. It is allowed only to unget one character.

getS



118 Chapter 19. Files, Sockets, and Pipes: Open

getS(?SB)

Returns the next line of the input as string, or false if the input is at the end. SB does
not contain the newline character.

Note that if an object is created that inherits from both Open.text and Open.file, the
methods read and seek from the class Open.file, Open.socket, and Open.pipe do
not work together with this method.

putS

putS(+V)

Writes the virtual string V. Note that a newline character is appended.

atEnd

atEnd(?B)

Tests whether the end of input is reached.

dOpen

dOpen(+ReadFileDescI +WriteFileDescI)

Initializes the object. ReadFileDescI and WriteFileDescI must be integers of
already open file descriptors (in the usual operating system sense).

Note that this method should only be used for advanced purposes.

getDesc

getDesc(?ReadFileDescIB ?WriteFileDescIB)

Returns the internally used file descriptors.

If the object is not yet initialized, ReadFileDescIB and WriteFileDescIB are
bound to false, otherwise to the respective integers.

Note that this method is only for advanced purposes.



20

Operating System Support: OS

This chapter describes the procedures contained in the module OS

20.1 Conventions

Most procedures can be seen as straightforward lifting of POSIX compatible operating
system functions to Oz. Hence, our description consists mainly of a reference to the
relevant Unix manual page. If you are running on a Windows based platform you
should consult a POSIX documentation (e.g. [3]).

A major convention is that most int arguments in C are integers in Oz. Moreover
char* arguments are virtual strings, if they are used as input in C. If they are used as
output in C they are strings. An n-ary C-function returning a value is implemented as
a n+1-ary Oz procedure where the last argument serves as output position.

Whenever one needs predefined POSIX constants, they can be used as Oz atoms.
Wherever bitwise disjunction of predefined constants is used in C, a list of atoms (the
constant names) is allowed, which is interpreted as bitwise disjunction of their respec-
tive values.

The functionality of the module OS can be classified as procedures which are useful
in applications, or procedures needed for building high level functionality. The latter
are only interesting for programmers who want to build abstractions similar to those
provided by the Open module.

20.2 Exceptions

If the operating system returns an error, an Oz Exception is raised which looks as
follows:

system(os(A S1 I S2) debug:X)

where:

1. The atom A gives the category of the error (e.g. os for operating system or net
for network layer).

2. The string S1 describes the operating system routine that raised the exception.



120 Chapter 20. Operating System Support: OS

3. The integer I gives an operating system dependent error number.

4. The string S2 describes the exception by some text.

5. The value X might contain some additional debug information.

20.3 Random Integers

rand

{OS.rand ?I}

Returns a randomly generated integer.

See rand(3).

srand

{OS.srand +I}

Sets the seed for the random number generator used by OS.rand. If I is 0, the seed
will be generated from the current time.

See srand(3).

randLimits

{OS.randLimits ?MinI ?MaxI}

Binds MinI and MaxI to the smallest and greatest possible random number obtainable
by OS.rand.

See rand(3).

20.4 Files

tmpnam

{OS.tmpnam ?FileNameS}

Returns a freshly created full pathname.

See tmpnam(2).

unlink

{OS.unlink +PathV}

Removes the file with name PathV.

See link(2).

20.5 Directories

getDir

{OS.getDir +PathV ?FileNameSs}

Returns a list of strings giving the files in the directory PathV.

See opendir(3) and readdir(3).

getCWD



20.6. Sockets 121

{OS.getCWD ?FileNameS}

Returns in FileNameS the path of the current working directory.

See getcwd(3).

stat

{OS.stat +PathV ?StatR}

Returns a record describing the status of the file PathV.

StatR has features size, type, and mtime. The subtree at the feature size is an
integer that gives the size of the file PathV. The subtree at the feature type is one
of the following atoms: reg (regular file), dir (directory), chr (character special file),
blk (block special file), fifo (pipe or FIFO special file), unknown (something else).
mtime is the time of last modification measured in seconds since the dawn of the world,
which, as we all know, was January 1, 1970.

See stat(2).

chDir

{OS.chDir +PathV}

Changes the current working directory to PathV.

See chdir(2).

mkDir

{OS.mkDir +PathV +ModeAs}

Creates a directory PathV. Access modes are specified by ModeAs, similar to OS.open.

See mkdir(2).

20.6 Sockets

getServByName

{OS.getServByName +NameV +ProtoV ?PortIB}

Returns the port number PortI of a service NameV reachable in the Internet domain
with the specified protocol ProtoV.

If the service is unknown, false is returned.

As an example, the application

{OS.getServByName "finger" "tcp" Port}

binds Port to the number, where you can connect to your local finger server.

See getservbyname(3).

getHostByName

{OS.getHostByName +NameV ?HostentR}

Returns name information for the host NameV.

The record HostentR has the following features:



122 Chapter 20. Operating System Support: OS

name official host-name string
aliases alternative host-names list of strings
addrList Internet addresses list of strings

See gethostbyname(3).

20.7 Time

time

{OS.time ?TimeI}

Returns the time since 00:00:00 GMT, Jan. 1, 1970 in seconds.

See time(2).

gmTime

{OS.gmTime ?GmTimeR}

localTime

{OS.localTime ?LocalTimeR}

Returns a description of the Coordinated Universal Time (UTC), respectively a de-
scription of the local time.

The records GmTimeR and LocalTimeR have the following features, where the fields
are all integers:

sec seconds 0– 61
min minutes 0– 59
hour hours 0– 23
mDay day of month 1– 31
mon month of year 0– 11
year years since 1900
wDay days since Sunday 0– 6
yDay day of year 0– 365
isDst 1 if daylight savings time in effect (DST)

See gmtime(3), localtime(3), and time(2).

20.8 Environment Variables

getEnv

{OS.getEnv +NameV ?ValueSB}

Returns the value of the environment variable NameV.

If a variable with the given name does not exist, the procedure returns false.

As an example, consider:

{OS.getEnv ’OZHOME’}



20.9. Miscellaneous 123

returns where the Oz system has been installed. This information is also available via
{System.get home}

See getenv(3).

putEnv

{OS.putEnv +NameV +ValueV}

Sets the value of the environment variable NameV to ValueV.

See putenv(3).

20.9 Miscellaneous

uName

{OS.uName ?UtsnameR}

Returns system information.

The record UtsnameR has at least the following features, where all fields are strings:

sysname operating system name
nodename computer name
release operating system release
version operating system version
machine machine architecture

See uname(2).

system

{OS.system +CmdV ?StatusI}

Starts a new operating system shell in which the OS command CmdV is executed. The
status of the command is reported by StatusI.

See system(3).

20.10 Low Level Procedures

20.10.1 Basic Input and Output

open

{OS.open +FileNameV +FlagsAs +ModeAs ?DescI}

Opens a file for reading and/or writing.

FlagsAs must be a list with some of the following atoms as elements:

’O_RDONLY’ ’O_WRONLY’ ’O_RDWR’

’O_APPEND’ ’O_CREAT’ ’O_EXCL’

’O_TRUNC’ ’O_NOCCTY’ ’O_NONBLOCK’

’O_SYNC’

Their meanings coincide with their usual POSIX meanings.

In the same manner ModeAs must be a list with elements drawn from:



124 Chapter 20. Operating System Support: OS

’S_IRUSR’ ’S_IWUSR’ ’S_IXUSR’

’S_IRGRP’ ’S_IWGRP’ ’S_IXGRP’

’S_IROTH’ ’S_IWOTH’ ’S_IXOTH’

See open(2) and chmod(2).

fileDesc

{OS.fileDesc +FileDescA ?FileDescIB}

Maps the atoms

’STDIN_FILENO’

’STDOUT_FILENO’

’STDERR_FILENO’

to integers, giving their respective file descriptor. Note that these descriptors will be
duplicated.

See open(2) and dup(2).

read

{OS.read +DescI +MaxI ?ListS TailX ?ReadI}

Reads data from a file or socket. Yields a list of characters in ListS, where the tail of
the list is constrained to TailX.

Implements the read(2) system call.

write

{OS.write +DescI +V ?StatusTI}

Writes the virtual string V to a file or a socket by using the function write(2).

Illegal parts of the virtual string V are simply ignored, and the legal parts are written.

If V contains an undetermined variable, StatusTI is bound to a ternary tuple with
label suspend. The first argument is an integer describing the portion already written,
the second the undetermined variable, and the last to the not yet written part of V.

Otherwise StatusTI is bound to the number of characters written.

lSeek

{OS.lSeek +DescI +WhenceA +OffsetI ?WhereI}

Positions the seek pointer of a file. This procedure is implemented by the lseek(2)
function. WhenceAmust be one of the atoms ’SEEK_SET’, ’SEEK_CUR’, and ’SEEK_END’.

close

{OS.close +DescI}

Closes a file or socket by using the close(2) function.

20.10.2 From Blocking to Suspension

If reading from a file or a socket via an operating system function, it is possible that no
information is available for reading. Furthermore, an attempt to write something to a
file or to a socket might not be possible at a certain point in time. In this case the OS
function blocks, i.e. the whole Oz Emulator process will stop doing any work.

To overcome this problem, we provide three procedures. These procedures will sus-
pend rather than block.



20.10. Low Level Procedures 125

acceptSelect

{OS.acceptSelect +DescI}

readSelect

{OS.readSelect +DescI}

writeSelect

{OS.writeSelect +DescI}

Blocks until a socket connection can be accepted (data is present to be read, and writing
of data is possible, respectively) at the file or socket with descriptor DescI

For example the following case statement (we assume that Desc is bound to a descriptor
of a socket):

{OS.readSelect Desc}

case {OS.read Desc 1024 ?S nil}

of ... then...

end

blocks the current thread until data for reading is available.

This functionality is implemented by the select(2) system call.

Before actually closing a file descriptor, the following procedure needs to be called.

deSelect

{OS.deSelect +DescI}

Discards all threads depending on the file descriptor DescI.

20.10.3 Sockets

socket

{OS.socket +DomainA +TypeA +ProtoV ?DescI}

Creates a socket. Is implemented by the function socket(2).

DomainA must be either the atom ’PF_INET’ or ’PF_UNIX’, whereas TypeA must
be either ’SOCK_STREAM’, or ’SOCK_DGRAM’.

ProtoVmust be a virtual string. If it denotes the empty string, an appropriate protocol
is chosen automatically, otherwise it must denote a valid protocol name like "tcp" or
"udp".

bind

{OS.bind +SockI +PortI}

Binds a socket to its global name.

See bind(2).

listen

{OS.listen +SockI +BackLogI}

Indicates that a socket is willing to receive connections.

See listen(2).

accept



126 Chapter 20. Operating System Support: OS

{OS.accept +SockI ?HostS ?PortI ?DescI}

Accepts a connect request on a socket.

HostS is bound to a string describing the host name. It is possible to use OS.acceptSelect
to block a thread until a connect attempt on this socket is made.

See accept(2) and gethostbyaddr(3).

connect

{OS.connect +SockI +HostV +PortI}

Connects to a socket.

See connect(2) and gethostbyaddr(3).

shutDown

{OS.shutDown +SockI +HowI}

Signals that a socket is not longer interested in sending or receiving data.

See shutdown(2).

getSockName

{OS.getSockName +SockI ?PortI}

Gets the name of a socket.

See getsockname(3).

send

{OS.send +SockI +MsgV +FlagsAs ?LenI}

sendTo

{OS.sendTo +SockI +MsgV +FlagsAs +HostV +PortI} ?LenI}

Sends data from a socket.

FlagsAsmust be a list of atoms; its elements must be either ’MSG_OOB’ or ’MSG_DONTROUTE’.

See send(2) and gethostbyname(3).

receiveFrom

{OS.receiveFrom +SockI +MaxI +FlagsAs ?MsgS
+TailX ?HostS ?PortI ?LenI}

Receives data at a socket.

FlagsAsmust be a list of atoms; its elements must be either ’MSG_OOB’ or ’MSG_PEEK’.

See recvfrom(2) and gethostbyaddr(3).

20.10.4 Process Control

kill

{OS.kill +PidI +SigA ?StatusI}

Implements the kill(2) function. PidI is the process identifier, SigA is an atom
describing the signal to be sent: depending on the platform different signals are sup-
ported; at least the following signals are supported on all platforms: ’SIGTERM’,
’SIGINT’.



20.10. Low Level Procedures 127

pipe

{OS.pipe +CmdV +ArgsVs ?PidI ?StatusT}

Forks a OS process which executes the command CmdV with arguments ArgsVs.

PidI is bound to the process identifier. StatusT is bound to a pair of socket or
file descriptors where the standard input, the standard output and the standard error is
redirected to. The first field of the pair is the descriptor for reading whereas the second
field is the descriptor for writing.

See socketpair(2), fork(2), execvp(2), and execve(2).

wait

{OS.wait ?PidI ?StatI}

Implements the wait(2) function.

getPID

{OS.getPID ?PidI}

Returns the current process identifier as integer. See getpid(2).



128 Chapter 20. Operating System Support: OS



Part V

System Programming

129





21

Persistent Values: Pickle

The Pickle module provides procedures to store and retrieve stateless values on per-
sistent storage.

save

{Pickle.save +X +PathV}

Stores X in a file named PathV.

Note that X can be any stateless value. So it is possible to save for example records,
procedures or classes. However an exception is raised if for example X contains an
object or a logic variable.

saveCompressed

{Pickle.saveCompressed X +PathV +LevelI}

Works like save but additionally compresses its output. LevelI is an integer between
0 and 9 specifying the compression level: the higher the value the better the compres-
sion factor, but the longer compression takes. A value of 0 gives no compression, so
{Pickle.save X Value} is equivalent to {Pickle.saveCompressed X Value 0}.

Compression time and ratio depend on the type of input. The compression ratio might
vary between 20 and 80 percent, while compression at level 9 is usually less than 2
times slower than using no compression.

saveWithHeader

{Pickle.saveWithHeader X +PathV +HeaderV +LevelI}

This procedure is a generalization of the above builtins. It saves X in file +PathVwith
compression level +LevelI and additionally prepends the virtual string HeaderV at
the beginning. So HeaderV can be used for example to prepend a comment in front
of the pickle or to prepend a shell startup script to load and execute the pickle.

loadWithHeader

{Pickle.loadWithHeader +UrlV ?Pair}

This procedure retrieves a value from URL UrlV that has been previously saved with
one of the above procedures. It returns a pair HeaderV#Value, where HeaderV is
the (possibly empty) header and Value the value that was retrieved.

load



132 Chapter 21. Persistent Values: Pickle

{Pickle.load +UrlV ?Value}

This is just a shortcut for

{Pickle.loadWithHeader UrlV _#Value}

pack

{Pickle.pack +X ?ByteString}

Takes a value X and pickles it to a bytestring.

unpack

{Pickle.unpack +PickleV ?Value}

Unpacks a virtual string PickleV that has created by pickling (e.g., by Pickle.pack).

Pickle.unpack may crash the Oz Engine if given a corrupt pickle.



22

Emulator Properties: Property

The Propertymodule provides operations to query and possibly update Mozart system-
related parameters that control various aspects of the Mozart engine and system mod-
ules.

The most important properties can be controlled graphically by means of the Mozart
Panel, which is described in “Oz Panel” .

The properties are accessible to the programmer by operations resembling the oper-
ations on dictionaries: Property.put sets a property, whereas Property.get and
Property.condGet access properties. The operations are described here (page 139)
in more detail.

22.1 Engine Properties

The properties that control the Mozart engine are identified by atoms. For example, the
current number of runnable threads is identified by the atom ’threads.runnable’.
That is,

{Property.get ’threads.runnable’}

returns the number of currently runnable threads as an integer.

For convenience, most properties are organized into groups. A group is accessed by
an atom giving the group’s name (’threads’, for example), and it returns a record
containing the properties of that group. For example,

{Property.get ’threads’}

returns a record that has several features one of which is ’runnable’.

Some properties are read-only. They provide access to statistical information (as the
property ’threads.runnable’ in our previous example), but cannot be used to up-
date that information. Other properties are mutable: changing their values customizes
the engine’s behaviour. For example, the property ’threads.medium’ gives the ratio
between the number of time slices available for threads of priorities medium and low.
This can be changed to 2:1 by:

{Property.put ’threads.medium’ 2}



134 Chapter 22. Emulator Properties: Property

Property.put supports groups as well. For example, to customize time slices for
threads of all priorities, we can do:

{Property.put ’threads’ foo(’medium’: 2

’high’: 2)}

The record’s label is not significant.

All properties are listed in the following sections, which are sorted by group.

Application Support: application

Field Mutable Type Explanation
args no list of atoms The arguments passed to an application.
url no Atom The url of the root functor of an application.

Distribution: dp

Field Mutable Type Explanation
version no string The distribution version. Only ozengines with the

same version can communicate.
probeInterval yes integer How often probes are run in milliseconds.
probeTimeout yes integer Time before a non responded ping defines temp in

milliseconds.
openTimeout yes integer Maximum time to wait for a response when estab-

lishing a connection.
closeTimeout yes integer Maximum time to wait for a connection to close.
wfRemoteTimeout yes integer Maximum time to wait for a remote peer to reopen

a connection after being remotely closed due to lack
of resources.

firewallReopenTimeout yes integer Time to wait before reopening a connection after be-
ing remotely closed due to lack of resources when
behind a firewall.

tcpHardLimit yes integer Maximum number of simultaneous tcp connections.
tcpWeakLimit yes integer Number of simultaneous tcp connections when sta-

ble. The difference between tcpHardLimit and tcp-
WeakLimit is used for accepts. If they are set equal,
no further accepts will be made until some connec-
tion has been closed.

retryTimeFloor yes integer Least time to wait before retrying a lost connection.
retryTimeCeiling yes integer Longest time to wait before retrying a lost connec-

tion.
retryTimeFactor yes integer Factor determining actual to wait before retrying a

lost connection.
flowBufferSize yes integer Experimental property for flowcontrol.
flowBufferTime yes integer Experimental property for flowcontrol.

Some of these properties affect running connections and some affect only new ones.
Running: tcp*Limit. New: probe*, retryTime*.



22.1. Engine Properties 135

Logging of distributed events: dpLog

Field Mutable Type Explanation
connectLog yes Bool Wheter messages and events having to do with

keeping the state of the connections used by the dis-
tribution layer should be writen to the log.

messageLog yes Bool Wheter messages having to do with keeping the
state of the entity protocols of distributed mozart
should be writen to the log.

The events are writen to standard out by default. They can be redirected to file by
DPStatistics.createLogFile.

Printing Errors: errors

Field Mutable Type Explanation
debug yes Bool Whether error exceptions contain debug informa-

tion.
’thread’ yes Int Number of tasks on the thread to be printed.
width yes Int Maximal width used for printing values in error

messages.
depth yes Int Maximal depth used for printing values in error

messages.
toplevel yes Procedure Nullary procedure invoked after a message has been

printed out about an uncaught exception raised on
top level.

subordinate yes Procedure Nullary procedure invoked after a message has been
printed out about an uncaught exception raised
within a computation space.

Finite Domains: fd

Field Mutable Type Explanation
variables no Int Number of finite domain variables created.
propagators no Int Number of finite domain propagators created.
invoked no Int Number of finite domain propagators invoked.
threshold yes Int Integer when internal domain representation

switches from bit sets to interval lists.



136 Chapter 22. Emulator Properties: Property

Garbage Collection: gc

Field Mutable Type Explanation
size no Int Current heap size in bytes
threshold no Int Heap size in bytes when next automatic garbage col-

lection takes place. Gets recomputed after every
garbage collection.

active no Int Heap size in bytes after last garbage collection.
min yes Int Minimal heap size in bytes.
free yes 1. . . 100 Gives the percentage of free heap memory after

garbage collection. For example, a value of 75
means that threshold is set to approximately:
active*100/(100-75)=active*4.

tolerance yes 1. . . 100 Gives the percentage by which the emulator is al-
lowed for purposes of better memory allocation to
increase threshold.

on yes Bool Whether garbage collection is invoked automati-
cally.

codeCycle yes Int After how many garbage collections also code
garbage collection is performed (zero means no
code garbage collection).

Implementation Limits: limits

Field Mutable Type Explanation
int.min no Int The smallest integer that can be represented effi-

ciently (that is, by a single word in memory) by the
engine.

int.max no Int The largest integer that can be represented effi-
ciently (that is, by a single word in memory) by the
engine.

bytecode.xregisters no Int The number of X registers this engine is able to han-
dle in the bytecode.

Marshaler: marshaler

Field Mutable Type Explanation
version no a hash-tuple of two integers The version of the marshaler.



22.1. Engine Properties 137

Memory Usage: memory

Field Mutable Type Explanation
atoms no Int Memory used in bytes for atoms.
names no Int Memory used in bytes for names.
freelist no Int Memory allocated but held in free lists for later use

in bytes.
code no Int Memory used in bytes for Mozart bytecode.
heap no Int Total memory used in Kilo bytes (i.e., 1024 bytes)

since start of the Mozart engine. Is increased after
each garbage collection by the heap threshold.

Printing Messages: messages

Field Mutable Type Explanation
gc yes Bool Whether messages on garbage collection are

printed.
idle yes Bool Whether messages are printed when the Mozart En-

gine gets idle.

Platform Information: platform

Field Mutable Type Explanation
name no Atom The name of the platform as atom of the form

OS-ARCH where the following combinations are
currently supported:

Name OS ARCH
’aix3-rs6000’ ’aix3’ ’rs6000’

’freebsd-i486’ ’freebsd’ ’i486’

’irix5-mips’ ’irix’ ’mips’

’linux-i486’ ’linux’ ’i486’

’linux-m68k’ ’linux’ ’m68k’

’netbsd-i486’ ’netbsd’ ’i486’

’netbsd-m68k’ ’netbsd’ ’m68k’

’netbsd-sparc’ ’netbsd’ ’sparc’

’osf1-alpha’ ’osf1’ ’alpha’

’solaris-i486’ ’solaris’ ’i486’

’solaris-sparc’ ’solaris’ ’sparc’

’sunos-sparc’ ’sunos’ ’sparc’

’ultrix-mips’ ’ultrix’ ’mips’

’win32-i486’ ’win32’ ’i486’

os no Atom The operating system part of the platform name.
arch no Atom The architecture part of the platform name.



138 Chapter 22. Emulator Properties: Property

Printing Values: print

Field Mutable Type Explanation
verbose yes Bool Whether printing values includes verbose informa-

tion on variables. Used for all printing routines.
width yes Int Maximal width used for System.show and

System.print (see Chapter 26).
depth yes Int Maximal depth used for System.show and

System.print (see Chapter 26).

Thread Priorities: priorities

Field Mutable Type Explanation
high yes 1. . . 100 Relation between time slices available for threads of

priorities medium and low.
medium yes 1. . . 100 Relation between time slices available for threads of

priorities high and medium.

Computation Spaces: space

Field Mutable Type Explanation
created no Int Number of computation spaces created by

Space.new.
cloned no Int Number of computation spaces cloned by

Space.clone.
committed no Int Number of computation spaces committed by

Space.commit.
failed no Int Number of failed computation spaces.
succeeded no Int Number of succeeded computation spaces.

Threads: threads

Field Mutable Type Explanation
created no Int Total number of threads created.
runnable no Int Number of currently runnable threads.
min no Int Minimal size of a thread stack in number of tasks.



22.2. The Programming Interface 139

Time Usage: time

Field Mutable Type Explanation
user no Int Operating system user time of the Oz Emulator pro-

cess in milliseconds.
system no Int Operating system system time of the Oz Emulator

process in milliseconds.
total no Int Elapsed real time in milli seconds from an arbi-

trary point in the past (for example, system start-
up time). Can be used to determine the wall
time elapsed between two successive applications of
{Property.get ’time.total’}.

run no Int Run time in milliseconds.
idle no Int Idle time in milliseconds.
copy no Int Time spent on copying (that is, on cloning of spaces)

in milliseconds.
propagate no Int Time spent on executing propagators in millisec-

onds.
gc no Int Time spent on garbage collection in milliseconds.
detailed yes Bool Only if true, the fields time.copy, time.gc, and

time.propagate are updated accordingly.

22.2 The Programming Interface

get

{Property.get +LI X}

Returns the property stored under the key LI (a literal or an integer). Raises an excep-
tion, if no property with key LI exists.

condGet

{Property.condGet +LI X Y}

Returns the property stored under the key LI (a literal or an integer). If no property
with key LI exists, X is returned.

put

{Property.put +LI X}

Stores the property X under key LI (a literal or an integer). Raises an exception, if the
property is read-only.



140 Chapter 22. Emulator Properties: Property



23

Error Formatting: Error

The Error module is concerned with various tasks related to error reporting. This
encompasses the following:

• Reporting errors as represented by data-structures called error messages.

• Constructing error messages from run-time error conditions in the form of ex-
ceptions.

• Registering error formatters in the error registry.

At boot time, the system installs a default exception handler processing all uncaught
exceptions. This involves printing out the exception with the mechanisms mentioned
above and executing a handler as given by the properties ’errors.toplevel’ and
’errors.subordinate’, which see.

23.1 Data Structures

The central data structure used in this module is the error message. The general format
is as follows:

〈message〉 ::= 〈message label〉(
[kind: 〈extended virtual string〉] % origin subsystem or component
[msg: 〈extended virtual string〉] % main message
[items: [〈line〉]] % additional information
...) % internal fields

All fields of the record are optional and specify information as indicated by the com-
ments (wherever applicable). It is recommended that both kind and msg start with a
lower-case letter and do not end in a period.

The label of the record is currently ignored by the procedures from the Error mod-
ule, but other system modules expect it to be either error or warn, depending on the
severity of the condition.

〈message label〉 ::= error | warn



142 Chapter 23. Error Formatting: Error

The items describe a sequence of lines meant to give additional hints about the er-
ror, but one should make sure that the error message is comprehensible without this
information. All keys should start with a capital letter.

〈line〉 ::= hint([l: 〈extended virtual string〉]
[m: 〈extended virtual string〉]) % key/value pair

| 〈coordinates〉 % source code error relates to
| line(〈extended virtual string〉) % full line of text
| unit % empty line (separator)

〈coordinates〉 ::= pos(〈atom〉 % file name; ” if not known
〈int〉 % line number; required
〈int〉) % column number; ~1 if not known

An 〈extended virtual string〉 is a virtual string that may contain, for convenience,
embedded records with special interpretation.

〈extended virtual string〉 ::= 〈atom〉 | 〈int〉 | 〈float〉 | 〈string〉
| ’#’(〈extended virtual string〉 . . . 〈extended virtual string〉)
| oz(〈value〉)
| pn(〈atom〉)
| 〈coordinates〉
| apply(〈procedure or print name〉 [〈value〉])
| list([〈value〉] 〈extended virtual string〉)

〈procedure or print name〉 ::= 〈procedure〉 | 〈atom〉

The embedded records are translated to virtual strings as follows:

1. oz(X) transforms X using Value.toVirtualString, using the print depth
and width given by the system properties ’errors.depth’ and ’errors.width’,
respectively.

2. pn(+A) considers A to be a variable print name, i.e., escapes non-printable
characters according to variable concrete syntax if A is enclosed in backquotes.

3. pos(+A +I +I) prints out source coordinates, e.g., in file A, line I, column I
with the unspecified parts omitted.

4. apply(+X +Ys) represents an Oz application of X to Ys. Output uses the
usual brace notation.

5. list(+Xs +ExtendedVirtualString) outputs the values in Xs as if
each was wrapped inside oz(...), inserting ExtendedVirtualString be-
tween every pair of elements.



23.2. The Error Registry 143

23.2 The Error Registry

The error registry has the purpose of storing so-called error formatters under specific
keys of type ‘literal’. An error formatter P is a procedure with the signature

{P +ExceptionR ?MessageR}

P must be capable of processing any exception having as label any of the keys under
which P has been entered into the error registry and must return a 〈message〉 as
defined above describing the condition. In the case of error or system exceptions, only
the record found in the dispatch field of the exception is handed to the formatter.

Error formatters may be invoked by the default exception handler installed at boot
time. Possibly dealing with serious conditions, formatters are required to be robust. In
particular, the handler flags the thread executing the formatter to be non-blocking, i.e.,
if it ever blocks on a logic variable, an exception is raised in this thread. This increases
chances of any message being output at all. Note that it is allowed to block on futures
though and that this flag is not inherited by any created child thread.

23.3 Example Error Formatter

The following piece of code illustrates how an error formatter might be registered and
how it could behave. Assume a system component called compiler, which is given
‘queries’ to process. If any query is ill-typed, an exception is raised, containing the
query, the number of the ill-typed argument, and the expected argument type. Fur-
thermore, an internal exception is raised when an internal programming assertion is
violated. For robustness, an else case is included to handle any other exceptions. The
formatter simply prints out the exception record, since this might help more than no
output at all.

{Error.registerFormatter compiler

fun {$ E}

T = ’compiler engine error’

BugReport = ’please send a bug report to mozart-bugs@ps.uni-sb.de’

in

case E of compiler(internal X) then

error(kind: T

msg: ’Internal compiler error’

items: [hint(l: ’Additional information’ m: oz(X))

line(BugReport)])

elseof compiler(invalidQuery M I A) then

error(kind: T

msg: ’Ill-typed query argument’

items: [hint(l: ’Query’ m: oz(M))

hint(l: ’At argument’ m: I)

hint(l: ’Expected type’ m: A)])

...

else

error(kind: T



144 Chapter 23. Error Formatting: Error

items: [line(oz(E))])

end

end}

23.4 The Module

1. exceptionToMessage {Error.exceptionToMessage Exception Message}constructs
a 〈message〉 from an exception, using the formatters defined in the error reg-
istry or a generic formatter if none is defined for the exception. The message
returned by the formatter is enriched with additional fields copied from the ex-
ception.

2. messageToVirtualString {Error.messageToVirtualString Message V}converts
a 〈message〉 to a virtual string using the standard layout. This can span several
lines and includes the final newline.

3. extendedVSToVS {Error.extendedVSToVS ExtendedVirtualString V}converts
an 〈extended virtual string〉 to a 〈virtual string〉.

4. printException {Error.printException Exception}converts an exception to
a message and this to a virtual string, printing the result on standard error (using
System.printError).

5. registerFormatter {Error.registerFormatter L P}enters a formatter for ex-
ceptions with label L into the error registry, quietly replacing a possibly existing
formatter for L.



24

System Error Formatters:
ErrorFormatters

This module provides a set of formatters for system componeents. These formatters
are registered by the Error module. The system components handled by this module
are the following:

kernel

is an error formatter for exceptions coming from Kernel Oz, such as type errors.

object

is an error formatter for exceptions coming from the object system, e.g., inheritance
errors.

failure

is an error formatter for exceptions pertaining to failure (i.e., inconsistent ‘tell’ opera-
tions on the store).

recordC

is an error formatter for exceptions coming from the feature constraint system.

system

is an error formatter for exceptions coming from libraries used for system program-
ming.

ap

is an error formatter for exceptions coming from libraries used for application pro-
gramming.

dp

is an error formatter for exceptions coming from libraries used for distributed program-
ming.

os

is an error formatter for exceptions coming from the operating system interface.

foreign

is an error formatter for exceptions coming from foreign function interface.



146 Chapter 24. System Error Formatters: ErrorFormatters

url

is an error formatter for exceptions coming from the URL resolving library.

module

is an error formatter for exceptions coming from the module manager.



25

Memory Management: Finalize

The finalization facility gives the programmer the ability to process an Oz value when
it is discovered (during garbage collection) that it has otherwise become unreachable.
This is often used to release native resources held or encapsulated by said value.

Native functors and extension classes make it very easy to extend Oz with new inter-
faces to arbitrary resources. Typically, the access to a resource will be encapsulated
into a data-structure that is an instance of an extension class and we would like the
resource to be automatically released when the data-structure is no longer being refer-
enced and can be garbage collected. For example:

• we may encapsulate a handle to access a database: when the handle is garbage
collected, we would like the connection to the database to be automatically
closed.

• we may encapsulate a pointer to malloc’ed memory, e.g. for a large bitmap to be
manipulated by native DLLs: when this is no longer referenced, we would like
the memory to be automatically freed.

This is the purpose of finalization: to execute a cleanup action when a computational
object is no longer referenced. The Oz finalization facility was inspired by the article
Guardians in a Generation-Based Garbage Collector1 (R. Kent Dybvig, Carl Brugge-
man, David Eby, June 1993). It is built on top of weak dictionaries (Section Weak
Dictionaries, (The Oz Base Environment) ): each weak dictionary is associated with a
finalization stream on which pairs Key#Value appear when Value becomes unreach-
able except through one or more weak dictionaries.

Finalize.guardian

{Finalize.guardian +Finalizer ?Register}

This takes as input a 1-ary procedure Finalizer and returns a 1-ary procedure Register
representing a new guardian. A value X can be registered in the guardian using:

{Register X}

Thereafter, when X becomes unreachable except through a weak dictionary (e.g. a
guardian), at the next garbage collection X is removed from the guardian and the fol-
lowing is eventually executed:

1ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/guardians.ps.gz



148 Chapter 25. Memory Management: Finalize

{Finalizer X}

We say eventually because the finalization thread is subject to the same fair scheduling
as any other thread. Note that the value X has still not been garbage collected; only at
the next garbage collection after the call to Finalizer has returned, and assuming
Value is no longer referenced at all, not even by the guardian, will it really be garbage
collected.

Finalize.register

{Finalize.register +Value +Handler}

This is a slightly different interface that allows to register simultaneously a Value
and a corresponding finalizer procedure Handler. After Value becomes otherwise
unreachable, {Handler Value} is eventually executed.

Finalize.everyGC

{Finalize.everyGC +P/0}

This simply registers a 0-ary procedure to be invoked after each garbage collection.
Note that you cannot rely on how soon after the garbage collection this procedure will
really be invoked: it is in principle possible that the call may only be scheduled several
garbage collections later if the system has an incredibly large number of live threads
and generates tons of garbage. It is instructive to look at the definition of EveryGC:

proc {EveryGC P}

proc {DO _} {P} {Finalize.register DO DO} end

in {Finalize.register DO DO} end

in other words, we create a procedure DO and register it using itself as its own handler.
When invoked, it calls P and registers itself again.



26

Miscelleanous System Support:
System

The System module contains procedures providing functionality related to the Mozart
Engine.

26.1 System Control

gcDo

{System.gcDo}

Invokes garbage collection.

26.2 Printing

The procedures to print values and virtual strings choose the output device for the
printed text as follows:

1. If Mozart is running standalone, the standard output or standard error device is
chosen (depending on the procedure).

2. Otherwise the Oz Programming Interface is chosen as output device.

The procedures explained here differ from those provided by Open and OS in that they
can be used to print information in subordinated computation spaces to support debug-
ging.

print

{System.print X}

The current information on X is printed without a following newline.

The output is limited in depth and width by system parameters that can be configured
either by the Oz Panel (see “Oz Panel”) or by Property.put (see Chapter 22).

A width of n means that for lists at most n elements and for records at most n fields are
printed, the unprinted elements and fields are abbreviated by „,. A depth of n means
that trees are printed to a depth limit of n only, deeper subtrees are abbreviated by „,.

The printed text appears on standard output.



150 Chapter 26. Miscelleanous System Support: System

show

{System.show X}

The current information on X is printed with a following newline.

The output is limited in depth and width as with System.print.

The printed text appears on standard output.

printError

{System.printError V}

Prints the virtual string V without a newline.

The printed text appears on standard error.

showError

{System.showError V}

Prints the virtual string V followed by a newline.

The printed text appears on standard error.

printInfo

{System.printInfo V}

Prints the virtual string V without a newline.

The printed text appears on standard output.

showInfo

{System.showInfo V}

Prints the virtual string V followed by a newline.

The printed text appears on standard output.

26.3 Miscellaneous

eq

{System.eq X Y ?B}

Tests whether X and Y refer to the same value node in the store.

nbSusps

{System.nbSusps X ?I}

Returns the number of suspensions on X, that is the number of threads and propagators
that suspend on X.



Part VI

Window Programming

151





27

The Module Tk

This chapter contains reference information for the Tk module.

27.1 Tickles

Tickles are Oz values used to communicate with the graphics engine. The graphics
engine receives and executes tickles. The graphics engine is implemented in Tcl/Tk
(see [6]). In order to execute tickles the graphics engine first translates tickles into
strings. This section defines tickles, defines how tickles are translated into strings, and
presents the Oz procedures to send tickles.

27.1.1 Syntax

The set of tickles contains virtual strings, boolean values, and so-called tickle-objects.
A tickle-object is an object which is created from a class the Tk module provides for (all
classes but Tk.listener). Roughly spoken, the set of tickles is closed under record
construction, where only records are allowed which do not contain names as features
or as label. Proper records with the labels v, b, #, and | are special cases. Examples for
tickles can be found in Section The Graphics Engine, Tickles, and Widget Messages,
(Window Programming in Mozart) .

The exact definition of a tickle is given by the procedure IsTcl which is shown in
Figure 27.1. The procedure IsTcl returns true, if and only if X is a tickle. Otherwise
false is returned. The procedure IsTclObject tests whether an object is a tickle-
object. Note that records which have the labels # and | are treated as virtual strings.
Note that IsTcl and the following procedures serve as specification, the graphics en-
gine itself employs well optimized routines instead.

27.1.2 Translation to Virtual Strings

The translation of a tickle into a virtual string that then by the graphics agent is inter-
preted as a tcl command is shown in Figure 27.2. The used help routines are shown in
Figure 27.3.



154 Chapter 27. The Module Tk

Figure 27.1: Procedure IsTcl tests whether a value is tickle.

fun {IsTcl X}

{IsBool X} orelse {IsUnit X} orelse

{IsVirtualString X} orelse

{IsTclObject X} orelse

{IsRecord X} andthen

{Not {Some {Arity X} IsName}} andthen

{Not {IsName {Label X}}} andthen

case {Label X}

of v then {Arity X}==[1] andthen {IsVirtualString X.1}

[] b then {Arity X}==[1] andthen {All X.1 IsTcl}

[] c then {Arity X}==[1 2 3] andthen

{All X fun {$ I} I>=0 andthen I<=255 end}

[] ’#’ then false

[] ’|’ then false

else {Record.all X IsTcl}

end

end

27.1.3 Sending Tickles

Tickles can be send to the graphics engine with the following procedures. The graphics
engine processes tickles in batches: it reads a batch of tickles and executes it. If no
further batch can be read currently, it updates the graphics. After having updated the
graphics, it checks whether user events are to be processed.

The Oz procedures to send tickles are asynchronous and preserve order: all tickles are
processed in the same order they are send in. However, after the procedure has been
executed, the graphics engine might not yet have executed the tickle.

send

{Tk.send +Tcl}

Sends +Tcl to the graphics engine.

batch

{Tk.batch +TclS}

Sends a list of list of tickles +TclS to the graphics engine. It is guaranteed that the
graphics engine processes all tickles in TclS in a single batch.

27.1.4 Sending Tickles and Returning Values

In the same way as sending tickles to graphics engine, the engine can asynchronously
send back return values which are strings. The following procedures send tickles and
return the values returned by executing the tickles by the graphics engine.

returnString



27.1. Tickles 155

Figure 27.2: Procedure TclToV translates a tickle into a virtual string.

local

fun {FieldToV AI Tcl}

if {IsInt AI} then ’’ else ’-’#{Quote AI}#’ ’ end # {TclToV Tcl}

end

fun {RecordToV R AIs}

{FoldR AIs fun {$ AI V}

{FieldToV AI R.AI} # ’ ’ # V

end ’’}

end

in

fun {TclToV Tcl}

if {IsBool Tcl} then case Tcl then 0 else 1 end

elseif {IsUnit Tcl} then ’’

elseif {IsVirtualString Tcl} then {Quote Tcl}

elseif {IsTclObject Tcl} then {TclObjectToV Tcl}

else

case {Label Tcl}

of o then {RecordToV Tcl {Arity Tcl}}

[] p then AI|AIs={Arity Tcl} in

’{’#{FieldToV AI Tcl.AI}#’.’#{RecordToV Tcl AIs}#’}’

[] b then {FoldR Tcl.1 fun {$ Tcl V}

{TclToV Tcl}#’ ’#V

end ’’}

[] c then ’#’#{Hex Tcl.1}#{Hex Tcl.2}#{Hex Tcl.3}

[] v then Tcl.1

[] s then ’"’#{RecordToV Tcl {Arity Tcl}}#’"’

[] l then ’[’#{RecordToV Tcl {Arity Tcl}}#’]’

[] q then ’{’#{RecordToV Tcl {Arity Tcl}}#’}’

else {Quote {Label Tcl}}#’ ’#{RecordToV Tcl {Arity Tcl}}

end

end

end

end



156 Chapter 27. The Module Tk

Figure 27.3: Help routines to translate a tickle into a virtual string.

156a 〈Definition of Octal 156a〉≡
fun {Octal I}

[&\\ (I div 64 + &0) ((I mod 64) div 8 + &0) (I mod 8 + &0)]

end

156b 〈Definition of Quote 156b〉≡
fun {Quote V}

case {VirtualString.toString V} of nil then "\"\""

[] S then

{FoldR S fun {$ I Ir}

if {Member I "{}[]\\$\";"} then &\\|I|Ir

elseif I<33 orelse I>127 then {Append {Octal I} Ir}

else I|Ir

end

end nil}

end

end

156c 〈Definition of Hex 156c〉≡
local

fun {HexDigit I}

I + if I>9 then &a-10 else &0 end

end

in

fun {Hex I}

[{HexDigit I div 16} {HexDigit I mod 16}]

end

end

{Tk.returnString +Tcl ?S}

Returns the result of sending and executing +Tcl as string.

return

{Tk.return +Tcl ?S}

Shortcut for Tk.returnString.

returnAtom

{Tk.returnAtom +Tcl ?A}

Returns the result of sending and executing +Tcl as string.

returnInt

{Tk.returnInt +Tcl ?IB}

Returns the result of sending and executing +Tcl as integer. If the result does not
describe a number false is returned.

returnFloat

{Tk.returnFloat +Tcl ?FB}



27.2. Tickle Objects 157

Returns the result of sending and executing +Tcl as float. If the result does not de-
scribe a number false is returned.

returnListString

{Tk.returnListString +Tcl ?Ss}

Returns the result of sending and executing +Tcl as list of strings.

returnList

{Tk.returnList +Tcl ?Ss}

Shortcut for Tk.returnListString.

returnListAtom

{Tk.returnListAtom +Tcl ?ABs}

Returns the result of sending and executing +Tcl as list of atoms. If elements of the
list do not form valid atoms, the list contains the element false instead.

returnListInt

{Tk.returnListInt +Tcl ?IBs}

Returns the result of sending and executing +Tcl as list of integers. If elements of the
list do not form valid numbers, the list contains the element false instead.

returnListFloat

{Tk.returnListFloat +Tcl ?FBs}

Returns the result of sending and executing +Tcl as list of integers. If elements of the
list do not form valid numbers, the list contains the element false instead.

27.2 Tickle Objects

Rather than programming with tickles directly, all graphical entities are provided as
classes. To these classes we refer to as tickle classes and to their instances as tickle
objects. Applying a tickle object to a message translates it in a straightforward way
into a tickle.

Tickle objects themselves enjoy an translation into strings, each tickle object carries a
unique identifier that is its translation. Creation of a tickle object creates a new unique
identifier, where the exact identifier depends on the tickle class the object is created
from. The translation of a tickle object application of course uses the tickle object’s
identifier.

The available tickle classes are shown in Figure 27.4, where the classes that are shad-
owed gray are classes provided by the Tk module, the others are just conceptual. The
rest of the document will be concerned with giving a short overview on the tickle object
interfaces.

Messages to tickle objects are translated in a straightforward way to tickles, for ex-
amples see Section The Graphics Engine, Tickles, and Widget Messages, (Window
Programming in Mozart) .

In the following we will present values other than tickles that are used in messages to
tickle objects.



158 Chapter 27. The Module Tk

Figure 27.4: Hierarchy of tickle objects.
canvas

entry

frame

label

listbox

menu

menubutton

message

text

button

checkbutton

radiobutton

scale

scrollbar

no action

action

toplevel

cascade

checkbutton

command

radiobutton

separator

canvas tag

text tag

text mark

widget

menuentry

tag or mark

image

font

action

variable

Tcl object

27.2.1 Action Values

An action value is either

A procedure P. The action is invoked by creating a new thread that applies P to action or event argu-
ments.

A listener object method pair ListenerO#M

The action is invoked by letting the ListenerO serve the message M1 (see Sec-
tion 27.11). The message M1 is obtained by appending action or event arguments to
M.

An object method pair O#M

Here of course, O must not be an instance of a listener. The action is invoked by
creating a new thread that executes the object application {O M1}. The message M1 is
obtained by appending action or event arguments to M.



27.3. No-Action Widgets 159

27.2.2 Action Argument Values

When an action is executed, it possibly has some arguments attached to it. Action
argument values describe the number and types of arguments that are used with the
invoked action value. For an example see Section Scales, (Window Programming in
Mozart) .

Legal action argument values are lists whose elements are drawn from the following
set:

string atom int float

list(string) list(atom) list(int) list(float)

The length of the list defines the number of action arguments and the elements define
in the obvious way the type of the arguments.

27.2.3 Event Argument Values

When an event is executed, it possibly has some arguments attached to it. Event argu-
ment values describe the number, types, and substitutions of arguments that are used
with the invoked action value. For an example see Section Canvas Tags, (Window
Programming in Mozart) . For reference information on substitutions see bind1.

Legal action argument values are lists whose elements are drawn from the following
set:

string(V) atom(V) int(V) float(V)
list(string(V)) list(atom(V)) list(int(V)) list(float(V))

The length of the list defines the number of action arguments and the elements define
the type of the arguments, where V gives the substitution to be performed. For example,
the value [int(x)] describes, that the action handler value takes a single argument.
The single argument will be x-coordinate as an integer associated with the event.

27.3 No-Action Widgets

The following table lists the widgets that do not accept actions:
1../tcltk/TkCmd/bind.htm



160 Chapter 27. The Module Tk

Class Example Reference
Tk.canvas Chapter Canvas Widgets, (Window Programming in Mozart) canvasa

Tk.entry Section Entries and Focus, (Window Programming in Mozart) entryb

Tk.frame Section Frames, (Window Programming in Mozart) framec

Tk.label Section Label Widgets, (Window Programming in Mozart) labeld

Tk.listbox Section Listboxes and Scrollbars, (Window Programming in Mozart) listboxe

Tk.menu Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menu f

Tk.menubutton Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menubuttong

Tk.message Section Messages, (Window Programming in Mozart) messageh

Tk.text Chapter Text Widgets, (Window Programming in Mozart) texti

a../tcltk/TkCmd/canvas.htm
b../tcltk/TkCmd/entry.htm
c../tcltk/TkCmd/frame.htm
d../tcltk/TkCmd/label.htm
e../tcltk/TkCmd/listbox.htm
f../tcltk/TkCmd/menu.htm
g../tcltk/TkCmd/menubutton.htm
h../tcltk/TkCmd/message.htm
i../tcltk/TkCmd/text.htm

All above mentioned classes provide the following methods:

tkInit

tkInit(parent:+WidgetO ...)

Initializes the widget object and creates the widget.

The field WidgetO for the special feature parent must be a tickle object. self be-
comes a slave of WidgetO.

tk

tk(...)

Sends a command for self to the graphics engine.

tkReturn

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)
tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)

Sends a command for self to the graphics engine and returns the result in the field
with the highest integer feature.

tkBind

tkBind(event: EventV
action: Action <= _

args: Args <= nil



27.4. Action Widgets 161

append: AppendB <= false

break: BreakB <= false)

Defines an event binding for self. Events are described in Section Events, (Window
Programming in Mozart) and Section 27.2.3.

tkClose

tkClose()

Closes the widget object and destroys the widgets and all slave widgets. Further object
application of self raises an exception.

27.4 Action Widgets

Class Example Reference
Tk.button Section Buttons and Actions, (Window Programming in Mozart) buttona

Tk.checkbutton Section Checkbuttons, Radiobuttons, and Variables, (Window Programming in Mozart) checkbuttonb

Tk.radiobutton Section Checkbuttons, Radiobuttons, and Variables, (Window Programming in Mozart) radiobuttonc

Tk.scale Section Scales, (Window Programming in Mozart) scaled

Tk.scrollbar Section Listboxes and Scrollbars, (Window Programming in Mozart) scrollbare

a../tcltk/TkCmd/button.htm
b../tcltk/TkCmd/checkbutton.htm
c../tcltk/TkCmd/radiobutton.htm
d../tcltk/TkCmd/scale.htm
e../tcltk/TkCmd/scrollbar.htm

tkInit

tkInit(parent: +WidgetO
action: +Action
args: +Args <= nil

...)

Initializes the widget object and creates the widget.

The field WidgetO for the special feature parent must be a tickle object. self be-
comes a slave of WidgetO. Action and Args are described in Section 27.2.1 and
Section 27.2.2.

tk

tk(...)

Sends a command for self to the graphics engine.

tkReturn

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)
tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)



162 Chapter 27. The Module Tk

Sends a command for self to the graphics engine and returns the result in the field
with the highest integer feature.

tkAction

tkAction(action: +Action <= unit

args: +Args)

Redefines or deletes an action. Action and Args are described in Section 27.2.1 and
Section 27.2.2.

tkBind

tkBind(event: EventV
action: Action <= _

args: Args <= nil

append: AppendB <= false

break: BreakB <= false)

Defines an event binding for self. Events are described in Section Events, (Window
Programming in Mozart) and Section 27.2.3.

tkClose

tkClose()

Closes the widget object and destroys the widgets and all slave widgets. Further object
application of self raises an exception.

27.5 Toplevel Widgets

The class Tk.toplevel provides the following methods:

tkInit

tkInit(parent: +ParentTcl
delete: +DeleteAction
title: +TitleTcl
withdraw: +WithdrawB
...)

Initializes the widget object and creates a new toplevel widget.

For more information see Section Toplevel Widgets and Widget Objects, (Window
Programming in Mozart) and Section Toplevel Widgets and Window Manager Com-
mands, (Window Programming in Mozart)

tk

tk(...)

Sends a command for self to the graphics engine.

tkReturn

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)



27.6. Menu Entries 163

tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)

Sends a command for self to the graphics engine and returns the result in the field
with the highest integer feature.

tkBind

tkBind(event: EventV
action: Action <= _

args: Args <= nil

append: AppendB <= false

break: BreakB <= false)

Defines an event binding for self. Events are described in Section Events, (Window
Programming in Mozart) and Section 27.2.3.

tkClose

tkClose()

Closes the widget object and destroys the widgets and all slave widgets. Further object
application raises an exception.

27.6 Menu Entries

Class Example Reference
Tk.menuentry.cascade Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menua

Tk.menuentry.checkbutton Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menub

Tk.menuentry.command Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menuc

Tk.menuentry.radiobutton Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menud

Tk.menuentry.separator Section Menus, Menuitems, and Menubuttons, (Window Programming in Mozart) menue

a../tcltk/TkCmd/menu.htm
b../tcltk/TkCmd/menu.htm
c../tcltk/TkCmd/menu.htm
d../tcltk/TkCmd/menu.htm
e../tcltk/TkCmd/menu.htm

tkInit

tkInit(parent: +WidgetO
before: +BeforeTcl
action: +Action
args: +Args <= nil

...)

Initializes and creates a menu entry.

The field WidgetO for the special feature parent must be an instance of Tk.menu.
self becomes a slave of WidgetO. Action and Args are described in Section 27.2.1
and Section 27.2.2.

tk



164 Chapter 27. The Module Tk

tk(...)

Sends a command for self to the graphics engine.

tkClose

tkClose()

Closes the object and destroys the menu entry. Further object application raises an
exception.

27.7 Variables

The class Tk.variable provides the following methods. Note that it does not provide
a method for closing.

tkInit

tkInit(+Tcl <= unit)

Creates a new tickle variable with initial value Tcl.

tkSet

tkSet(+Tcl)

Sets the variable’s value to +Tcl.

tkReturn

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)
tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)

Returns the current value of the variable.

27.8 Tags And Marks

The following table lists the widgets that do not accept actions:

Class Example Reference
Tk.canvasTag Section Canvas Tags, (Window Programming in Mozart) canvasa

Tk.textTag Section Text Tags and Marks, (Window Programming in Mozart) textb

Tk.textMark Section Text Tags and Marks, (Window Programming in Mozart) textc

a../tcltk/TkCmd/canvas.htm
b../tcltk/TkCmd/text.htm
c../tcltk/TkCmd/text.htm

The above mentioned classes provide the following methods:



27.9. Images 165

tkInit

tkInit(parent:+WidgetO ...)

Initializes the widget object and creates the widget.

The field WidgetO for the special feature parent must be a tickle object. If self is an
instance of Tk.canvasTag, WidgetO must be an instance of Tk.canvas. Otherwise,
WidgetO must be an instance of Tk.text. self becomes a slave of WidgetO.

tk

tk(...)

Sends a command for self to the graphics engine.

tkReturn

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)
tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)

Sends a command for self to the graphics engine and returns the result in the field
with the highest integer feature.

tkBind

tkBind(event: EventV
action: Action <= _

args: Args <= nil

append: AppendB <= false

break: BreakB <= false)

Defines an event binding for self. Events are described in Section Events, (Window
Programming in Mozart) , Section Canvas Tags, (Window Programming in Mozart) ,
Section Example: A ToyText Browser, (Window Programming in Mozart) , and Sec-
tion 27.2.3.

tkClose

tkClose()

Closes the object and performs a delete command on all entities that are currently
referred to by self.

27.9 Images

The class Tk.image provides the following methods. An example can be found in
Section Images, (Window Programming in Mozart) , for reference documentation see
image2.

2../tcltk/TkCmd/image.htm



166 Chapter 27. The Module Tk

tkInit

tkInit(type: +TypeTcl
url: +UrlV <= unit

maskurl: +MarkUrlV <= unit

...)

Creates a new image.

tk

tk(...)

Sends a command for self to the graphics engine.

tkReturn

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)
tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)

Sends a command for self to the graphics engine and returns the result in the field
with the highest integer feature.

tkClose

tkClose()

Destroys the image and closes the image object.

27.10 Fonts

The class Tk.font provides the following methods. An example can be found in Sec-
tion Font Options, (Window Programming in Mozart) , for reference documentation
see font3.

tkInit

tkInit(...)

Creates a new font.

tk

tk(...)

Sends a command for self to the graphics engine.

tkReturn

3../tcltk/TkCmd/font.htm



27.11. Listeners 167

tkReturn(... ?S)
tkReturnString(... ?S)
tkReturnAtom(... ?A)
tkReturnInt(... ?IB)
tkReturnFloat(... ?FB)
tkReturnList(... ?Ss)
tkReturnListString(... ?Ss)
tkReturnListAtom(... ?As)
tkReturnListInt(... ?IBs)
tkReturnListFloat(... ?FBs)

Sends a command for self to the graphics engine and returns the result in the field
with the highest integer feature.

tkClose

tkClose()

Destroys the font and closes the font object.

27.11 Listeners

The class Tk.listener is not a tcl object. Is main use is to serve as listener for events,
see also Section 27.2.1. It provides the following methods. For an example see Section
More on Actions: Listeners, (Window Programming in Mozart) .

tkInit

tkInit()

Creates a new listener, which consists of a message stream and a thread that serves
each message on the stream by applying self to it.

tkServe

tkServe(+MessageR)

Adds the message MessageR to the current tail of the message stream.

tkClose

tkClose()

Decouples the message stream from the serving thread. That is, after all messages that
are currently on the stream have been served, the serving thread terminates.

27.12 Strings

toAtom

{Tk.string.toAtom +S ?A}

Returns an atom corresponding to the string S.

toInt

{Tk.string.toInt +S ?IB}



168 Chapter 27. The Module Tk

Returns an integer corresponding to the string S. If S does not form a valid number,
false is returned.

toFloat

{Tk.string.toFloat +S ?FB}

Returns a float corresponding to the string S. If S does not form a valid number, false
is returned.

toListString

{Tk.string.toListString +S ?Ss}

Returns a list of strings that corresponds to the space separated substrings of S.

toListAtom

{Tk.string.toListAtom +S ?As}

Returns a list of atoms that corresponds to the space separated substrings of S.

toListInt

{Tk.string.toListInt +S ?IBs}

Returns a list of integers that corresponds to the space separated number strings of S.
If one of the substrings does not form a valid number, the element will be false rather
than an integer.

toListFloat

{Tk.string.toListFloat +S ?FBs}

Returns a list of floats that corresponds to the space separated number strings of S. If
one of the substrings does not form a valid number, the element will be false rather
than a float.

27.13 Miscellaneous

isColor

Tk.isColor

Is true, if the current display supports colors.

Is defined as

Tk.isColor={Tk.returnInt winfo(depth ’.’)}>1

addXScrollbar

{Tk.addXScrollbar +BarTcl +ToScrollTcl}

Attaches a horizontal scrollbar defined by BarTcl to a scrollable widget defined by
ToScrollTcl.

addYScrollbar

{Tk.addYScrollbar +BarTcl +ToScrollTcl}

Attaches a vertical scrollbar defined by BarTcl to a scrollable widget defined by
ToScrollTcl.

getId



27.13. Miscellaneous 169

{Tk.getId V}

Returns a virtual string V that can be used as new unique tickle identifier.

getPrefix

{Tk.getPrefix V}

Returns a virtual string V that can be used as prefix for new unique tickle identifiers. It
is guaranteed that appending integers to V yields unique identifiers.



170 Chapter 27. The Module Tk



28

Graphical Tools: TkTools

28.1 Error

The TkTools.error class extends TkTools.dialog.

tkInit

tkInit(title: +TitleTcl <= ’Error’

master: +MasterTcl <= NoArg

aspect: +AspectI <= 250

text: +TextTcl)

Initialise the widget object and create a new error dialog.

+AspectI specifies a non-negative integer value indicating desired aspect ratio for
the text. The aspect ratio is specified as 100*width/height. 100 means the text should
be as wide as it is tall, 200 means the text should be twice as wide as it is tall, 50 means
the text should be twice as tall as it is wide, and so on.

28.2 Dialog

The TkTools.dialog class extends Tk.frame.

tkInit

tkInit(title: +TitleTcl
master: +WidgetO <= NoArg

root: +Root <= master

buttons: +ButtonsL
pack: +PackB <= true

focus: +FocusI <= 0

bg: +BackgroundA <= NoArg

default: +DefaultI <= 0

delete: +DeleteAction <= NoArg)

Initialise the widget object and create a new dialog. This widget needs at least two
informations: the title and a list of buttons. Each element of the button list is of the
form: LabelTcl # nullary procedure. Two examples are:



172 Chapter 28. Graphical Tools: TkTools

• ’close’ # tkClose

• ’nothing’# proc {$} skip end

A master widget is specified by +WidgetO. Depending on +Root the widget will
be placed in relation to the master like following:

master

The dialog will be placed in the upper left corner within the master widget.

master#XOff#YOff

The dialog will be placed in the upper left corner of the master widget plus the xoffset
and yoffset.

pointer

The dialog will be placed on the current pointer position.

X#Y

User defined position.

If you want to use a focus then you describe by +FocusI the button that gets the
focus. By +DefaultI you set the default button.

tkPack

tkPack

Pack the dialog.

tkClose

tkClose

Close the dialog.

28.3 Menubar

{TkTools.menubar +PWidgetO +KBWidgetO +L +R ?Widget0}

The TkTools.menubar function creates a menubar widget. The parent is described by
+PWidgetO, while the KeyBinder is specified by +KBWidgetO. Usually both the
parent and the key binder are the toplevel window. If you press a key combination, that
is an abbreviation for a menu entry, within the key binder area the associated action
will be done.

Menu entries are specified by the lists +L and +R, one for the left and one for the
right menu part. Each element of both lists is a record with the label menubutton. The
record has four features: text, underline, menu and feature.

menubutton(text: +TextTcl
underline: +ULI
menu: +MenuL
feature: +Atom)



28.4. Popup Menu 173

The field under the feature menu describes the view of the menu. It is a list of menu
entries. Each entry may be: command, separator, ckeckbutton, radiobutton or
cascade.

The separator is just an Atom. While checkbutton and radiobutton are usual Tk
widgets, the command button is a new element and has the following form:

command(label: +TextTcl
action: +Action
key: +KeyTcl
feature: +Atom)

The value for the key describes the keyboard accelerator and event binding to be cre-
ated. They can be used as follows:

key option value accelerator event binding
a a a
ctrl(a) C-a <Control-a>
alt(a) A-a <Alt-a>
alt(ctrl(a)) A-C-a <Alt-Control-a>
ctrl(alt(a)) C-A-a <Control-Alt-a>

If you like to place a submenu you have to describe a cascade element, which consists
only of the two features label and menu.

cascade(label: +TextTcl
menu: +MenuL)

28.4 Popup Menu

The TkTools.popupmenu class extends Tk.menubutton.

tkInit

meth tkInit(parent: +WidgetO
entries: +EL <= [empty]

selected: +SelI <= 1

font: +FontO <= unit

action: +ActionP <= proc {$ S} skip end ...)

Initialise the widget object and create a new popup menu. You always need to declare
the parent of the widget. The field under the feature entries is a list of popup menu
entries. Each entry is of the form: LabelAtom#ColorAtom. Although it is possible to
declare an entry as [push#black push#green], you should not do this.

By +SelI you declare the initial entry. If action should be performed you have to
declare a unary procedure.

getCurrent



174 Chapter 28. Graphical Tools: TkTools

getCurrent(?Atom)

Return the current active entry label.

add

add(+E)

Add a new entry. The entry must have the form: ColorAtom#LabelAtom.

rem

rem(+LabelA)

Remove (all) entries with the label +LabelA.

28.5 Textframe

The TkTools.textframe class extends Tk.frame and has only one method.

tkInit

tkInit(parent: +WidgetO
’class’: +ClassTcl <= unit

text: +TextTcl
font: +FontO <= DefaultFont)

Initialise the widget object and create a new textframe.

28.6 Notebook

The TkTools.notebook class extends Tk.canvas.

tkInit

tkInit(parent: +WidgetO
font: +FontO <= DefaultFont)

Initialise the widget object and create a new notebook.

add

add(+NoteO)

Add a new note.

remove

remove(+NoteO)

Remove a note.

toTop

toTop(+NoteO)

Bring note +NoteO to the top.

getTop

getTop(?NoteO)

Return the top note.



28.7. Note 175

28.7 Note

The TkTools.note class extends Tk.frame.

tkInit

tkInit(parent: +WidgetO
text: +TextTcl)

Initialise the widget object and create a new note. The note packs itself, thus you
should avoid sending packaging commands, otherwise the system hangs.

toTop

toTop()

This is an empty method. If yo want any action to be performed you have to derive the
TkTools.note class and to overwrite the toTop method.

28.8 Scale

The TkTools.scale class extends Tk.frame.

init

init(parent: +WidgetO
width: +WidthI
values: +ValuesL
initpos: +PosI)

Initialise the widget object and create a new scale.The field +ValuesL describes all
possible values, whereby the initial value is described by position +PosI.

drawTicks

drawTicks()

Draw.

get

get(?ValueI)

Get the current value.

28.9 Number Entry

The TkTools.numberentry class extends Tk.frame.

tkInit

tkInit(parent: +WidgetO
min: +MinI <= unit

max: +MaxI <= unit

val: +ValI <= MinI

font: +FontO <= DefaultFont

width: +WidthI <= 6

action: +ActionP <= DummyAction

returnaction: +RetActP <= unit)



176 Chapter 28. Graphical Tools: TkTools

Initialise the widget object and create a new number entry. The number entry contains
all values within +MinI and +MaxI, and shows initially the value +ValI. Allthough
it is possible to set +ValI less than +MinI you should not do it.

By +ActionP you define an unary procedure that is each time invoked, when alter
the value of the number entry. Furthermore you may set a return procedure, that is
invoked when you press Return.

tkAction

tkAction(+ActionP <= unit)

Set a new action procedure.

tkSet

tkSet(+ValI)

Set a new value.

tkGet

tkGet(?ValI)

Get value.

enter

enter(+B)

Hm. I see no difference.

28.10 Images

The function

{TkTools.images +L ?+R}

takes a list of URLs as input and returns a record of images, where the fields are atoms
derived naturally from the URLs.

First the basename of the URL is computed by taking the last fragment of the URL
(that is, ’wp.gif’ for example). The extension (the part following the period, ’gif’ for
example), determines the type and format of the image. The part of the basename that
precedes the period yields the feature.

28.11 Resolve Images

Please use TkTools.images instead.



Part VII

Miscellaneous

177





29

Support Classes for Objects:
ObjectSupport

This module contains classes that provide generic functionality for objects: Organizing
objects in hierarchies and reflection of objects.

29.1 Classes for Master/Slave Behaviour

An instance MasterO of class Object.master becomes a master of an Object.slave
object when the latter receives the message becomeSlave(MasterO).

Methods for Masters

init

init()

initialization; mandatory for internal reasons.

getSlaves

getSlaves(?SlaveOs)

returns the list of current slaves.

An instance of Object.slave becomes a slave of an Object.master object MasterO
when it receives the message becomeSlave(MasterO).

Methods for Slaves

becomeSlave

becomeSlave(+MasterO)

makes self become a slave of MasterO. self must not yet be a slave of any object,
else an exception is raised.

isFree

isFree(?B)

tests whether self is not the slave of any object.



180 Chapter 29. Support Classes for Objects: ObjectSupport

free

free()

frees self. self must be the slave of some object, else an exception is raised.

29.2 Reflecting Objects

The unsited class ObjectSupport.reflect provides the following methods:

clone

clone(+O)

returns a clone of self (that is, features and current attribute values are equal).

toChunk

toChunk(?Ch)

returns a chunk that contains information on current attribute values and features.

fromChunk

fromChunk(+Ch)

Sets features and attributes according to chunk Ch. Ch must have been created with
toChunk. The current object must have the same class as that from which the chunk
was computed.



Bibliography

[1] P. Baptiste, C. Le Pape, and W. Nuijten. Incorporating efficient operations re-
search algorithms in constraint-based scheduling. In First International Joint
Workshop on Artificial Intelligence and Operations Research, 1995.

[2] Y. Caseau and F. Laburthe. Disjunctive scheduling with task intervals. LIENS
Technical Report 95-25, Laboratoire d’Informatique de l’Ecole Normale Su-
perieure, 1995.

[3] Donald Lewine. POSIX Programmer’s Guide. O’Reilly & Associates, Inc., April
1991.

[4] P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for
the job shop scheduling problem. In International Conference on Integer Pro-
gramming and Combinatorial Optimization, Vancouver, pages 389–403, 1996.

[5] Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry,
Burkhard Freitag, and Dietmar Seipel, editors, 13. Workshop Logische Program-
mierung, pages 104–115, Technische Universität München, 17–19 September
1997.

[6] John K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series.
Addison-Wesley, Reading, MA, USA, 1994.

[7] Jean-François Puget. A fast algorithm for the bound consistency of alldiff con-
straints. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-98), pages 359–366, Madison, WI, USA, July 1998. AAAI Press/The MIT
Press.

[8] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
362–367, Seattle, WA, USA, 1994. AAAI Press.

[9] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

[10] J. Würtz. Oz Scheduler: A workbench for scheduling problems. In M.G. Ra-
dle, editor, Eighth International Conference on Tools with Artificial Intelligence,
pages 149–156, Toulouse, France, 1996. IEEE, IEEE Computer Society Press.

[11] J. Würtz. Constraint-based scheduling in Oz. In U. Zimmermann, U. Derigs,
W. Gaul, R. Möhrig, and K.-P. Schuster, editors, Operations Research Proceed-
ings 1996, pages 218–223. Springer-Verlag, Berlin, Heidelberg, New York, 1997.
Selected Papers of the Symposium on Operations Research (SOR 96), Braun-
schweig, Germany, September 3–6, 1996.



Index

addHandler, 92
Application

Application, exit, 4
Application, getArgs, 3
Application, getCgiArgs, 3
Application, getCmdArgs, 3
Application, getGuiArgs, 3
Application, processArgv, 3

apply, 12, 13, 83

best, 26

close, 80, 83, 100
Combinator

Combinator, ’choice’, 71
Combinator, ’cond’, 71
Combinator, ’dis’, 71
Combinator, ’not’, 71
Combinator, ’or’, 71
Combinator, ’reify’, 71

condGet, 139
Connection

gate
Connection, gate, close, 80
Connection, gate, getTicket,

80
Connection, gate, init, 80

Connection, offer, 79
Connection, offerUnlimited, 80
Connection, take, 80

Connection, 79
Connection.gate, 80
Connection.take, 80

Discovery
client
Discovery, client, close, 100
Discovery, client, getAll, 100
Discovery, client, getOne, 100
Discovery, client, init, 100

Discovery, client, 99
Discovery, defaultServerPort,

99
server

Discovery, server, close, 100
Discovery, server, init, 99
Discovery, server, replace,

100
Discovery, server, 99

Discovery.client, 100
Discovery.server, 99

enter, 13, 83
Error

Error, exceptionToMessage, 144
Error, extendedVSToVS, 144
Error, messageToVirtualString,

144
Error, printException, 144
Error, registerFormatter, 144

ErrorFormatters
ErrorFormatters, ap, 145
ErrorFormatters, dp, 145
ErrorFormatters, failure, 145
ErrorFormatters, foreign, 145
ErrorFormatters, kernel, 145
ErrorFormatters, module, 146
ErrorFormatters, object, 145
ErrorFormatters, os, 145
ErrorFormatters, recordC, 145
ErrorFormatters, system, 145
ErrorFormatters, url, 146

FD
FD, assign, 51
FD, atLeast, 41
FD, atMost, 41
FD, choose, 50
FD, conj, 42
FD, decl, 35
FD, disj, 42
FD, disjoint, 47
FD, disjointC, 47
FD, distance, 46
FD, distinct, 40
FD, distinct2, 41
FD, distinctB, 40
FD, distinctD, 41

182



INDEX 183

FD, distinctOffset, 41
FD, distribute, 48
FD, divD, 46
FD, divI, 45
FD, dom, 35
FD, element, 41
FD, equi, 43
FD, exactly, 41
FD, exor, 42
FD, greater, 47
FD, greatereq, 47
FD, impl, 42
FD, inf, 34
FD, int, 34
FD, is, 34
FD, less, 47
FD, lesseq, 47
FD, list, 35
FD, max, 46
FD, min, 44, 46
FD, minus, 45
FD, minusD, 45
FD, modD, 46
FD, modI, 45
FD, nega, 42
FD, plus, 44
FD, plusD, 44
FD, power, 45
FD, record, 35
reflect

FD, reflect, dom, 36
FD, reflect, domList, 36
FD, reflect, max, 35
FD, reflect, mid, 35
FD, reflect, min, 35
FD, reflect, nbSusps, 36
FD, reflect, nextLarger, 35
FD, reflect, nextSmaller, 35
FD, reflect, size, 35

reified
FD, reified, card, 44
FD, reified, dom, 43
FD, reified, int, 43
FD, reified, sum, 43
FD, reified, sumAC, 44
FD, reified, sumACN, 44
FD, reified, sumC, 43
FD, reified, sumCN, 44

FD, sum, 37

FD, sumAC, 40
FD, sumACN, 40
FD, sumC, 37
FD, sumCD, 40
FD, sumCN, 38
FD, sumD, 40
FD, sup, 34
FD, tasksOverlap, 47
FD, times, 45
FD, timesD, 45
FD, tuple, 35
watch

FD, watch, max, 36
FD, watch, min, 36
FD, watch, size, 36

Finalize
Finalize, everyGC, 148
Finalize, guardian, 147
Finalize, register, 148

Finite Domains, 34
FS

card
FS, card, id, 60

cardRange
FS, cardRange, id, 60

compl
FS, compl, id, 59

complIn
FS, complIn, id, 59

diff
FS, diff, id, 61

disjoint
FS, disjoint, id, 61

disjointN
FS, disjointN, id, 61

distinct
FS, distinct, id, 61

distinctN
FS, distinctN, id, 61

distribute
FS, distribute, id, 66

exclude
FS, exclude, id, 59

forAllIn
FS, forAllIn, id, 65

include
FS, include, id, 59

inf
FS, inf, id, 59



184 INDEX

int
FS, int, convex, 60
FS, int, match, 60
FS, int, max, 60
FS, int, maxN, 60
FS, int, min, 60
FS, int, minN, 60
FS, int, seq, 61

intersect
FS, intersect, id, 61

intersectN
FS, intersectN, id, 61

isIn
FS, isIn, id, 60

makeWeights
FS, makeWeights, id, 60

monitorIn
FS, monitorIn, id, 65

monitorOut
FS, monitorOut, id, 65

partition
FS, partition, id, 61

reflect
FS, reflect, card, 65
FS, reflect, lowerBound, 65
FS, reflect, lowerBoundList, 65
FS, reflect, unknown, 65
FS, reflect, unknownList, 66
FS, reflect, upperBound, 65
FS, reflect, upperBoundList, 66

reified
FS, reified, areIn, 64
FS, reified, equal, 64
FS, reified, include, 64
FS, reified, isIn, 64
FS, reified, partition, 64

subset
FS, subset, id, 61

sup
FS, sup, id, 59

union
FS, union, id, 61

unionN
FS, unionN, id, 61

value
FS, value, empty, 63
FS, value, is, 64
FS, value, make, 64
FS, value, singl, 64

FS, value, toString, 64
FS, value, universal, 64

var
FS, var, bounds, 62
FS, var, decl, 62
FS, var, is, 62
FS, var, lowerBound, 62
FS, var, upperBound, 62

get, 139
getAll, 100
getHandlers, 92
getOne, 100
getTicket, 80

init, 12, 80, 81, 99, 100
is, 69, 73

link, 12, 13, 83
load, 92
localize, 92

Module
Module, apply, 13
Module, link, 13
manager
Module, manager, apply, 12
Module, manager, enter, 13
Module, manager, init, 12
Module, manager, link, 12

native, 93

ObjectSupport
master
ObjectSupport, master, getSlaves,

179
ObjectSupport, master, init,

179
ObjectSupport, master, 179
reflect
ObjectSupport, reflect, clone,

180
ObjectSupport, reflect, fromChunk,

180
ObjectSupport, reflect, toChunk,

180
slave
ObjectSupport, slave, becomeSlave,

179



INDEX 185

ObjectSupport, slave, free,
180

ObjectSupport, slave, isFree,
179

ObjectSupport, slave, 179
offer, 79
offerUnlimited, 80
Open

file
Open, file, close, 112
Open, file, dOpen , 112
Open, file, getDesc , 112
Open, file, init, 110
Open, file, read, 111
Open, file, seek, 111
Open, file, tell, 112
Open, file, write, 111

Open, file, 110
pipe

Open, pipe, close , 117
Open, pipe, dOpen , 117
Open, pipe, flush , 116
Open, pipe, getDesc , 117
Open, pipe, init , 116
Open, pipe, read , 116
Open, pipe, write , 116

Open, pipe, 116
socket

Open, socket, accept , 113
Open, socket, bind , 113
Open, socket, client, 114
Open, socket, close , 115
Open, socket, connect , 113
Open, socket, dOpen , 115
Open, socket, flush, 115
Open, socket, getDesc , 115
Open, socket, init, 112
Open, socket, listen , 113
Open, socket, read , 114
Open, socket, receive , 114
Open, socket, send, 115
Open, socket, server , 114
Open, socket, shutDown , 115
Open, socket, write, 114

Open, socket, 112
text

Open, text, atEnd , 118
Open, text, dOpen , 118
Open, text, getC , 117

Open, text, getDesc , 118
Open, text, getS , 118
Open, text, putC , 117
Open, text, putS , 118
Open, text, unGetC , 117

Open, text, 117
open, 92
OS

OS, accept, 126
OS, acceptSelect, 125, 126
OS, bind, 125
OS, chDir, 121
OS, close, 124
OS, connect, 126
OS, deSelect, 125
OS, fileDesc, 124
OS, getCWD, 121
OS, getDir, 120
OS, getEnv, 122
OS, getHostByName, 121
OS, getPID, 127
OS, getServByName, 121
OS, getSockName, 126
OS, gmTime, 122
OS, kill, 126
OS, listen, 125
OS, localTime, 122
OS, lSeek, 124
OS, mkDir, 121
OS, open, 123
OS, pipe, 127
OS, putEnv, 123
OS, rand, 120
OS, randLimits, 120
OS, read, 124
OS, readSelect, 125
OS, receiveFrom, 126
OS, send, 126
OS, sendTo, 126
OS, shutDown, 126
OS, socket, 125
OS, srand, 120
OS, stat, 121
OS, system, 123
OS, time, 122
OS, tmpnam, 120
OS, uName, 123
OS, unlink, 120
OS, wait, 127



186 INDEX

OS, write, 124
OS, writeSelect, 125

Pickle
Pickle, load, 132
Pickle, loadWithHeader, 131
Pickle, pack, 132
Pickle, save, 131
Pickle, saveCompressed, 131
Pickle, saveWithHeader, 131
Pickle, unpack, 132

ping, 83
Property

Property, condGet, 139
Property, get, 139
Property, put, 139

protocol
protocol, TCP, 112
protocol, UDP, 112

put, 139

RecordC
RecordC, hasLabel, 70
RecordC, is, 69
RecordC, monitorArity, 70
RecordC, reflectArity, 69
RecordC, tell, 69
RecordC, tellSize, 69
RecordC, width, 69

Remote
manager
Remote, manager, apply, 83
Remote, manager, close, 83
Remote, manager, enter, 83
Remote, manager, init, 81
Remote, manager, link, 83
Remote, manager, ping, 83

replace, 100
Resolve

Resolve, expand, 91
handler
Resolve, handler, all, 91
Resolve, handler, cache, 92
Resolve, handler, default, 91
Resolve, handler, pattern, 92
Resolve, handler, prefix, 92
Resolve, handler, root, 92

Resolve, handler, 91
Resolve, make, 91
trace

Resolve, trace, get, 91
Resolve, trace, set, 91

Schedule
Schedule, cumulative, 55
Schedule, cumulativeEF, 56
Schedule, cumulativeTI, 56
Schedule, cumulativeUp, 56
Schedule, disjoint, 57
Schedule, firstsDist, 54
Schedule, firstsLastsDist, 55
Schedule, lastsDist, 54
Schedule, serialized, 54
Schedule, serializedDisj, 53
Schedule, taskIntervals, 54
Schedule, taskIntervalsDistO,

55
Schedule, taskIntervalsDistP,

55
Search

Search, all, 26
Search, allP, 26
Search, allS, 26
Search, base, 21
best

Search, best, bab, 26
Search, best, babP, 26
Search, best, babS, 27
Search, best, restart, 27
Search, best, restartP, 27
Search, best, restartS, 27

object
Search, object, last, 28
Search, object, lastP, 28
Search, object, lastS, 28
Search, object, next, 27
Search, object, nextP, 27
Search, object, nextS, 28
Search, object, script, 27
Search, object, stop, 28

one
Search, one, bound, 25
Search, one, boundP, 25
Search, one, boundS, 25
Search, one, depth, 24
Search, one, depthP, 25
Search, one, depthS, 25
Search, one, iter, 26
Search, one, iterP, 26



INDEX 187

Search, one, iterS, 26
Search, one, 24
parallel

Search, parallel, all, 31
Search, parallel, best, 31
Search, parallel, close, 32
Search, parallel, init, 30
Search, parallel, one, 31
Search, parallel, stop, 31

search
search, object, 27

seek pointer, 110
setHandlers, 92
SIGKILL, 117
SIGTERM, 117
Space

Space, ask, 73
Space, askVerbose, 73
Space, choose, 75
Space, clone, 74
Space, commit, 75
Space, inject, 74
Space, is, 73
Space, kill, 74
Space, merge, 74
Space, new, 73
Space, waitStable, 75

stderr, 110
stdin, 110
stdout, 110
System

System, eq, 150
System, gcDo, 149
System, nbSusps, 150
System, print, 149
System, printError, 150
System, printInfo, 150
System, show, 150
System, showError, 150
System, showInfo, 150

System
System , get, 123

take, 80
tell, 69
tellSize, 69
tickles

tickles, id, 153
Tk

Tk, addXScrollbar, 168
Tk, addYScrollbar, 168
Tk, batch, 154
button

Tk, button, tk, 161
Tk, button, tkAction, 162
Tk, button, tkBind, 162
Tk, button, tkClose, 162
Tk, button, tkInit, 161
Tk, button, tkReturn, 161
Tk, button, tkReturnAtom, 161
Tk, button, tkReturnFloat, 161
Tk, button, tkReturnInt, 161
Tk, button, tkReturnList, 161
Tk, button, tkReturnListAtom, 161
Tk, button, tkReturnListFloat, 161
Tk, button, tkReturnListInt, 161
Tk, button, tkReturnListString, 161
Tk, button, tkReturnString, 161

Tk, button, 161
canvas

Tk, canvas, tk, 160
Tk, canvas, tkBind, 160
Tk, canvas, tkClose, 161
Tk, canvas, tkInit, 160
Tk, canvas, tkReturn, 160
Tk, canvas, tkReturnAtom, 160
Tk, canvas, tkReturnFloat, 160
Tk, canvas, tkReturnInt, 160
Tk, canvas, tkReturnList, 160
Tk, canvas, tkReturnListAtom, 160
Tk, canvas, tkReturnListFloat, 160
Tk, canvas, tkReturnListInt, 160
Tk, canvas, tkReturnListString,

160
Tk, canvas, tkReturnString, 160

Tk, canvas, 159
canvasTag

Tk, canvasTag, tk, 165
Tk, canvasTag, tkBind, 165
Tk, canvasTag, tkClose, 165
Tk, canvasTag, tkInit, 165
Tk, canvasTag, tkReturn, 165
Tk, canvasTag, tkReturnAtom, 165
Tk, canvasTag, tkReturnFloat, 165
Tk, canvasTag, tkReturnInt, 165
Tk, canvasTag, tkReturnList, 165
Tk, canvasTag, tkReturnListAtom,

165



188 INDEX

Tk, canvasTag, tkReturnListFloat,
165

Tk, canvasTag, tkReturnListInt,
165

Tk, canvasTag, tkReturnListString,
165

Tk, canvasTag, tkReturnString,
165

Tk, canvasTag, 164
checkbutton

Tk, checkbutton, tk, 161
Tk, checkbutton, tkAction, 162
Tk, checkbutton, tkBind, 162
Tk, checkbutton, tkClose, 162
Tk, checkbutton, tkInit, 161
Tk, checkbutton, tkReturn, 161
Tk, checkbutton, tkReturnAtom,

161
Tk, checkbutton, tkReturnFloat,

161
Tk, checkbutton, tkReturnInt, 161
Tk, checkbutton, tkReturnList, 161
Tk, checkbutton, tkReturnListAtom,

161
Tk, checkbutton, tkReturnListFloat,

161
Tk, checkbutton, tkReturnListInt,

161
Tk, checkbutton, tkReturnListString,

161
Tk, checkbutton, tkReturnString,

161
Tk, checkbutton, 161
entry

Tk, entry, tk, 160
Tk, entry, tkBind, 160
Tk, entry, tkClose, 161
Tk, entry, tkInit, 160
Tk, entry, tkReturn, 160
Tk, entry, tkReturnAtom, 160
Tk, entry, tkReturnFloat, 160
Tk, entry, tkReturnInt, 160
Tk, entry, tkReturnList, 160
Tk, entry, tkReturnListAtom, 160
Tk, entry, tkReturnListFloat, 160
Tk, entry, tkReturnListInt, 160
Tk, entry, tkReturnListString, 160
Tk, entry, tkReturnString, 160

Tk, entry, 159

font
Tk, font, tk, 166
Tk, font, tkClose, 167
Tk, font, tkInit, 166
Tk, font, tkReturn, 166
Tk, font, tkReturnAtom, 166
Tk, font, tkReturnFloat, 166
Tk, font, tkReturnInt, 166
Tk, font, tkReturnList, 166
Tk, font, tkReturnListAtom, 166
Tk, font, tkReturnListFloat, 166
Tk, font, tkReturnListInt, 166
Tk, font, tkReturnListString, 166
Tk, font, tkReturnString, 166

Tk, font, 166
frame

Tk, frame, tk, 160
Tk, frame, tkBind, 160
Tk, frame, tkClose, 161
Tk, frame, tkInit, 160
Tk, frame, tkReturn, 160
Tk, frame, tkReturnAtom, 160
Tk, frame, tkReturnFloat, 160
Tk, frame, tkReturnInt, 160
Tk, frame, tkReturnList, 160
Tk, frame, tkReturnListAtom, 160
Tk, frame, tkReturnListFloat, 160
Tk, frame, tkReturnListInt, 160
Tk, frame, tkReturnListString, 160
Tk, frame, tkReturnString, 160

Tk, frame, 159
Tk, getId, 168
Tk, getPrefix, 169
image

Tk, image, tk, 166
Tk, image, tkClose, 166
Tk, image, tkInit, 166
Tk, image, tkReturn, 166
Tk, image, tkReturnAtom, 166
Tk, image, tkReturnFloat, 166
Tk, image, tkReturnInt, 166
Tk, image, tkReturnList, 166
Tk, image, tkReturnListAtom, 166
Tk, image, tkReturnListFloat, 166
Tk, image, tkReturnListInt, 166
Tk, image, tkReturnListString, 166
Tk, image, tkReturnString, 166

Tk, image, 165
Tk, isColor, 168



INDEX 189

label
Tk, label, tk, 160
Tk, label, tkBind, 160
Tk, label, tkClose, 161
Tk, label, tkInit, 160
Tk, label, tkReturn, 160
Tk, label, tkReturnAtom, 160
Tk, label, tkReturnFloat, 160
Tk, label, tkReturnInt, 160
Tk, label, tkReturnList, 160
Tk, label, tkReturnListAtom, 160
Tk, label, tkReturnListFloat, 160
Tk, label, tkReturnListInt, 160
Tk, label, tkReturnListString, 160
Tk, label, tkReturnString, 160

Tk, label, 159
listbox

Tk, listbox, tk, 160
Tk, listbox, tkBind, 160
Tk, listbox, tkClose, 161
Tk, listbox, tkInit, 160
Tk, listbox, tkReturn, 160
Tk, listbox, tkReturnAtom, 160
Tk, listbox, tkReturnFloat, 160
Tk, listbox, tkReturnInt, 160
Tk, listbox, tkReturnList, 160
Tk, listbox, tkReturnListAtom,

160
Tk, listbox, tkReturnListFloat, 160
Tk, listbox, tkReturnListInt, 160
Tk, listbox, tkReturnListString,

160
Tk, listbox, tkReturnString, 160

Tk, listbox, 159
listener

Tk, listener, tkClose, 167
Tk, listener, tkInit, 167
Tk, listener, tkServe, 167

Tk, listener, 167
menu

Tk, menu, tk, 160
Tk, menu, tkBind, 160
Tk, menu, tkClose, 161
Tk, menu, tkInit, 160
Tk, menu, tkReturn, 160
Tk, menu, tkReturnAtom, 160
Tk, menu, tkReturnFloat, 160
Tk, menu, tkReturnInt, 160
Tk, menu, tkReturnList, 160

Tk, menu, tkReturnListAtom, 160
Tk, menu, tkReturnListFloat, 160
Tk, menu, tkReturnListInt, 160
Tk, menu, tkReturnListString, 160
Tk, menu, tkReturnString, 160

Tk, menu, 159
menubutton

Tk, menubutton, tk, 160
Tk, menubutton, tkBind, 160
Tk, menubutton, tkClose, 161
Tk, menubutton, tkInit, 160
Tk, menubutton, tkReturn, 160
Tk, menubutton, tkReturnAtom,

160
Tk, menubutton, tkReturnFloat,

160
Tk, menubutton, tkReturnInt, 160
Tk, menubutton, tkReturnList, 160
Tk, menubutton, tkReturnListAtom,

160
Tk, menubutton, tkReturnListFloat,

160
Tk, menubutton, tkReturnListInt,

160
Tk, menubutton, tkReturnListString,

160
Tk, menubutton, tkReturnString,

160
Tk, menubutton, 159
menuentry

Tk, menuentry, cascade, 163
Tk, menuentry, checkbutton, 163
Tk, menuentry, command, 163
Tk, menuentry, radiobutton, 163
Tk, menuentry, separator, 163

message
Tk, message, tk, 160
Tk, message, tkBind, 160
Tk, message, tkClose, 161
Tk, message, tkInit, 160
Tk, message, tkReturn, 160
Tk, message, tkReturnAtom, 160
Tk, message, tkReturnFloat, 160
Tk, message, tkReturnInt, 160
Tk, message, tkReturnList, 160
Tk, message, tkReturnListAtom,

160
Tk, message, tkReturnListFloat,

160



190 INDEX

Tk, message, tkReturnListInt, 160
Tk, message, tkReturnListString,

160
Tk, message, tkReturnString, 160

Tk, message, 159
radiobutton

Tk, radiobutton, tk, 161
Tk, radiobutton, tkAction, 162
Tk, radiobutton, tkBind, 162
Tk, radiobutton, tkClose, 162
Tk, radiobutton, tkInit, 161
Tk, radiobutton, tkReturn, 161
Tk, radiobutton, tkReturnAtom,

161
Tk, radiobutton, tkReturnFloat,

161
Tk, radiobutton, tkReturnInt, 161
Tk, radiobutton, tkReturnList, 161
Tk, radiobutton, tkReturnListAtom,

161
Tk, radiobutton, tkReturnListFloat,

161
Tk, radiobutton, tkReturnListInt,

161
Tk, radiobutton, tkReturnListString,

161
Tk, radiobutton, tkReturnString,

161
Tk, radiobutton, 161
Tk, return, 156
Tk, returnAtom, 156
Tk, returnFloat, 156
Tk, returnInt, 156
Tk, returnList, 157
Tk, returnListAtom, 157
Tk, returnListFloat, 157
Tk, returnListInt, 157
Tk, returnListString, 157
Tk, returnString, 154
scale

Tk, scale, tk, 161
Tk, scale, tkAction, 162
Tk, scale, tkBind, 162
Tk, scale, tkClose, 162
Tk, scale, tkInit, 161
Tk, scale, tkReturn, 161
Tk, scale, tkReturnAtom, 161
Tk, scale, tkReturnFloat, 161
Tk, scale, tkReturnInt, 161

Tk, scale, tkReturnList, 161
Tk, scale, tkReturnListAtom, 161
Tk, scale, tkReturnListFloat, 161
Tk, scale, tkReturnListInt, 161
Tk, scale, tkReturnListString, 161
Tk, scale, tkReturnString, 161

Tk, scale, 161
scrollbar

Tk, scrollbar, tk, 161
Tk, scrollbar, tkAction, 162
Tk, scrollbar, tkBind, 162
Tk, scrollbar, tkClose, 162
Tk, scrollbar, tkInit, 161
Tk, scrollbar, tkReturn, 161
Tk, scrollbar, tkReturnAtom, 161
Tk, scrollbar, tkReturnFloat, 161
Tk, scrollbar, tkReturnInt, 161
Tk, scrollbar, tkReturnList, 161
Tk, scrollbar, tkReturnListAtom,

161
Tk, scrollbar, tkReturnListFloat,

161
Tk, scrollbar, tkReturnListInt, 161
Tk, scrollbar, tkReturnListString,

161
Tk, scrollbar, tkReturnString, 161

Tk, scrollbar, 161
Tk, send, 154
string

Tk, string, toAtom, 167
Tk, string, toFloat, 168
Tk, string, toInt, 167
Tk, string, toListAtom, 168
Tk, string, toListFloat, 168
Tk, string, toListInt, 168
Tk, string, toListString, 168

Tk, string, 167
text

Tk, text, tk, 160
Tk, text, tkBind, 160
Tk, text, tkClose, 161
Tk, text, tkInit, 160
Tk, text, tkReturn, 160
Tk, text, tkReturnAtom, 160
Tk, text, tkReturnFloat, 160
Tk, text, tkReturnInt, 160
Tk, text, tkReturnList, 160
Tk, text, tkReturnListAtom, 160
Tk, text, tkReturnListFloat, 160



INDEX 191

Tk, text, tkReturnListInt, 160
Tk, text, tkReturnListString, 160
Tk, text, tkReturnString, 160

Tk, text, 159
textMark

Tk, textMark, tk, 165
Tk, textMark, tkBind, 165
Tk, textMark, tkClose, 165
Tk, textMark, tkInit, 165
Tk, textMark, tkReturn, 165
Tk, textMark, tkReturnAtom, 165
Tk, textMark, tkReturnFloat, 165
Tk, textMark, tkReturnInt, 165
Tk, textMark, tkReturnList, 165
Tk, textMark, tkReturnListAtom,

165
Tk, textMark, tkReturnListFloat,

165
Tk, textMark, tkReturnListInt, 165
Tk, textMark, tkReturnListString,

165
Tk, textMark, tkReturnString, 165

Tk, textMark, 164
textTag

Tk, textTag, tk, 165
Tk, textTag, tkBind, 165
Tk, textTag, tkClose, 165
Tk, textTag, tkInit, 165
Tk, textTag, tkReturn, 165
Tk, textTag, tkReturnAtom, 165
Tk, textTag, tkReturnFloat, 165
Tk, textTag, tkReturnInt, 165
Tk, textTag, tkReturnList, 165
Tk, textTag, tkReturnListAtom,

165
Tk, textTag, tkReturnListFloat,

165
Tk, textTag, tkReturnListInt, 165
Tk, textTag, tkReturnListString,

165
Tk, textTag, tkReturnString, 165

Tk, textTag, 164
toplevel

Tk, toplevel, tk, 162
Tk, toplevel, tkBind, 163
Tk, toplevel, tkClose, 163
Tk, toplevel, tkInit, 162
Tk, toplevel, tkReturn, 162
Tk, toplevel, tkReturnAtom, 162

Tk, toplevel, tkReturnFloat, 162
Tk, toplevel, tkReturnInt, 162
Tk, toplevel, tkReturnList, 162
Tk, toplevel, tkReturnListAtom,

162
Tk, toplevel, tkReturnListFloat,

162
Tk, toplevel, tkReturnListInt, 162
Tk, toplevel, tkReturnListString,

162
Tk, toplevel, tkReturnString, 162

Tk, toplevel, 162
variable

Tk, variable, tkInit, 164
Tk, variable, tkReturn, 164
Tk, variable, tkReturnAtom, 164
Tk, variable, tkReturnFloat, 164
Tk, variable, tkReturnInt, 164
Tk, variable, tkReturnList, 164
Tk, variable, tkReturnListAtom,

164
Tk, variable, tkReturnListFloat,

164
Tk, variable, tkReturnListInt, 164
Tk, variable, tkReturnListString,

164
Tk, variable, tkReturnString, 164
Tk, variable, tkSet, 164

Tk, variable, 164
TkTools

dialog
TkTools, dialog, tkClose, 172
TkTools, dialog, tkInit, 171
TkTools, dialog, tkPack, 172

TkTools, dialog, 171
error

TkTools, error, tkInit, 171
TkTools, error, 171
TkTools, images, 176
TkTools, menubar, 172
note

TkTools, note, tkInit, 175
TkTools, note, toTop, 175

TkTools, note, 175
notebook

TkTools, notebook, add, 174
TkTools, notebook, getTop, 174
TkTools, notebook, remove, 174
TkTools, notebook, tkInit, 174



192 INDEX

TkTools, notebook, topTop, 174
TkTools, notebook, 174
numberentry

TkTools, numberentry, enter, 176
TkTools, numberentry, tkAction,

176
TkTools, numberentry, tkGet, 176
TkTools, numberentry, tkInit, 175
TkTools, numberentry, tkSet, 176

TkTools, numberentry, 175
popupmenu

TkTools, popupmenu, add, 174
TkTools, popupmenu, getCurrent,

173
TkTools, popupmenu, rem, 174
TkTools, popupmenu, tkInit, 173

TkTools, popupmenu, 173
TkTools, resolveImages, 176
scale

TkTools, scale, drawTicks, 175
TkTools, scale, get, 175
TkTools, scale, init, 175

TkTools, scale, 175
textframe

TkTools, textframe, tkInit, 174
TkTools, textframe, 174

URL
URL, is, 87
URL, isAbsolute, 88
URL, isRelative, 88
URL, make, 86
URL, normalizePath, 87
URL, resolve, 87
URL, toAtom, 87
URL, toBase, 88
URL, toString, 87
URL, toVirtualString, 87
URL, toVirtualStringExtended,

87

width, 69


