The Mozart Profiler

Denys Duchier
Benjamin Lorenz
Ralf Scheidhauer

December 1, 2001 m Y 14d rt

Abstract

This manual describes the profiler for the Mozart programming system. With its help you
can optimize your Oz applications. It mainly counts procedure applications and measures
their memory consumption, presenting its calculations using nice, clickable bar charts.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

What Is Profiling 1
How To Compile For Profiling 3
How To Invoke The Protfiler 5
Command Line Optiong 7
Mixing Code With and Without Profiling Information| 9
How To Profile In The OP| 11

The Profiler’'s User Interfaced 13

heap
calls

samples

closures

What Is Profiling

Once your application works, you may wish to optimize it for speed and memory con-
sumption. For this, you need to identify the parts of your application that may signif-
icantly benefit from such optimizations; it would be pointless to optimize a procedure
that is called only once. Profiling automatically instruments your program to gather
statistical data on procedure invocations and memory allocation.

The profiler collects information in a per procedure basis. This information consists of
the following quantities:

Heap memory allocated by the procedure
How many times the procedure was called

Statistical estimation of the time spent in the procedure. This works as follows: every
10ms a signal is delivered and the emulator increases the ‘samples’ counter of the
procedure currently executing.

How many times the corresponding closure was created. Note that nested procedure
declarations like Bar in

proc {Foo X Y}
proc {Bar UV} ... end

end

both consume runtime and memory since a new closure for Bar has to be created at
runtime whenever Foo ist called. So one might consider lifting the definition of Bar .

Chapter 1. What Is Profiling

How To Compile For Profiling

In order to gather the profiling information, your code has to be instrumented with
additional profiling code. This code is automatically inserted by the compiler when
it is invoked with the - profiler option. This option can also be abbreviated - p.
There is however an unfortunate limitation when compiling code for profiling: tail-call
optimization is turned off (except for self applications). Besides this instrumented code
runs in general a bit slower than code that was not compiled for profiling.

As an example, let’s consider the following rather pointless application below. I call it
‘The 3 Little Piggies’, and it does nothing but waste time and memory:

funct or
i mport Application
define
Args = {Application.get CrdArgs
record(size(single type:int optional:false)
times(single type:int optional:false))}
proc {FirstPiggy}
{List.mke Args.size _}
{For 1 Args.tinmes 1 SecondPi ggy}
end
proc {SecondPi ggy _}
{List. make Args.size _}
{For 1 Args.tines 1 ThirdPiggy}
end
proc {ThirdPiggy _}
{List.mke Args.size _}
end
{FirstPiggy}
{Application.exit 0}
end

The application can be compiled for profiling as follows:

0zC -px piggies.oz -0 piggies.exe

Chapter 2. How To Compile For Profiling

How To Invoke The Profiler

The profiler interface is integrated in the Oz debugger tool ozd and can be invoked
using the - p option. We can profile ‘The 3 Little Piggies’ as follows:

ozd -p piggies.exe -- --size 1000 --tinmes 100

Note how the double dash separates ozd’s arguments from the application’s arguments.
Shortly thereafter, the window shown below pops up:

Profiler Action Options Help
upclate | reset Sort By: calls
Procedures Proc Info
=
Summary

Now click Update and a summary of procedure calls is displayed. We learn that the
SecondPi ggy is called 100 times and the Thi r dPi ggy 10000 times (i.e. 100*100).

Profiler Action Options Help
upclate | reset Sort By: calls
Procedures Proc Info
ThirdPiggy iy Mame: ThirdPiggy
10000 Filey piggies,oz
SecondPi g 2
e Call: 10000
[100 Clos: 1
Smply 351
Heap: FEM
Summary
Procs: 5
Calls: 10103
Closures: 43
Heap : 77H
| Time: Smdz
Updating... done

Chapter 3. How To Invoke The Profiler

The Fi rst Pi ggy is not shown by default because it is called only once. Let’s how
select a different Sort By (the menu button on the right): we choose heap to display the
memory allocation profile. From this we verify e.g. that Thi r dPi ggy allocates about
100 times more memory as SecondPi ggy, which is as it should be since it is called
100 times more and allocates the same large list.

Profiler Action Options Help
upclate | reset Sort By: heap
Procedures Proc Info
ThirdPiggy [Mame: ThirdPigzy
76H File: piggies,oz
SecondPi Limg? g
g2 Call: 10000
I?Bik Clos: 1
FirstPigey Smpl: 351
|8004b Heap: 7EM
&
Sunmimnary
|1400b Procs: 35
¥ Call=: 10103
|304ab Closures: 43
Heap: 7™
| Time: 22m37s
Sorting by heap... done

-hel p,-h,-?

Command Line Options

If you have created an Oz application which you normally start from the shell as fol-
lows:

Foo Args ...

Then you can run it under control of the Oz profiler by using the following command
instead:

ozd -p Foo -- Args ...

Any Oz application can be run in the profiler, but you only get the full benefit of the
profiling interface when the code being executed was compiled with the - p option to
include profiling instrumentation code. The profiler and the debugger share the same
interface.

The double dash - separates the arguments intended for ozd from those intended for
the application being run under the profiler.

Display information on legal options, then exit

-p,-profiler,-node=profiler

You must supply this option in order to start the profiler; otherwise the debugger is
started instead (see Chapter The Oz Debugger: ozd, (Oz Shell Ultilities)).

- g, - debugger, - nnde=debugger

This is the default option: it starts the debugger (see Chapter The Oz Debugger: ozd,
(Oz Shell Utilities)). As mentioned above, in order to actually start the profiler, you
must supply the - p option.

-E, - (no) useenacs

-emacs=FILE

Starts a subordinate Emacs process. This will be used to display the source code cor-
responding to the profile data being examined.

Specifies the Emacs binary to run for option - E. The default is $OZEMACS if set, else
enacs.

Chapter 4. Command Line Options

Mixing Code With and Without
Profiling Information

If a procedure Foo, that has been compiled for profiling, calls another procedure Bar ,
that was not compiled for profiling, only the counters for Foo are incremented at run-
time. So for example the heap memory allocated within Bar is added to the heap
profile counter of Foo. For efficiency all the Oz library modules are compiled without
profiling information. So if Foo itself does not much more than calling Li st . append
it might show up high in the profilers window, if it is often called with very long lists
for example, whereas Li st . append will not show up at all. Nevertheless you might in
this case consider changing the representation of your data structures.

10

Chapter 5. Mixing Code With and Without Profiling Information

How To Profile In The OPI

In the OPI the most convenient way to start the profiler is to choose the Prof i | er item
in the Oz menu of Emacs. This will open the profiler window and tell the compiler
to instrument the code for profiling thereafter. So everything fed after opening the
profiler will be instrumented. Then press r eset, run your application and press the
updat e button after its termination.

Clicking on the bar of a particular procedure P in the profiler’s window will try to locate
the definition of P in an Emacs buffer.

Profiling is switched off in the OPI by either closing the profiler window or by feeding
{Profiler.close}
which will close the profiler window and inform the compiler to generate uninstru-

mented code thereafter. Note that code previously compiled for profiling will still run
slower, so you might consider recompilation.

12

Chapter 6. How To Profile In The OPI

Procedur es

Proc Info

Summary

Action

Updat e

Reset

Opt i ons

Use Enacs

The Profiler’s User Interface

The profiler window consists of the following frames:

Presents a list of bars for each procedure sorted by the sort criteria selected via the
Sort By menu. Clicking on a bar will update the Proc I nf o frame and will addition-
ally try to locate the definition of the corresponding procedure in an Emacs buffer.

Lists for the selected procedure its name, the file name and line number of the source
code of its definition plus the values of all the profile counters.

Lists the sum of all the counters of all procedures being compiled for profiling.

The profiler provides the following buttons and menus:

Read the current values of the profile counters from the emulator and update the display
in the Pr ocedur es frame.

Resets all profile counters to zero.

This is a toggle button that lets you choose whether clicking on a bar in the Pr ocedur es
frame will tell Emacs to locate the definition of the selected procedure.

Aut omati ¢ Updat e

updat e

Lets the user select an interval in which the displays are updated periodically. By
default automatic update is off.

Same as menu Acti on -> Updat e.

14 Chapter 7. The Profiler's User Interface

reset

Same as menu Acti on -> Reset.

Sort By
Selects the sort criteria by which procedures are listed in the Pr ocedur es frame.

