The Mozart Constraint Extensions Reference

Tobias Miller

December 1, 2001 m Y 14d rt

Abstract

This reference manual explains all abstractions provided to extend Mozart Oz 3 constraint
capabilities. It is intended to be used in conjunction with the document “The Mozart
Constraint Extensions Tutorial”.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

il

Implementing Propagators|

................................
[l.2 Theclass Oz Expect|

1.2.1 TYPeS

[1.2.2 Constructor and Destructor]

[1.2.3 Specification ofa Setof Integery

[1.2.4 Member Functions for Checking the Constraint Storg . .

[1.2.5 Member Functions for Control Purposes.

6 M S

[1.3 Theclass Oz Propagator|.

[1.3.1 Constructor and Destructor Member Functiony

[1.3.2 Operator Member Functions|.
[1.3.3 Provided Member Functions|.

[1.3.4 Member Functions to be Defined by the Programmely . .

[1.4 Theclass Oz FDIntVar| v v i it

[1.4.1 Constructor Member Function§

[1.4.2 Operator Member Functions|.
[1.4.3 Member Functions

[l.5 TheclassOz FiniteDomain|

[1.5.1 Miscellaneoug

[1.5.2 Constructor Member Functiond

[1.5.3 Initialisation Member Functiony
[1.5.4 Reflection Member Functiony

[1.5.5 Operator Member Functiong.

[1.5.6 Auxillary Member Functiony

[l.6 TheclassOz FSetVar|.

[1.6.1 Constructor Member Functiony

[1.6.2 Operator Member Functions|.

© 00 0O N N oo O W W N PP R P

[1.6.3 Member Functiong

[l.7 Theclass Oz FSetValug

[1.7.1 Miscellaneoug,

[l.7.2 Constructor Member Functiony

[1.7.3 Reflection Member Functiong

[L.7.4 Operator Member Functions.

[1.7.5 Auxiiary Member Functiong

[L1.8 Theclass Oz FSet Constraint|.

[1.8.1 Constructor Member Functiony

[1.8.2 Initialization Member Functiong

[1.8.3 Reflection Member Functiong

[1.8.4 Imposing Constrainty

[1.8.5 Auxiliary Member Functionyd

[1.9 Auxiliary Interface Functions

Bullding Constraint Systems from Scratch

P.1 TheclassOz CtDefinition|.

.2 TheclassOz Gt\WakeUp|.

P.3 Theclassoz CtpProfile|l

P4 TheclassOz Ct|. e

P.5 TheclassOz Ctvar|.
2.5.1 MemberstobeDefined
.5.2 Provided Members

Employing Linear Programming Solvers|

B.1 TheModuleLH.

Propagation Engine Library|

A1 OVErVIEW o e

.2 Theclass PEL Paranfable

.3 TheclassPEL EventList].

B.4 The class PEL PropFnctTableEntry]

B.5 Theclass PEL PropFnctTablel

.6 Theclass PEL PropQueud. v v ..

.7 TheclassPEL FSetProfilel

.8 The class PEL FSet EventLists

33
33
34
34
34
36
36
37

39
39

U9 TheclassPEL FDProfild. 45

.10 The class PEL_FDEventLists| 46
¥.11 Theclass PEL SuspVar| 46
.12 The class PEL_SuspFSetVar| 47

.13 The class PEL SuspFDIntVar| v v .. 48

Implementing Propagators

1.1 Overview

This reference is intended to be a supplement to the user manual. It is assumed that the
reader has already read the manual and is familiar with the concepts of the CPI .

Include Files The value of the environment variable OZHOVE is supposed to denote
the installation directory of the Oz system to be used. The abstractions provided by the
CP1 are defined in the following header file.

$COZHOVE/ i ncl ude/ nozart _cpi . hh

This file includes the file nozar t . h which provides the basic functionality for inter-
facing Oz with C/C++ code. For details see “Interfacing to C and C++”.

Naming Conventions The CPI defines classes, functions, macros etc. Their names
begin with &z_. Names of macros are made up of upper case letters. Member functions
and data members begin with lower case letters. The name of accessor functions begin
with get and names of predicates begin with i s.

The C/C++ compiler to be used is gcc version 2.7.2 or higher.

1.2 The class Oz_Expect

The functionality provided by class 0z_Expect is intended to be used for implementing
header functions.

1.2.1 Types

datatype OZ_expect _t

struct OZ_expect_t {
int size, accepted;
OZ_expect _t(int s, int a) : size(s), accepted(a) {}

I

2 Chapter 1. Implementing Propagators

Return type of member functions which check for constraints on parameters (see Sec-
tion [.2.4).

enumerable type OZ_FDPropSt ate
enum
OZ_FDPropState {fd_prop_singl = 0,
fd_prop_bounds,
fd_prop_any};
The values of this enumerable type are used to determine what kind of pruning of a

finite domain causes a propagator to be resumed. The values Oz FDPr opSt at e have
the following meaning.

value rerun propagator in case ...
fd_prop_si ngl ... a finite domain becomes a singleton.

fd prop bounds ... the bounds of a finite domain are narrowed.
fd_prop_any ... an arbitrary value is removed from a finite

domain or an equality constraint is imposed.

enumerable type OZ_FSet PropSt at e

enum

OZ _FSetPropState {fs_prop_glb = 0,
fs_prop_| ub,
fs_prop_val,
fs_prop_any,

fs_prop_bounds};

The values of this enumerable type are used to determine what kind of pruning of a
finite set constraint causes a propagator to be resumed. The values Oz_FSet PropSt at e
have the following meaning.

value rerun propagator in case ...

fs_prop_val ... a finite set constraint becomes a finite set value.
fs_prop_glhb ... avalue is added to a set.

fs prop_lub ... a value is removed from a set.

fs prop bounds ... avalue is added to or removed from a set.
fs_prop_any ... either the conditions for f s_prop_bounds apply

or an equality constraint is imposed.

datatype OZ Expect Met h
t ypedef
OZ_expect _t (OZ_Expect::*QZ _Expect Met h) (QZ_Term

Type of member functions which check for constraints on parameters (see Section [.2.4).
1.2.2 Constructor and Destructor
QZ_expect

OZ_Expect (voi d);
Default constructor of the class O7_Expect .

destructor ~QOZ_expect
~QZ_Expect();
Destructor of the class 0z Expect.

1.2. The class Oz_Expect 3

1.2.3 Specification of a Set of Integers

Specification of a set of integers is mainly used in context with finite domain and finite
set constraints.

level 4 = level 3
compl(level_3)

level 3 = level 2
| [level_2+]
| nil
level 2 = level 1
| level_l#level_1
level 1 ::= Oz getFDInf(),...,OZ get FDSup()

(in case of Oz_Expect : : expect DonDescr ())
| Qz_getFSetlnf(),..,0Z_get FSet Sup()
(in case of Oz_Expect : : expect FSet Descr ())

1.2.4 Member Functions for Checking the Constraint Store

A member function described in this section takes as first argument a term, typically
a parameter of a propagator. Extra arguments allow to control the behaviour of the
member function or to specify the way subterms are to be checked. The returned value
is of type Oz_expect _t and denotes the result of the examination of the constraint
store.

expect DonmDescr
OZ_expect _t expect DonDescr (QZ_Term descr, int |evel = 4);

This member function expects descr to be a finite domain specification (see Sec-
tion [.2.3) according to | evel . The non-terminal level_n in Section [[.2.3 corresponds
tol evel =n.

expect FSet Descr
OZ_expect _t expect FSet Descr (QZ_Term descr, int |evel = 4);
This member function expects descr to be a finite set specification (see Section [L.2.3)
accordingto | evel . The non-terminal level_n in Section[L.2.3 correspondsto | evel =n.
expect Var
OZ_expect _t expectVar(OZ_Termt);
Expects t to be a variable. A determined term t is regarded as an inconsistency.
expect Recor dVar
OZ_expect _t expect RecordVar(QZ_Termt);
Expects t to be a record.

expect Bool Var

4 Chapter 1. Implementing Propagators

OZ_expect _t expect Bool Var(QZ_Termt);
Expects t to be a finite domain variable with domain {0,1} resp. the value 0 or 1.

expect | nt Var
QZ_expect _t
expect | ntVar(QZ_Termt,
QZ_FDPropState ps = fd_prop_any);

Expects t to be a finite domain variable or a finite domain integer. The value of ps

controls on what events the propagator has to be resumed. See the explanation on
Q7_FDPr opSt at e in Section for the values of ps.

expect FSet Var
QZ_expect _t
expect FSet Var (OZ_Term t,
QZ_FSet PropState ps = fs_prop_any);

Expects t to be a finite set variable or a finite set value. The value of ps controls on
what events the propagator has to be resumed. See the explanation on Oz_FsSet PropSt at e
in Section for the values of ps.

expect GenCt Var
OZ_expect _t expect GenCt Var (OZ_Term t,
Qz_ ¢t Definition * def,
Qz_Ct VakeUp w) ;

Expects t to be a constrained variable resp. a compatible value according to def . The
value w determines the event the propagator is reinvoked. See Section for details
on Cz_Ct Defini tion and Section P.2 for details on 0z_Ct viakeUp.

expect | nt
OZ_expect _t expectInt(QZ Termt);
Expects t to be a small integer. See the systems manual “Interfacing to C and C++”
for details.
expect Fl oat
OZ_expect _t expectFloat (OQZ_Termt);
Expects t to be a float.
expect FSet Val ue
OZ_expect _t expect FSet Val ue(QZ_Termt);
Expects t to be a finite set value.
expectLiteral
OZ_expect _t expectLiteral (QZ_Termt);
Expects t to be a literal.
expect Li teral Qut O
OZ_expect _t expectLiteral QutOf (OZ_Termt, OZ Term* [|s);
Expects t to be a literal contained in | s where | s points to an array of literals termi-
nated with (Oz_Term) NULL.

expect Vect or

1.2. The class Oz_Expect 5

OZ_expect _t expectVector(QZ Termt,
OZ_Expect Met h expect _f);

Expects t to be a vector of terms which are all sufficiently constrained with respect to
expect _f. A vector is either a tuple, a closed record, or a list.

expect Proper Record
OZ_expect _t expect Proper Record(QZ_Term t,
OZ_Expect Met h expect _f);

Expects t to be a proper record where all subtrees are sufficiently constrained with
respect to expect _f. A proper record expects its subtrees to be indexed by literals.

expect Proper Record
OZ_expect _t expect Proper Record(QZ_Term t,
QZ_Term* ar);

Expects t to be a proper record with at least subtrees under the features in ar are
present where ar points to an array of features terminated with (Oz_Tern) NULL.

expect Proper Tupl e
OZ_expect _t expect Proper Tupl e(OZ_Termt,
OZ_Expect Met h expect _f);

Expects ¢ to be a proper tuple where all subtrees are sufficiently constrained with
respect to expect _f. A proper tuple expects its subtrees to be indexed by integers.

expect Li st
OZ_expect _t expectList(QZ_Termt, OZ Expect Meth expect_f);

Expects t to be a list where all elements are sufficiently constrained with respect to
expect _f. Alistis either the atom ni | or a 2-tuple with label where the second
element is a list again.

expect Stream
OZ_expect _t expect Stream(QZ_Term st);

Expects either an unbound variable or ni | resp. a 2-tuple with label where the
second element is a stream too.

1.2.5 Member Functions for Control Purposes

col | ect VarsOn
voi d col |l ectVarsOn(void);

This member function turns collecting variables on. That means that pruning of pa-
rameters checked in this mode may cause the propagator to be resumed.

col l ect VarsO f
void collectVarsOf(void);

This member function turns collecting variables off. That means that pruning of pa-
rameters checked in this mode cannot cause the propagator to be resumed.

i mpose
QZ_Return i npose(QZ_Propagator *p);

6 Chapter 1. Implementing Propagators
The propagator p is imposed. The return value is the result of the initial invocation of
OZ_Propagat or: : propagat e() .

suspend

QZ_Return suspend(QZ_Thread th);
This member function is to be called if the header function has to be suspended. The
thread t h can be created with Oz_makeSuspendedThr ead() which is defined by the
SCI (see “Interfacing to C and C++” for details).
fail

i sSuspendi ng

i sFailing

i sExcepti ona

QZ_Return fail (void);
This member function is to be called if an inconsistency has been detected.

QZ_Bool ean i sSuspendi ng(OZ_expect _t r);

Returns oz_TRUE if r indicates that constraints expected on a parameter are not present
in the current store. Otherwise it returns O7_FALSE.

OZ_Bool ean i sFailing(OZ expect_t r);
Returns 0z_TRUE if r indicates an inconsistency. Otherwise it returns Oz_FALSE.

QZ_Bool ean isFailing(OZ expect_t r);

Returns Oz TRUE if r indicates an inconsistency causing an exception. Otherwise it
returns Oz7_FALSE.

1.2.6 Macros

macro OZ_EXPECTED_TYPE

macro OZ_EM

QZ_EXPECTED_TYPE(S)

This macro declares a C/C++ string used by the macros 0z EXPECT and OZ_EXPECT _SUPEND
in case an inconsistency is detected. For details see Section Imposing Nestable Propa-
gators, (The Mozart Constraint Extensions Tutorial).

The macros Oz_EM_are provided to create standardized error messages.

1.3. The class Oz_Pr opagat or

macro OZ EXPECT

expected constraint

literal

float

small integer

finite domain integer

boolean finite domain integer in {0,1}
description of a finite domain integer
finite set of integers

finite set of integers constraint
description of a finite set of integers
vector of

record of

truth name

stream

QZ_EXPECT(O, P, F)

macro to be used
OZ EMLIT

OZ_EM FLOAT
OZ_EM | NT

QZ_EM FD

OZ_EM FDBOOL
OZ_EM FDDESCR
OZ_EM FSETVAL
OZ_EM FSET
OZ_EM FSETDESCR
OZ_EM VECT
OZ_EM RECORD
OZ_EM TNAVE
OZ_EM STREAM

This macros checks if a term occurring at argument position P of a SCI function is
currently expectedly constrained with respect to the function F. The first parameter O
must be an instance of the class 0z_Expect resp. a class derived from it. Only if the
expected constraints are available in the store the code following this macro is executed.

macro OZ_ EXPECT_SUSPEND

OZ_EXPECT_SUSPEND(O, P, F, SO

This macros has the same semantics as the previous one except that in case that ex-
pected constraints are currently not present in the store the counter SC is incremented
and the following code is executed.

1.3 The class Oz_Pr opagat or

This class is the base class of all propagators to be implemented. Since this class is a
virtual base class, it is not possible to create an instance of that class.

1.3.1 Constructor and Destructor Member Functions

OZ_Pr opagat or

QZ_Pr opagat or (voi d) ;

This constructor is to be called whenever an instance of a class derived from Oz_Pr opagat or

is created.

~QZ_Pr opagat or

vi rtual

~QZ_Propagator();

This destructor is defined to be virtual to force the destructors in the derived classes to
be virtual. This ensure that destroying a derived class results in calling the destructor
of the derived class.

Chapter 1. Implementing Propagators

1.3.2 Operator Member Functions

new

del ete

static void * operator newsize_t);

This operator allocates the appropriate amount of heap memory when a propagator is
created.

static void operator delete(void *, size_t);

This operator deallocates the heap memory occupied by a propagator when it is de-
stroyed.

1.3.3 Provided Member Functions

nmayBeEqual Var s

r epl aceBy

r epl aceBy

repl aceByl nt

post pone

i nposeOn

OZ_Bool ean mayBeEqual Var s(voi d) ;

This member function returns Oz_TRUE if at least one variable the propagator was
imposed on has been unified. Otherwise it returns Oz_FALSE. See Section Detecting
Equal Variables in a \ector, (The Mozart Constraint Extensions Tutorial) for details.

OZ_Return repl aceBy(OZ_Propagator * p);

This member function replaces the current propagator (i.e. *t hi s) by the propagator
p.

Z_Return replaceBy(OZ _Terma, OZ Termb);

This member function replaces the current propagator (i.e. *t hi s) by the equality con-
straint between a and b.

Caution: before r epl aceBy can be called, for all x of type 0z_FDI nt var the member
function x. | eave() has to be called.

OZ_Return replaceBylnt(QZ_Termyv, int i);

This member function replaces the current propagator (i.e. *t hi s) by the equality con-
straint between v and i .

OZ_Ret urn post pone(void);

This member function (usually in conjunction with the r et ur n statement) causes the
execution of the propagator to be postponed, i.e. the propagator is immediately switched
to runnabl e and put at the end of the thread queue.

OZ_Bool ean i mposeOn(OZ_Termt);

This member function imposes the current propagator (i.e. *t hi s}) on t. If the im-
position was successful, i.e., t refers to a variable, Oz_TRUE is returned, otherwise
OZ_FALSE.

1.3. The class Oz_Pr opagat or 9

addl npose
voi d addl npose(QZ_FDPropState s, OZ Termv);
voi d addl npose(QZ_FSetPropState s, OZ_Termyv);
These member functions add v to the parameters of the propagator to be imposed with
next invocation of Oz _Propagat or: : i npose. In case v does not denote a variable
nothing happens. The value of s determines the event when the propagator is to be
resumed.
i mpose
voi d i npose(OZ_Propagator * p);
This member function imposes the propagator p on the parameters collected by add| npose.
The propagator is immediately switched to runnable, but not initially run.
toString

char * toString(void) const;

Returns a textual representation of the propagator pointing to a static array of char s.

1.3.4 Member Functions to be Defined by the Programmer

The member functions in this section are purely virtual, i.e., a class inheriting from
Qz_Propagat or must define these functions, otherwise it is not possible to create in-
stances of such a class. These pure virtual member functions make Gz_Pr opagat or t0
an abstract base class.

si zeO™:
virtual size_t sizeO(void) = 0;

The implementation of this pure virtual function in a derived class P is supposed to
return the size of an instance of P.

sCl one
virtual void sC one(void) = 0;

The implementation of this pure virtual function in a derived class P is called during
cloning and is supposed to apply to each data member of type 0z_Ter mthe function
Cz_sO oneTer m(see Section [.9) and possibly, copy dynamically allocated extensions
of the object’s state. Further details on that issue can be found in Section Avoiding
Redundant Copying, (The Mozart Constraint Extensions Tutorial).

gCol | ect
virtual void gCollect(void) = 0;

The implementation of this pure virtual function in a derived class P is called during
garbage collection and is supposed to apply to each data member of type Oz_Ter mthe
function 0z_sc oneTer m(see Section [[.9) and possibly, copy dynamically allocated
extensions of the object’s state. Further details on that issue can be found in Section
Avoiding Redundant Copying, (The Mozart Constraint Extensions Tutorial).

propagat e
virtual OZ Return propagate(void) = O;

constructor

constructor

10 Chapter 1. Implementing Propagators

The implementation of this pure virtual function in a derived class P is supposed to
implement the operational semantics of the propagator. The return value indicates the
result of the computation to the emulator.

get Par anet er s
virtual OZ_Term get Paraneters(void) const = 0;

The implementation of this pure virtual function in a derived class P is supposed to
return the list (as Oz data structure) of P’s parameters. Nested parameter structures are
to be represented as nested lists.

getProfile
virtual OZ_PropagatorProfile getProfile(void) const = 0;

The implementation of this pure virtual function in a derived class P is supposed to
return the static profile member function used to get information about the state of a
propagator class (for instance, the number of total invocations).

1.4 The class Oz_FDI nt Var

An instance of this class is a mapping of a finite domain integer variable on the heap of
the emulator to a C/C++ data structure. The provided functionality allows to directly
manipulate the domain (constraint) of the heap variable.

1.4.1 Constructor Member Functions

OZ_FDl nt Var
QZ_FDI nt Var (voi d) ;
This constructor creates an uninitialised instance of the class &z FDI nt Var , which can
be initialised later by the member functions ask(), read(), or r eadEncap() .
OZ_FDl nt Var

OZ_FDI nt Var (OZ_Term v);

This constructor creates an instance of class 0z FDI nt var and initialises it using
read() .

1.4.2 Operator Member Functions

new
static void * operator new(size_t);
This operator allocates memory for a single instance of class ©z_FDi nt Var. This op-
erator must only be used inside the function pr opagat e() of class Oz_Propagat or .
The allocated memory is automatically reclaimed when pr opagat e() is left.
new]

static void * operator new](size_t);

This operator allocates memory for an array of instances of ©z_FDi nt ar . This opera-
tor must only be used inside the function pr opagat e() of class Oz Propagat or. The
allocated memory is automatically reclaimed when pr opagat e() is left.

1.4. The class Oz_FDl nt Var 11

del et e

del ete[]

oper at or

oper at or

static void operator delete(void *, size_t);

This operator is a dummy since reclaiming memory happens automatically.

static void operator delete[](void *, size_t);

This operator is a dummy since reclaiming memory happens automatically.

QZ_Fi ni t eDomai n &oper at or (void);
This operator returns a finite domain representing the constraint of this variable.

QZ_Fi niteDomai n * operat or (void);

This operator returns a pointer to a finite domain representing the constraint of this
variable.

1.4.3 Member Functions

i sTouched

ask

read

readEncap

| eave

OZ_Bool ean i sTouched(voi d) const;

This function returns Oz TRUE if at least one element has been removed from the do-
main and otherwise 07 FAL SE.

void ask(OZ_Term;

This member function initialises an instance of 0z FDI nt var for only reading con-
straints from the store and it does not require a call of | eave() orfail ().

int read(OZ Term;

This member function initialises an instance of Oz FDi nt var for constraints to be
read from and to be written to the constraint store. It returns the size of the domain.
Using this function requires to call either | eave() orfai | () when leaving the member
function pr opagat e() of class Oz Propagat or

int readEncap(Qz_Term;

This member function initialises an instance of 0z _FDi nt var for constraints to be
read from the constraint store and to perform encapsulated constraint propagation as
required by reified constraint propagators. It returns the size of the domain. Using this
function requires to call either | eave() orfail () when leaving the member function
Oz_Propagat or : : propagat e() . For further details see Section Reified Constraints,
(The Mozart Constraint Extensions Tutorial).

OZ_Bool ean | eave(voi d);

12 Chapter 1. Implementing Propagators

This member function has to be applied to each object of type Oz_FDI nt var when leav-
ing the function pr opagat e() of class Oz_Pr opagat or and no inconsistency was de-
tected (except it was initialised with ask()). This member function returns 0z_FALSE
if the domain denotes a singleton. Otherwise it returns 0z TRUE.

fail
void fail (void);

This member function has to be applied to each object of type 0z FDI nt Var when
leaving the function propagat e() of class Oz _Propagat or and inconsistency was
detected (except it was initialised with ask()).

dr opPar anet er
voi d dropParanet er (void);

This member function removes the parameter associated with *t hi s from the parame-
ter set of the current propagator. This function takes care of multiple occurrences of a
single variable as parameter, i.e., a parameter is removed if there is only one occurrence
of the corresponding variable in the set of parameter left.

1.5 The class Oz_Fi ni t eDomai n

Instances of this class represent the domains for finite domain integer variables. A
domain may have holes and can range from 0 to Oz_get FDSup(), which is currently
134 217 726.

The representation of a finite domain consists of two parts. As long as there are no
holes in the domain it suffices to store the lower and upper bound of the domain. Holes
are stored in the so-called extension of the domain representation. This extension is
either a bit-vector or a list of intervals. The kind of extension used is automatically
determined and not visible outside.

The smallest element of a domain d is denoted by min(d) and the largest element by
max(d).

1.5.1 Miscellaneous

enumerable type OZ FDSt at e
enum OZ_FDState {fd_enpty, fd_full, fd_bool, fd_singl};

Values of this enumerable type are used when constructing an instance of the class
COZ_Fi ni t eDomai n or in conjunction with operators == resp. ! =.

value explanation
fd_enpty The domain does not contain any element.
fd_full The domain contains all elements possible,

i.e.0,...,0Z_get FDSup() .
fd_bool The domain contains 0 and 1.
fd_singl The domain contains a single element.

1.5. The class Oz_Fi ni t eDonai n 13

1.5.2 Constructor Member Functions

QZ_Fini t eDonai n
QZ_Fi ni t eDomai n(voi d);

This default constructor creates an uninitialized instance.
QOZ_Fi ni t eDomai n
QOZ_Fi ni t eDomai n(const OZ_Fi ni t eDonai n &d) ;
This copy constructor copies the current domain of d to *t hi s, so that d and *t hi s
denote the same domain but are independent representations of it.
OZ_Fi ni t eDomai n
QZ_Fi ni t eDomai n(OZ_FDSt at e state);
This constructor creates an object which represents a domain according to the value of
stat e. Valid values forstate arefd enpty andfd full.
QOZ_Fi ni t eDomai n
QZ_Fi niteDomai n(OZ_Term t);
This constructor is the composition of the default constructor and the member function
initDescr().
QZ_Fini t eDonai n
QZ_Fi ni t eDomai n(const OZ_FSet Val ue &fs);
This constructor initialises *t hi s with the values contained in the finite set s.

1.5.3 Initialisation Member Functions

The return value of all initialisation member functions is the size of the domain they

initialised.
i ni t Range
int OZ_FiniteDonain::initRange(int |, int u);
Initialises an instance of class Oz_Fi ni t eDonai n to the domain {l,...,u}.

Incase | > u, the domain is set to be empty.

i nitSingleton
int OZ_FiniteDomain::initSingleton(int [);

Initialises an instance of class ©z_Fi ni t eDonai n to the domain {1}.

i nitDescr
int OZ FiniteDomain::initDescr(OZ Termd);
Initialises an instance of class Oz _Fi ni t eDonai n to a domain according to the do-
main description d. The domain description must be conform with level4 (see syntax
definition of a domain description in Section [[.2.4} entry expect DonDesc).
initFull

int OZ FiniteDomain::initFull (void);

Initialises an instance of class Oz_Fi ni t eDonai n to the domain {0,...,0Z_get FDSup() }.

14 Chapter 1. Implementing Propagators

i nitEnmpty
int OZ_FiniteDomain::initEnpty(void);

Initialises an instance of class Oz_Fi ni t eDonai n to the empty domain.

i ni t Bool
int OZ_FiniteDomein::initBool (void);

Initialises an instance of class Oz_Fi ni t eDorai n to the domain {0,1}.

1.5.4 Reflection Member Functions

get M dEI em
int getMdEl em(voi d) const;

This member function returns the element in the middle of the domain. For the domain
ditis (max(d) —min(d)) div 2. If this value happens to be a hole the element closest to
it will be returned. In case there are two elements with the same distance to the middle
of the domain the smaller one will be taken.

get Next Snal | er El em
int getNextSnallerEl enm(int v) const;

This member function returns the largest element in the domain smaller than v. In case
v is the smallest element it returns —1.

get Next Lar ger El em
i nt getNextLargerEl em(int v) const;

This member function returns the smallest element in the domain larger than v. In case
v is the largest element it returns —1.

get Lower I nt erval Bd
int getLowerlnterval Bd(int v) const;

This member function returns the smallest value of the interval v belongs to. In case v
does not belong to any interval the function returns —1.

get Upper I nterval Bd
int getUpperlnterval Bd(int v) const;

This member function returns the largest value of the interval v belongs to. In case v
does not belong to any interval the function returns —1.

get Si ze
int getSize(void) const;
This member function returns the size of the domain, i.e. the number of elements in
the domain.
get M nEl em
int getM nEl em(voi d) const;
This member function returns the smallest element of the domain.
get MaxEl em

int get MaxEl em(void) const;
This member function returns the largest element of the domain.

1.5. The class Oz_Fi ni t eDonai n 15

get Si ngl eEl em

int getSingleEl emvoid) const;

This member function returns the element of a singleton domain. In case the domain
is not a singleton domain it returns —1.

1.5.5 Operator Member Functions

oper at or

oper at or

oper at or

oper at or

oper at or

oper at or

oper at or

oper at or

oper at or

const OZ _FiniteDomai n &operat or (const OZ_Fi ni teDomai n &f d);

This assignment operator copies f d to its left hand side, so that both domains are the
same but are independent of each other.

OZ_Bool ean oper at or (const OZ_FDState s) const;

This operator returns Oz_TRUE if the domain corresponds to the value of s. Otherwise
it returns Oz FALSE.

OZ_Bool ean oper at or (const int i) const;

This operator returns ©z_TRUE if the domain contains only i . Otherwise it returns
OZ_FALSE.

OZ_Bool ean oper at or (const OZ_FDState s) const;

This operator returns 0z_TRUE if the domain does not correspond to the value of s.
Otherwise it returns Oz FALSE.

QZ_Bool ean oper at or (const int i) const;

This operator returns Oz_TRUE if the domain does not contain i or contains more than
one element. Otherwise it returns Oz FALSE.

QZ_Fi ni t eDomai n oper at or (const OZ_FiniteDomai n &y) const;

This member function returns the intersection of the finite domains represented by vy
and *t hi s.

QZ_Fi ni t eDomai n oper at or (const OZ_Fi ni teDomai n &y) const;

This member function returns the union of the finite domains represented by y and
*this.

QZ_Fi ni t eDomai n oper at or (voi d) const;

This member function returns the negation of the finite domain represented by *t hi s.
The negation is computed by removing all elementsin *t hi s from {0,...,0Z_get FDSup() }.

16

Chapter 1. Implementing Propagators

oper at or

oper at or

oper at or

oper at or

oper at or

i nt operator (const QZ_FiniteDomai n &y);
i nt operator (const int y);

This member function computes the intersection of the finite domains represented by
y and *t hi s and assigns the result to *t hi s. Further, the size of the updated domain
is returned.

i nt operator (const int vy);

This member function adds the element y to the domain represented by *t hi s and
returns the size of the updated domain.

i nt operator (const int vy);

This member function removes the element y from the domain represented by *t hi s
and returns the size of the updated domain.

i nt operator (const OZ_Fi ni teDomai n &y)

This member function removes all elements contained in the domain represented by y
from the domain represented by *t hi s and returns the size of the updated domain.

i nt operator (const int vy);

This member function removes all elements being larger than y from the domain rep-
resented by *t hi s and returns the size of the updated domain.

i nt operator (const int y);

This member function removes all elements being smaller than y from the domain
represented by *t hi s and returns the size of the updated domain.

1.5.6 Auxiliary Member Functions

i nt ersect Wt hBool

constrai nBool

isln

int intersectWthBool (void);

This member function intersects the current domain with the domain {0,1} and pro-
duces the following return value.

return value meaning

-2 The resulting domain is empty.
-1 The resulting domain is {0,1}
otherwise The remaining element is returned.

int constrai nBool (voi d);

This member function intersects the current domain with the domain {0,1} and returns
the size of resulting domain.

constructor

1.6. The class Oz_FSet Var 17

OZ_Bool ean isln(int i) const;
This member function returns 0z_TRUE if i is contained in the domain represented by
*t hi s. Otherwise it returns Oz FALSE.
copyExt ensi on
voi d copyExt ension(void);
This member function replaces the current extension of the domain representation by
a copy of it.
di sposeExt ensi on
voi d di sposeExt ensi on(void);
This member function frees the heap memory occupied by the extension of the domain.
toString
char * toString(void) const;

Returns a textual representation of the finite domain pointing to a static array of char s.

1.6 The class Oz FSet Var

An instance of this class is a mapping of a finite set constraint variable on the heap of
the emulator to a C/C++ data structure. The provided functionality allows to directly
manipulate the domain (constraint) of the heap variable.

1.6.1 Constructor Member Functions

OZ_FSet Var
OZ_FSet Var (voi d) ;

This constructor creates an uninitialised instance of the class Oz FSet Var, which can
be initialised later by the member functions ask(), read(), or readEncap() .
OZ_FSet Var
QZ_FSet Var (OZ_Termv);

This constructor creates an instance of the class 0z_FSet var and initialises it using
read() .

1.6.2 Operator Member Functions

new
static void * operator newsize_t);
This operator allocates memory for a single instance of class 0z_FsSet Var . This opera-
tor must only be used inside the member function pr opagat e() of the class 0z_Pr opagat or .
The allocated memory is automatically reclaimed when pr opagat e() is left.
new]

static void * operator new](size_t);

This operator allocates memory for an array of instances of 0z_FSet Vvar . This operator

must only be used inside the member function pr opagat e() of the class ©z_Pr opagat or.

The allocated memory is automatically reclaimed when pr opagat e() is left.

18 Chapter 1. Implementing Propagators

del ete
static void operator delete(void *, size_t);
This operator is a dummy since reclaiming memory happens automatically.
del ete[]
static void operator delete[](void *, size_t);
This operator is a dummy since reclaiming memory happens automatically.
oper at or
QZ_FSet Constrai nt &oper at or (void)
This operator returns a finite set constraint representing the constraint of this variable.
oper at or

Z_FSet Constraint * operator (void);

This operator returns a pointer to a finite set constraint representing the constraint of
this variable.

1.6.3 Member Functions

i sTouched
OZ_Bool ean i sTouched(voi d) const;
This function returns Oz TRUE if at least one element has been removed from or added
to the set and otherwise 0z FALSE.
ask
void ask(OZ_Term;
This member function initialises an instance of 0z _Fset var for only reading con-
straints from the store and it does not require a call of | eave() orfail ().
read
void read(Qz_Tern);
This member function initialises an instance of 0z _FSet var for constraints to be read
from and to be written to the constraint store. Using this function requires to call
either | eave() or fail () when leaving the member function propagat e() of class
OZ_Propagat or.
readEncap
voi d readEncap(QZ_Term;
This member function initialises an instance of 07 _FSet Vvar for constraints to be read
from the constraint store and to perform encapsulated constraint propagation as re-
quired by reified constraint propagators. Using this function requires to call either
| eave() orfail () when leaving the member function Oz_Pr opagat or : : pr opagat e().
For further details see Section Reified Constraints, (The Mozart Constraint Extensions
Tutorial).
| eave

OZ_Bool ean | eave(voi d);

enumerable type

1.7. The class Oz_FSet Val ue 19

This member function has to be applied to each object of type 0z FSet var when
leaving the function pr opagat e() of class Oz_Propagat or and no inconsistency was
detected (except it was initialised with ask()). If the set constraint denotes a set value
this member function returns 0z FALSE and else it returns Oz TRUE.

f ai |
void fail (void):;

This member function has to be applied to each object of type 0z FSet Vvar when
leaving the function propagate() of class Oz Propagat or and inconsistency was
detected (except it was initialised with ask()).

dr opPar anet er
voi d dropParanet er (void);

This member function removes the parameter associated with *t hi s from the parame-
ter set of the current propagator. This function takes care of multiple occurrences of a
single variable as parameter, i.e., a parameter is removed if there is only one occurrence
of the corresponding variable in the set of parameter left.

1.7 The class Oz_FSet Val ue

1.7.1 Miscellaneous

OZ_FSet State
enum OZ_FSet State {fs_enpty, fs_full};

Used when constructing a Finite Set or with the operator ==.

value meaning
fs_enpty the empty set
fs_full the set {OZ_get FSI nf () ,...,0Z_get FSSup() }

1.7.2 Constructor Member Functions

OZ _FSet Val ue
QZ_FSet Val ue(voi d);

This constructor creates an uninitialised Finite Set Value.
QZ_FSet Val ue
OZ_FSet Val ue(const OZ_FSet Constraint &fsc);
f sc must have a determined value (i.e. f sc. i s\Val ue() must be true). A Finite Set is
constructed from this value.
QZ_FSet Val ue
OZ_FSet Val ue(const OZ_Termt);
Constructor using a level4 list description like for Finite Domains (see Section [L.2.4)
to create a Finite Set Value.

OZ_FSet Val ue
Z_FSet Val ue(const OZ_FSet State state);

20 Chapter 1. Implementing Propagators

Creates a Finite Set Value accordingto st ate (fs_enpty orfs_ful|).
OZ_FSet Val ue
QZ_FSetVal ue(int min_elem int nax_elen);
Creates a Finite Set Value {min_elem, ..., max_elem}.

1.7.3 Reflection Member Functions

get M nEl em
int getM nEl em(void) const;

Returns the smallest element of the set.
get MaxEl em
int get MaxEl em(voi d) const;
Returns the largest element of the set.
get Next Lar ger El em
int getNextlLargerEl em(int i) const;
Returns the next larger Element after i in the set, or —1 if there is none.
get Next Smal | er El em
int getNextSnallerEl en(int i) const;
Returns the next smaller Element before i in the set, or —1 if there is none.
get Knownl nLi st
OZ_Ter m get Knownl nLi st (voi d) const;
Returns a level4-List (see Section containing the elements in the set.
get KnownNot | nLi st
OZ_Ter m get KnownNot | nLi st (voi d) const;

Returns a level4-List (see Section [[.2.4) containing the elements in the complementary
set.

1.7.4 Operator Member Functions

oper at or
OZ_Bool ean oper at or (const OZ_FSet Val ue &fs) const;
Tests equality on sets.
oper at or
OZ_Bool ean oper at or (const OZ_FSet Val ue &fs) const;
Return 0z_True if *t hi s is a subset of f s.
oper at or
OZ_FSet Val ue oper at or (const OZ_FSet Val ue &fs) const;
Returns the intersection of *t hi s with f s.
oper at or

OZ_FSet Val ue oper at or (const OZ_FSet Val ue &fs) const;

1.7. The class Oz_FSet Val ue

21

Returns the union of *t hi s with f s.
oper at or
QZ_FSet Val ue operator - (const OZ FSetVal ue & s) const;
Returns the elements in *t hi s notin f s.
operator &=
Z_FSet Val ue operator &= (const OZ_FSetVal ue &fs);
*t hi s is assigned its intersection with f s.
operator | =
OZ_FSet Val ue operator | = (const OZ_FSetVal ue &);
*t hi s is assigned its union with f s.
operator &=
QZ_FSet Val ue operator &= (const int i);
Ifi isin*this, this function returns {i}; otherwise the empty set.
operator +=
OZ_FSet Val ue operator += (const int i);
i isputinto*this.
operator -=
QZ_FSet Val ue operator-=(const int);
i is removed from *t hi s, if in.
oper at or
OZ_FSet Val ue operator-(void) const;

Returns the complement of *t hi s.

1.7.5 Auxiliary Member Functions

init
void init(const OZ FSetState state);
Initializes a Finite Set Value accordingto st ate (fs_enpty orfs_full).
isln
QZ_Bool ean isln(int i) const;
Returns oz True ifi isin*t hi s.
isNotln
OZ_Bool ean isNotIn(int) const;
Returns Oz True ifi isnotin*this.
get Card

int getCard(void) const;
Returns the cardinality of *t hi s.

get KnownNot | n

22 Chapter 1. Implementing Propagators

int get KnownNot I n(voi d) const;
Returns the cardinality of *t hi s” complement.
copyExt ensi on
voi d copyExt ensi on(void);
This member function replaces the current extension of the set value representation by
a copy of it.
di sposeExt ensi on
voi d di sposeExt ensi on(void);
This member function frees the heap memory occupied by the extension of the set
value.
toString
char * toString(void) const;

Returns a textual representation of the finite set value pointing to a static array of char s.

1.8 The class Oz_FSet Constrai nt

An Oz_FSet Const r ai nt defines (among other things) a set of values that are definitely
in (the greatest lower bound), a set of values that are definitely out of any set satisfying
the Constraint; and a set of values who may or may not be in. These sets will be
referred to as I N, QUT, and UNKNOWN sets in the descriptions below.

1.8.1 Constructor Member Functions

OZ_FSet Const rai nt
OZ_FSet Constraint (voi d);

Creates an uninitialised Oz_FSet Const r ai nt entity.
OZ_FSet Const rai nt
OZ_FSet Constrai nt (const OZ_FSet Val ue &fs);
Creates a constraint where the | Nsetisf s.
OZ_FSet Constraint
OZ_FSet Constraint (OZ _FSet State state);
Creates a Finite Set Constraint with | N set of state st at e, and OUT its complement.

value of -1 =1 = constraint
fs_enpty the empty set matches
fs_full the set {0,...,0Z_getFSetSup() } matches.

OZ_FSet Constraint
OZ_FSet Constrai nt (const OZ_FSet Constraint &fsc);

Copy-constructs a Finite Set Constraint from f sc.

1.8. The class Oz_FSet Const r ai nt 23

1.8.2

init

init

init

Initialization Member Functions

void init(void);

Initializes an empty constraint.

void init(const OZ FSetVal ue &fs);
Initializes a constraint that is only matched by f s.

void init(QZ _FSetState);
Initializes a Finite Set Constraint with | N set of state st at e, and OUT its complement.
value of -1 = = constraint

fs_enpty the empty set matches
fs_full the set {0,...,0Z_getFSetSup() } matches.

1.8.3 Reflection Member Functions

get Knownl n

get KnownNot I n

get Unknown

get A bSet

get LubSet

get UnknownSet

get Not | nSet

These all access members of *t hi s.

i nt get Knownl n(void) const;

Returns the cardinality of | \.

int get KnownNot I n(voi d) const;

Returns the cardinality of OUT.

i nt get Unknown(voi d) const;

Returns the cardinality of UNKNOVA.

QZ_FSet Val ue get d bSet (voi d) const;
Returns | .

OZ_FSet Val ue get LubSet (voi d) const;
Returns the set of values that may be in sets satisfying the constraint.

OZ_FSet Val ue get UnknownSet (voi d) const;
Returns UNKNOVA.

OZ_FSet Val ue get Not | nSet (voi d) const;
Returns OUT.

24 Chapter 1. Implementing Propagators

getd bCard
int getd bCard(void) const;

Returns the cardinality of | \.

get LubCard
int getLubCard(void) const;

Returns the cardinality of the set of all values that are in some a set satisfying the
constraint.

get Not | nCard
int getNotlnCard(void) const;

Returns the cardinality of oUT.

get UnknownCard
i nt get UnknownCard(voi d) const;

Returns the cardinality of UNKNOVA.

iterators
int getd bM nEl en{voi d) const;
int get LubM nEl em{voi d) const;
int getNotlnMnEl en{voi d) const;
i nt get UnknownM nEl en(voi d) const;
int getd bMaxEl em(voi d) const;
int get LubMaxEl en{voi d) const;
i nt get Not | nMaxEl en{voi d) const;
i nt get UnknownMaxEl en(voi d) const;
int getd bNext Smal | er El en{i nt) const;
int get LubNext Smal | er El en{ii nt) const;
i nt get Not | nNext Snal | erEl en{int) const;
i nt get UnknownNext Smal | er El em(i nt) const;
int getd bNext LargerEl en(int) const;
i nt get LubNext Larger El em(int) const;
i nt get Not | nNext Lar ger El en(i nt) const;
i nt get UnknownNext Lar ger El em(i nt) const;

These functions allow to access and iterate over elements of several sets related to the

constraint.
name function
get M nEl em get the minimal element, —1 if empty
get MaxEl em get the maximal element, —1 if empty

get Next Lar ger El en(i) get the next larger element above i , —1 if there is none
get Next Smal | er El en(ii) get the next smaller element below i , —1 if there is none

name referred set

glb the set of values that are in all sets satisfying the constraint

| ub the set of all values that are in some sets satisfying the constraint
unknown the set of values that are in some, but not all sets satisfying the constraint
not I n the set of values that are in no sets satisfying the constraint

1.8. The class Oz_FSet Const r ai nt 25

get CardM n
int getCardM n(void) const;
Returns the minimal allowed cardinality.
get Car dvax
int get Cardvax(void) const;
Returns the maximal allowed cardinality (—1 means the constraint cannot be satisfied)
get CardSi ze

int getCardSi ze(void) const;
Returns the size of the interval between the minimal and maximal allowed cardinality.
get Knownl nLi st
QZ_Ter m get Knownl nLi st (voi d) const;
Returns | Nas a list.
get KnownNot | nLi st
OzZ_Ter m get KnownNot | nLi st (voi d) const;
Returns OUT as a list.
get UnknownLi st
QZ_Ter m get UnknownlLi st (voi d) const;
Returns UNKNOVK as a list.
get LubLi st
OZ_Term get LubLi st (void) const;
Returns the union of I N and UNKNOVW as a list.
get CardTupl e
QZ_Ter m get CardTupl e(voi d) const;

Returns a tuple consisting of integers giving the minimum and maximum allowed car-
dinality.

1.8.4 Imposing Constraints

Where an operator member Function returns an Oz_Bool ean, it is to indicate whether
constraint becomes unsatisfiable in the operation.

oper at or
OZ_FSet Constrai nt &operat or (const OZ_FSet Constraint &fsc);
f sc gets assigned to *t hi s.
oper at or
QZ_FSet Const rai nt oper at or (voi d) const;
The complementary constraint is returned.
oper at or

QZ_Bool ean operator+=(int i);

26 Chapter 1. Implementing Propagators
i isaddedto *t his.IN.
operator -=
QZ_Bool ean operator-=(int i);
i isaddedto*this. QUT.
operator <<=
OZ_Bool ean operator <<= (const OZ_FSet Constraint &fsc);
fsc isadded to *t hi s.
operator %
OZ_Bool ean operator % (const OZ_FSet Constraint &fsc);
Returns 0z_Tr ue if all values known to be in *t hi s are known not to be in f sc, and
the other way round.
operator &
OZ_FSet Constrai nt operator & (const OZ_FSet Constraint &fsc) const;
Returns the intersection of *t hi s and f sc.
oper at or
OZ_FSet Constrai nt operator | (const OZ_FSetConstraint &fsc) const;
Returns the union of *t hi s and f sc.
oper at or
QZ_FSet Constraint operator - (const OZ_FSet Constraint &fsc) const;
Returns the difference of *t hi s and f sc.
operator <=
OZ_Bool ean operator <= (const OZ _FSet Constraint &fsc);
Returns Oz_Tr ue if *t hi s has as least the elements excluded (in ouUT) that are excluded
by fsc.
operator >=
QZ_Bool ean operator >= (const OZ _FSet Constraint &)
Returns Oz_Tr ue if *t hi s has as least the elements included (in | N) that are included
by fsc.
operator !=
OZ_Bool ean operator != (const OZ_FSet Constraint &fsc);
The elements known to be in f sc are excluded from *t hi s
operator ==
OZ_Bool ean operator == (const OZ _FSet Constraint & s) const;
Returns Oz_Tr ue if *t hi s is equivalent to f sc.
le
OZ_Bool ean le(const int i);
All values above i are excluded from *t hi s.
ge

OZ_Bool ean ge(const int);

All values below i are excluded from *t hi s.

1.8. The class Oz_FSet Const r ai nt 27

1.8.5 Auxiliary Member Functions

put Card
QZ_Bool ean put Card(int cardmn, int cardmax)
The minimum and maximum allowed cardinality is set.
i sVal ue
OZ_Bool ean i sVal ue(voi d) const;
Returns 0z_Tr ue if the constraint determines exactly one set.
isln
OZ_Bool ean isln(int i) const;
Returns 0z_True if i is known to be in every(!) set satisfying the constraint.
isNotln
OZ_Bool ean isNotln(int i) const;
Returns Oz_True if i isin no set satisfying the constraint.
i SEnpty
OZ_Bool ean i seEnpty(void) const;
Returns 0z_Tr ue if *t hi s is satisfied only by the empty set.
i sFul
QZ_Bool ean i sFul |l (voi d) const
Returns t rue if *t hi s can only be satisfied by the set containing all possible values
(i.e., {0,...,0Z_getFSetSup()}).
i sSubsunmedBy

QZ_Bool ean i sSubsunedBy(const OZ_FSet Constrai nt & sc) const;
Returns t r ue if *t hi s is subsumed by f sc.
copyExt ensi on
voi d copyExt ensi on(void);
This member function replaces the current extension of the set constraint representation
by a copy of it.
di sposeExt ensi on
voi d di sposeExt ensi on(void);
This member function frees the heap memory occupied by the extension of the set
constraint.
toString
char * toString(void) const;

Returns a textual representation of the finite set constraint pointing to a static array of
charS.

function

function

function

function

function

function

function

function

function

function

28 Chapter 1. Implementing Propagators

1.9 Auxiliary Interface Functions

Oz _gCol |l ect Term
void OZ_gCol | ect Term(OZ_Term &t);

During garbage collection this function updates the reference t to a term on the heap.
This is typically required when the member function gCol I ect () of a propagator is
invoked.

Oz gCol | ect Bl ock
void OZ_gCol l ectBlock(OZ Term* frm OZ Term* to, const int n);
During garbage collection this function updates the n elememts in f r mand stores them
into.
Oz _gCol | ect Al | ocBl ock
OZ_Term* OZ_gCol |l ect All ocBlock(int n, OZ Term™* frm;
During garbage collection this function updates the n elements in f r mand returns a
pointer to the updates. The updates are stored in freshly allocated heap memory.
OZ_sd oneTerm
void OZ_sC oneTerm(OZ_Term &t) ;
During cloning this function updates the reference t to a term on the heap. This is
typically required when the member function sC one() of a propagator is invoked.
Oz_sd oneBl ock
void OZ_sC oneBl ock(OZ Term* frm OZ Term* to, const int n);
During cloning this function updates the n elememts in f r mand stores them in t o.
OZ_sd oneAl | ocBl ock
OZ_Term* OZ_sC oneAl | ocBl ock(int n, OZ Term* frm;
During cloning this function updates the n elements in f r mand returns a pointer to the
updates. The updates are stored in freshly allocated heap memory.
OZ i sPosSnal | | nt
OZ_Bool ean OZ_i sPosSmal | I nt (OZ_Term val) ;
This function returns oz_TRUE if val denotes an integer contained in the finite set
{0,...,0Z_get FDSup() }. Otherwise it returns Oz_FALSE.
OZ_hal | ocOzTer s
OZ_Term* OZ_hall ocOzTernms(int n);
This function allocates a block of heap memory for n items of type Oz_Ter mand returns
a pointer to the block.
Oz_hal | ocChars
char * OZ_hall ocChars(int n);
This function allocates a block of heap memory for n items of type char and returns a
pointer to the block.

OZ_hal l ocCints
int * O _hallocCints(int n);

function

function

function

function

function

function

1.9. Auxiliary Interface Functions 29

This function allocates a block of heap memory for n items of type i nt and returns a
pointer to the block.

QZ_hfreeQzTerns

void OZ_hfreeOzTerms(OZ_Term* ts, int n);

The function frees the heap memory allocated by Oz_hal | ocOzTerms(). The first
argument t s points to a memory block and the value of n must denote the correct size
of the block.

OZ_hfreeClnts

void OZ_hfreeClints(int * is, int n);

The function frees the heap memory allocated by 07 _hal | ocCl nt s. The first argument
i s points to a memory block and the value of n must denote the correct size of the
block.

Z _hfreeChars

void OZ_hfreeChars(char * is, int n);

The function frees the heap memory allocated by Oz_hal | ocChar s() . The first argu-
ment i s points to a memory block and the value of n must denote the correct size of
the block.

OZ_copyClnts

int * QZ_copyClnts(int n, int * is);

Copies ni ntsfromi s and returns the location of the copy. If n is equal to O it returns
(int *) NULL.

QZ_copyChars
char * OZ_copyChars(int n, char * cs);
Copies n char s from cs and returns the location of the copy. If n is equal to O it returns
(char *) NULL.
Oz_f i ndEqual Var s

int * OZ_findEqual Vars(int sz, OZ Term™* ts);

The function expects t s to be a pointer to an 0z_Ter marray of size sz. It returns an
array of i nt s indicating variables which are equal. Suppose that the ith field of the
returned array holds one of the following values.

value explanation

-1 The term stored at that position is not a variable.
i This is the first occurrence of a variable stored in the array at position i.
j#£i This is a repeated occurrence of a variable stored at position j in the array.

The first occurrence can be found at position j.

The returned i nt array is statically allocated, i.e. it is overridden on every invocation.
For details see Section Detecting Equal Variables in a Vector, (The Mozart Constraint
Extensions Tutorial).

function OZ_i sEqual Vars

OZ_Bool ean OZ_i sEqual Vars(QZ_Termvl, OZ Termv2);

function

function

function

function

function

function

function

30 Chapter 1. Implementing Propagators

This function returns oz TRUE if v1 and v2 refer to the same variable. Otherwise it
returns 07 FALSE.

Oz_findSi ngl et ons
int * OZ_findSingletons(int sz, OZ Term™* ts);

The function expects t s to be a pointer to an ©z_Ter marray of size sz which expects
its elements to refer to finite domain variables. It returns an array of i nt s indicating
variables which are singletons. Suppose that the ith field of the returned array holds
one of the following values.

value explanation
>0 The term stored at that position is a singleton.
otherwise The term stored at that position is still a finite domain variable.

The returned i nt array is statically allocated, i.e. it is overridden on every invocation.

OZ_typeError CPI
QZ_Return OZ_typeErrorCPI (char * _ typeString,
int pos,
char * comment);

The return value of this function indicates the runtime system that an exception has to
be raised. The message printed is composed using the posth substring of _ t ypeStri ng
and conment .

OZ_get FDI nf
int OZ_get FDI nf (voi d);
This function returns the value of the smallest element a finite domain which is repre-
sented by an instance of the class Oz _Fi ni t eDorai n can take. The value returned is
0.
OZ_get FDSup

int OZ_get FDSup(voi d);

This function returns the value of the largest element a finite domain which is repre-
sented by an instance of the class 0z _Fi ni t eDonei n can take. The value returned is
134 217 726.

OZ_get FSet | nf
int OZ_getFSetlnf(void);

This function returns the value of the smallest element a finite set value which is rep-
resented by an instance of the class 0z _FsSet val ue can take. The value returned is
0.

QZ _get FSet Sup
int OZ_get FSet Sup(voi d);

This function returns the value of the largest element a finite set value which is rep-
resented by an instance of the class Oz _FSet val ue can take. The value returned is
134 217 726.

QZ fsetVal ue

1.9. Auxiliary Interface Functions 31

QZ_Term OZ_f set Val ue(OZ_FSet Val ue * fsv);
This function converts the finite set value f sv to the corresponding Oz_Ter m

function OZ fset Val ueToC

QZ_FSet Val ue * OZ_fsetVal ueToC(OZ _Term fsv);

This function converts f sv, referring to a finite set value, to a pointer to the finite set
value.

function OZ vectorSi ze

function

function

int OZ_vectorSize(OZ Termt);
This function returns the size of a vector. In case t is no vector it returns —1.

type returned value

Literal The value returned is 0.

List he value returned is the length of the list.

Tuple The value returned is the arity of the tuple.

Record The value returned is the number of features of the record.

OZ_get OzTer nVect or
OZ_Term* OZ_getOzTernVector (OZ_Termt, OZ Term?* v);

This function expects t to be a vector and v to be an array with minimal 0z_vect or Si ze(t)
elements. It converts t to an Oz_Ter marray and returns a pointer to the next free po-
sition in the array v after converting t. In case t is no vector the function returns
NULL.

OZ_get Cl nt Vect or
int * OZ_getClntVector(QOZ Termt, int * v);

This function expects t to be a vector of small integers and v to be an array with
minimal Oz_vect or Si ze(t) elements. It converts t to an i nt array and returns a
pointer to the next free position in the array v after converting t . In case t is no vector
the function returns NULL.

32

Chapter 1. Implementing Propagators

Building Constraint Systems from
Scratch

2.1 Theclass oz CtDefinition

get Ki nd
virtual int getKind(void) = 0;

Returns an integer identifying a constraint system. The integer value has to be unique
for each constraint system. Calli nt Qz_get Uni quel d(voi d) to obtainaunique iden-
tifier.

get NoOf WakeUpLi st's
virtual int get NoOfWakeUpLi sts(void) = O;

Returns the numbers of wake-up lists of variables constrained with this kind of con-
straint. This number corresponds to the number of events which can cause a propagator
being imposed on that kind of variable being rerun.

get NamesOf WakeUpLi st s
virtual char ** get NamesOf WakeUpLi sts(void) = O;
Returns an array (with get NoOf WakeUpLi st s() entries) of strings describing the event(s)
associated to the corresponding wake-up list.
get Name
virtual char * getNane(void) = 0;
Returns the name of the constraint system. Is used when outputting variables of that
kind.
| east Const rai nt
virtual OZ_C * |eastConstraint(void) = 0;
Returns the constraint which is subsumed by or equal to all other constraints of a certain
constraint system.
i sVal i dval ue
virtual OZ_Bool ean isValidValue(QZ Termt) = 0;

Returns 0z_Tr ue if the Oz value referred to by t is a value which is in the domain of
the constraint system. Otherwise it returns Oz_Fal se.

constructor

constructor

34 Chapter 2. Building Constraint Systems from Scratch

2.2 The class 0z_Ct wakeUp

init
void init(void);
Initializes an instance of this class. f]
i SEmpty
OZ_Bool ean i sEnpty(void);
Returns 0z_Tr ue if no wake-up list has to be scanned.
set WakeUp
OZ_Bool ean setWakeUp(int i);
Sets the wake-up listindexed by i (i =0,..., get NoOf WakeUpLi st s() -1) to be scanned.
i s\WakeUp
OZ_Bool ean i sWakeUp(int 1);
Returns 0z_Tr ue if the corresponding wake-up list indexed by i is to be scanned.
get WakeUpAl |

static OZ_CtWakeUp get WakeUpAl | (voi d);
Sets all possible wake-up events.

2.3 Theclassoz CGtProfile

Qz CtProfile
QZ_CtProfile(void);

Initializes an instance of this class.
init
virtual void init(Qz_Ct * ¢) = 0;
Stores a profile according to the constraint referred to by c.

2.4 Theclass oz &

An instance of this class represents a constraint of a certain constraint system.

az_Ct
Qz_Ct (void);

Initializes an instance of this class.
i sVal ue()
virtual OZ_Bool ean isVal ue(void) = 0;

Returns Oz_Tr ue if the constraint denotes exactly one value of the domain of the con-
straint system.

INote that there is no default constructor for some implementational reasons.

2.4. Theclass oz & 35

toVal ue
virtual OZ_Term toVal ue(void) = 0;
Returns an Oz value of the value denoted by the constraint. Returned value is only
defined if i s\val ue yields Oz_Tr ue.
isvalid

virtual OZ_Bool ean isValid(void) = 0;
Returns z_Tr ue if the constraint denotes at least one element of the domain of the
constraint system. Otherwise it returns Oz_Fal se.
i sWeaker Than
virtual OZ_Bool ean i sWeaker Than(QZz_Ct * c) = 0;

Returns Oz_Tr ue if the constraint represented by *c subsumes the constraint repre-
sented by *t hi s instance.

uni fy
virtual Oz * unify(Oz & * c) = 0;
Returns a constraint that approximates all elements of the constraint domain denoted
by the constraints *c and *t hi s.
uni fy
virtual OZ_Bool ean unify(QZ_Termt) = 0;
Returns oz_Tr ue if the value denoted by t is included in the values approximated by
the constraint.
sizeO!
virtual size_ t sizeO (void) = 0;
Returns the size of an instance of the class derived 0z_c: (analogue to C’s si zeof
operator).
getProfile

virtual OZ_ CProfile * getProfile(void) = 0;
Returns a constraint profile (see Section P.3) according to the constraint.
get WakeUpDescr i pt or
virtual OZ_CtWakeUp getWakeUpDescriptor(OZ CtProfile * p) = 0;

Returns a descriptor for the wake-up lists to be scanned (see Section P.2). This de-
scriptor is computed by comparing the constraint with the profile p. Note the profile is
usually taken from the constraint before modifying it.

toString
virtual char * toString(int) = 0;
Returns a textual representation of the constraint.
copy
virtual @Z_C * copy(void) = 0;
Returns a pointer to a copy of the constraint. The memory for the copy is to be allocated
by the operator Oz_Ct : : new.

operator new

36 Chapter 2. Building Constraint Systems from Scratch

static void * operator new(size_t, int align = sizeof(void *));
Allocates memory for an instance of the constraint on the heap of the Oz runtime
system.
operator delete
static void operator delete(void *, size_t);

Deallocates memory of an instance of the constraint from the heap of the Oz runtime
system.

2.5 Theclass oz ¢ var
The constraint system dependent part of a class derived from Oz_Ct var stores typically

e aconstraint C, i.e., an instance of the class representing a constraint,
e aconstraint EC, i.e., an instance of the class representing a constraint,
e a reference to a constraint CR, and

e a constraint profile cp.

The constraint C is used to handle constraints of global variables. The constraint EC is
used to handle encapsulate propagation typically occurring in reified constraints. The
reference to a constraint CR is used to access the actual constraint and thus to be able
to modify it. It either points to C, EC, or directly to the constraint associated with a
constrained variable.

2.5.1 Members to be Defined

ct Set Val ue
virtual void ctSetValue(QZ_Termt) = O;

Initializes C to the value denoted by t and makes CR pointing to C.
ct Ref Constrai nt
virtual OZ_C * ctRefConstraint(OZ & * c) = O;
Sets CRto ¢ and returns CR.
ct SaveConstrai nt
virtual OZ_Ct * ctSaveConstraint(QZ C * c) = O;
Stores c in Cand returns a reference to C.
ct SaveEncapConst rai nt
virtual OZ_C * ctSaveEncapConstraint(0OZ C * c¢) = 0;
Stores ¢ in EC and returns a reference to EC.
ct Rest oreConst rai nt
virtual void ctRestoreConstraint(void) = 0;

Stores C at * CR.

constructor

2.5. The class az_¢t var 37

ct Set ConstraintProfile
virtual void ctSetConstraintProfile(void) = 0;

Initializes cP with the profile of Cr.
ct Get ConstraintProfile
virtual OZ_CiProfile * ctGetConstraintProfile(void) = 0;
Returns CP.
ct Get Constrai nt
virtual OZ_C * ctGetConstraint(void) = 0;
Returns CR.
i sTouched
virtual OZ_Bool ean isTouched(void) const = O;

Returns Oz_Tr ue if current constraint is not implied anymore by the constraint that
was present upon calling r ead() or r eadEncap().

2.5.2 Provided Members

Qz_Ct Vvar
Qz_Ct Var (voi d);

Initializes an instance of this class.
oper ator new
static void * operator new(size_t);

Allocates memory for an instance of a class derived from 0z_cC: var on the propagator
heap of the Oz runtime system.

operator delete
static void operator delete(void *, size_t);

Deallocates memory of an instance of a class derived from Oz_ct var from the propa-
gator heap of the Oz runtime system.

operator new]
static void * operator new](size_t);
Allocates memory for an array of instances of a class derived from Oz _Ct var on the
propagator heap of the Oz runtime system.
operator del ete[]
static void operator delete[](void *, size_ t);
Deallocates memory of an array of instances of a class derived from 0z_ct var from
the propagator heap of the Oz runtime system.
ask
voi d ask(QZ _Tern;
Initializes an instance of a derived class of 0z_Ct var for reading the constraint of the
corresponding variable. The members | eave() and f ai | () must not be called.

read

38 Chapter 2. Building Constraint Systems from Scratch

void read(Qz_Tern);

Initializes an instance of a derived class of 0z_Ct var for accessing the corresponding
variable in the constraint store for constraint propagation. Modifying the constraint is
visible in the store. The members | eave() and fai | () must be called.

r eadEncap
voi d readEncap(QZ_Tern);

Initializes an instance of a derived class of 0z _Ct var for accessing the correspond-
ing variable in the constraint store for encapsulated constraint propagation (typically
used for reified constraints). Modifying the constraint is not visible in the store. The
members | eave() and f ai | () must be called.

| eave
OZ_Bool ean | eave(voi d)

This member function has to be called if the instance of a derived class of Oz _Ct Vvar
has been initialized by r ead() resp. readEncap() and the constraint represented by
the propagator is consistent with the constraint store. It returns ©z_Fal se if the corre-
sponding variable denotes a value. Otherwise it returns Oz_Tr ue. Further, this member
function causes suspending computation to be woken up.

fail
void fail (void);
This member function has to be called if the instance of a derived class of Oz Ct var

has been initialized by r ead() resp. r eadEncap() and the constraint represented by
the propagator is inconsistent with the constraint store.

dr opPar anet er
voi d dropParanet er (void);

This member function removes the parameter associated with *t hi s from the parame-
ter set of the current propagator. This function takes care of multiple occurrences of a
single variable as parameter, i.e., a parameter is removed if there is only one occurrence
of the corresponding variable in the set of parameter left.

Employing Linear Programming
Solvers

3.1 The Module LP

The module LP is provided as contribution (being part of the Mozart Oz 3 distributionﬂ)
and can be accessed either by

declare [LP] = {Mdule.link [1}
or by
inmport RI at

as part of a functor definition.

{LP.solve $RI's +Cbj Fn +Constrs ?0pt Sol ?Ret Val }
Invoke the LP solver. Use LP. confi g for configuring the solver.

VECTOR_OF(X) := tupleof X
| record of X
| listof X

Rls = VECTOR_OF(RI)

Rl = float| real interval variable

The first parameter is a vector of real-interval variables. The current bounds of the
real-intervals are used as bound constraints by the LP solver. The second parameter
determines the objective function:

ObjFn == objfn(row (VECTOR_OF(float))

opt: mn | nmax)

The value at opt stands for minimize (i n) resp. maximize (max). The third parameter
introduces the constraints to the LP solver.

1The module LP is not provided on any Windows platform.

40 Chapter 3. Employing Linear Programming Solvers

Constrs ::= VECTOR_OF(Constr)

Constr = constr(row. (VECTOR_OF(float))
type: I |
rhs: float)

The fourth parameter Opt Sol is constrained to the optimal solution. In case it is al-
ready constrained to a real-interval variable, the LP solver derives an additional con-
straint which makes sure that no greater (minimize) resp. smaller (maximize) solution
is found. The last parameter indicates the success of the LP solvers.

Retval = optimal
| infeasable
| unbounded

|

failure

{LP.config +put +ConfigDirection}
Set configuration of module LP. One can set mode and sol ver.

{LP.config +get ?Current Confi g}
Read current configuration of module LP.

CurrentConfig := config(avail: (AVAIL_SOLVERS)
| node: (MODES)
|

sol ver: (SOLVER))

Note that (SOLVER) takes a value out of (AVAIL_SOLVERS). The solvers available
depend on your local installation. The solver LP_SOLVE (I psol ve) is the default
solver.

AVAIL_SOLVERS := |Ipsolve
| cplex_primopt
|

cpl ex_dual opt
The solver may run in two modes:

MODES := quiet
| verbose

The ver bose mode is intended for debugging and outputs whether an optimal was
found (resp. if not what was the problem) and if so the optimal solution.

enumerable type

function type

Propagation Engine Library

4.1 Overview

pf _return_t

pf _fnct _t

typedef enum{ pf_failed,
pf_entail ed,
pf_sleep } pf_return_t;

Return type of a propagation function.

typedef pf_return_t (* pf_fnct_t)(int *, PEL_SuspVar * []);

Type of a propagation function. A propagation function takes an array of parameter
indicies and an array of references to constrained variables ((PEL_SuspVvar *)). It
returns a value of type pf _return_t.

4.2 The class PEL_Par anirabl e

Sadd

get Hi gh

oper at or

int add(int i);
Add parameter index i to parameter table. The table index where i is stored is returned.

int getH gh(void);
Returns the highest table index of the table.

i nt &operator (int i);

Returns a reference to the element at table position i , i.e., the element can be read and
written.

4.3 The class PEL_Event Li st

add

int add(int i);

constructor

42 Chapter 4. Propagation Engine Library

Add propagation function index i to event list. The event list index where i is stored

is returned.
wakeup
voi d wakeup(PEL_PropQueue *pqg, PEL_PropFnctTable * pft[]);
Copies all entries of the event list to pg and marks the appropriate entries in pft as
scheduled.
get Hi gh
int getH gh(void);
Returns the highest index of the event list.
oper at or

i nt &operator (int i);

Returns a reference to the element at event list position i , i.e., the element can be read
and written.

4.4 The class PEL_PropFnct Tabl eEntry

PEL_Pr opFnct Tabl eEntry
PEL_Pr opFnct Tabl eEntry(pf _fnct _t fn, int idx);

Constructs a propagator table entry with propagation function f n and index to param-
eter table i dx.
i sSchedul ed
voi d i sSchedul ed(voi d);
Tests if the propagation function of this entry is marked as scheduled.
set Schedul ed
voi d set Schedul ed(void);
Marks the propagation function of this entry as scheduled.
unset Schedul ed
voi d unset Schedul ed(voi d);
Marks the propagation function of this entry as not scheduled.

i sDead
int isDead(void);
Tests if the propagation function of this entry is marked as dead.
set Dead
voi d set Dead(voi d);
Marks the propagation function of this entry as dead.
get Fnct

pf_fnct_t getFnct(void);
Returns the pointer to the propagation function of this entry.

get Par am dx

constructor

constructor

4.5. The class PEL_Pr opFnct Tabl e 43

i nt get Param dx(voi d);
Returns the index to parameter table of this entry.

4.5 The class PEL_PropFnct Tabl e

PEL_Pr opFnct Tabl e
PEL_Pr opFnct Tabl e(voi d);

Constructs a propagation function table.
add

int add(PEL_ParanTabl e &pt, PEL_PropQueue &pq,
pf _fnct_t fnct, int x, int y);

i nt add(PEL_ParanTabl e &pt, PEL_PropQueue &pq,
pf _fnct_t fnct, int x, int vy, int z);

Adds an entry for the propagation function f nct with parameters x and y (resp. x,
y, and z) and returns the index of the entry in the table. The propagation function is
registered with pg and the parameter indices are stored in pt .

4.6 The class PEL_PropQueue

PEL_PropQueue
PEL_Pr opQueue(voi d);

Constructs a propagation queue.

engueue
voi d enqueue(int fnct_idx);
Enqueue a propagation function index f nct _i dx. The propagation function index is
related to a propagation function table.
dequeue
int dequeue(void);
Returns a propagation function index.
apply
pf_return_t apply(PEL_PropFnct Tabl e &pft,
PEL_Par anifabl e &pt,
PEL_SuspVar * []);
Dequeues an index and applies the corresponding propagation function closure of pf t .
It returns the value returned by the propagation function.
i SEnpty
int isEnmpty(void);
Tests if the queue is empty.
set Fai |l ed

voi d set Fail ed(void);

constructor

44 Chapter 4. Propagation Engine Library

Sets the queue failed.

i sFail ed
int isFailed(void);
Tests if the queue is failed.
i sBasi c
int isBasic(void);
Tests if all propagation functions registered with the queue have ceased to exist.
i NnCAPF
voi d i ncAPF(voi d)
Increments the registration counter by 1.
decAPF
voi d decAPF(voi d)
Decrements the registration counter by 1.
reset
voi d reset(void);
Resets the queue. (??7)
get Si ze

int getSize(void);
Returns the number of queued propagation function entry indicies.

47 The class PEL_FSetProfile

PEL FSetProfile
PEL_FSet Profil e(void);

Constructs a profile for finite set constraint.
init
void init(QZ _FSetConstraint &fset);
Initializes the profile with f set .
i sTouched
int isTouched(OZ_FSet Constraint &f set);
Tests if the constraint f set is more constrained than the constraint, the profile has been
initialized with.
i sTouchedSi ngl eval ue
int isTouchedSi ngl eVal ue(OZ_FSet Constrai nt &fset)
Tests if the constraint f set has become a single value since the last initialization of the
profile.

i sTouchedLower Bound
i nt isTouchedLower Bound(QZ_FSet Constraint &fset);

constructor

4.8. The class PEL_FSet Event Li sts 45

Tests if the lower bound of the constraint f set has been further constrained since the
last initialization of the profile.

i sTouchedUpper Bound
i nt isTouchedUpperBound(QZ_FSet Constraint &fset);

Tests if the upper bound of the constraint f set has been further constrained since the
last initialization of the profile.

4.8 The class PEL_FSet Event Li sts

get Lower Bound
PEL_Event Li st &get Lower Bound(voi d);

Returns the event list for lower bound events.
get Upper Bound
PEL_Event Li st &get Upper Bound(voi d);
Returns the event list for upper bound events.
get Si ngl eVal ue
PEL_Event Li st &get Si ngl eVal ue(voi d);
Returns the event list for single value events.
gc
voi d gc(void);

Performs a garbage collection. Has to be called if the hosting propagation is garbage
collected.

4.9 The class PEL_FDProfile

PEL_FDProfile
PEL_FDProfil e(void);

Constructs a profile for finite domain constraint.
init
void init(QZ _FDConstraint &fd);
Initializes the profile with f d.
i sTouched
int isTouched(OZ_FDConstraint &fd);
Tests if the constraint f d is more constrained than the constraint, the profile has been
initialized with.
i sTouchedW dt h
int isTouchedW dt h(OZ_FDConstraint &fd);

Tests if the width of the constraint f d has been further constrained since the last ini-
tialization of the profile.

46 Chapter 4. Propagation Engine Library

i sTouchedLower Bound
int isTouchedLower Bound(QZ_FDConstrai nt &fd);

Tests if the lower bound of the constraint f d has been further constrained since the last
initialization of the profile.
i sTouchedUpper Bound
int isTouchedUpperBound(QZ_FDConstrai nt &fd);
Tests if the upper bound of the constraint f d has been further constrained since the last
initialization of the profile.
i sTouchedBounds
i nt isTouchedBounds(OQZ_FDConstraint &fd);
Tests if at least one of the bounds of the constraint i d has been further constrained
since the last initialization of the profile.
i sTouchedSi ngl eVval ue
i nt isTouchedSi ngl eVal ue(OZ_FDConstrai nt &fd);

Tests if the constraint d has become a single value since the last initialization of the
profile.

4.10 The class PEL_FDEvent Li st s

get Bounds
PEL_Event Li st &get Bounds(voi d);

Returns the event list for bound events.
get Si ngl eVal ue
PEL_Event Li st &get Si ngl eVal ue(voi d);
Returns the event list for single value events.
gc
voi d gc(void)

Performs a garbage collection. Has to be called if the hosting propagation is garbage
collected.

4.11 The class PEL_SuspVar
This class defines the minimal functionality required by classes derived from PEL_SuspVar .

wakeup
virtual int wakeup(void) =0

This function is required to be defined the derived classes.

4.12. The class PEL_SuspFSet Var 47

4,12 The class PEL_SuspFSet Var

constructor PEL_SuspFSet Var

PEL_SuspFSet Var (voi d);
Constructs an uninitialized library finite set variable.

constructor PEL_SuspFSet Var

PEL_SuspFSet Var (PEL_FSet Profil e &f setp,
QZ_FSet Const rai nt &f set,
PEL_FSet Event Li sts &f setel,
PEL_Pr opQueue &pq,
PEL_Pr opFnct Tabl e &pft,
int first = 1);

Constructs an initialized library finite set variable which is directly connected with the
corresponding variable in the constraint store.

constructor PEL_SuspFSet Var

init

init

propagate_to

PEL_SuspFSet Var (QZ_FSet Constrai nt &f setl,
PEL_FSet Event Li sts &f setel,

PEL_Pr opQueue &pq,
PEL_Pr opFnct Tabl e &pft);

Constructs an initialized library finite set variable which is not directly connected with
the corresponding variable in the constraint store. This constructor is used if the library
variable is subordinated to the store variable, e.g. when implementing a clause of a
disjunction.

PEL_SuspFSetVar * init(PEL_FSetProfile &fsetp,
QZ_FSet Constrai nt &f set,
PEL FSet EventLists &fsetel,
PEL_Pr opQueue &pq,
PEL_PropFnct Tabl e &pft,
int first = 1);

This initialization function is associated with the constructor for the directly connected
library variable and returns a pointer the library variable.

PEL_SuspFSetVar * init(QOZ_FSetConstraint &fsetl,
PEL_FSet Event Li sts &f setel,

PEL_Pr opQueue &pq,
PEL_Pr opFnct Tabl e &pft);

This initialization function is associated with the constructor for the not directly con-
nected library variable and returns a pointer the library variable.

int propagate_to((QZ_FSetConstraint & set, int first = 0);

The constraint f set is propagated to the library variable and wakeup is called if nec-
essary. The function returns 0 in case propagation fails. Otherwise it returns 1.

48 Chapter 4. Propagation Engine Library

wakeup
virtual int wakeup(int first = 0);
Causes propagation functions to be scheduled for rerun according to the constraints
imposed on this variable since the last invocation of this function. This function returns
1 if variable denotes a single value and else 0.
oper at or
OZ_FSet Constrai nt &operat or (void);
Returns the finite set constraint associated with this variable.
oper at or

OZ_FSet Constrai nt * operator (void);
Returns the pointer to the finite set constraint associated with this variable.

4.13 The class PEL_SuspFDI nt Var

constructor PEL_SuspFDVar
PEL_SuspFDVar (voi d) ;

Constructs an uninitialized library finite set variable.

constructor PEL_SuspFDVar
PEL_SuspFDI nt Var (PEL_FDPr of i | e &f dp,
QZ_Fi ni t eDormai n &f dv,
PEL_FDEventLi sts &f del,
PEL_PropQueue &pd,
PEL_PropFnct Tabl e &pft,
int first = 1);

Constructs an initialized library finite domain variable which is directly connected with
the corresponding variable in the constraint store.

constructor PEL_SuspFDVar
PEL_SuspFDI nt Var (QZ_Fi ni t eDomai n &f dl
PEL_FDEvent Li sts &f del ,
PEL_Pr opQueue &pd,
PEL_PropFnct Tabl e &pft);

Constructs an initialized library finite domain variable which is not directly connected
with the corresponding variable in the constraint store. This constructor is used if the
library variable is subordinated to the store variable, e.g. when implementing a clause
of a disjunction.

Init
PEL_SuspFDI nt Var * init(PEL_FDProfile &fdp,
QZ_Fi ni teDomai n &f d,
PEL_FDEvent Li sts &f del,
PEL_PropQueue &pq,
PEL_PropFnct Tabl e &pft,
int first = 1);

4.13. The class PEL_SuspFDI nt Var 49

init

propagate_to

wakeup

oper at or

oper at or

This initialization function is associated with the constructor for the directly connected
library variable and returns a pointer the library variable.

PEL_SuspFDI ntVar * init(QZ_FiniteDomain & dl,
PEL_FDEvent Li sts &f del ,

PEL_Pr opQueue &pq,
PEL_PropFnct Tabl e &pft);

This initialization function is associated with the constructor for the not directly con-
nected library variable and returns a pointer the library variable.

int propagate_to(QZ_FiniteDomain &d, int first = 0);

The constraint f d is propagated to the library variable and wakeup is called if necessary.
The function returns 0 in case propagation fails. Otherwise it returns 1.

virtual int wakeup(int first = 0);

Causes propagation functions to be scheduled for rerun according to the constraints
imposed on this variable since the last invocation of this function. This function returns
1 if variable denotes a single value and else 0.

OZ_Fi ni t eDomai n &oper at or (void);
Returns the finite domain constraint associated with this variable.

QZ_Fi niteDomain * operat or (void);

Returns the pointer to the finite domain constraint associated with this variable.

Index

LP
config
LP, confi g, get, [Q
LP, confi g, put ,@
LP, sol ve,

50

