
The Secret Sucky Guide To Making Releases

Denys Duchier

Version 1.2.3
December 1, 2001

Abstract

This document explains how to create releases for various platforms. If you are a Mozart
user interested in creating a binary distribution for your platform, you have two main
options:

• if your platform supports RPMs, then see how to create binary RPMs using our source
RPM

• otherwise, you should create binary tarballs.

Please, Please, Please: do contribute your binary distros back to us. This way, we can
place them in our download area and everybody else can benefit from your effort. You do
not need to bother with source and documentation distros, since our offerings for those are
platform independent. If you are a Mozart release manager, see the last chapter which tells
you all the steps you need to follow.

Credits

Mozart logo by Christian Lindig

License Agreement

This software and its documentation are copyrighted by the German Research Center for Artificial Intelligence
(DFKI), the Swedish Institute of Computer Science (SICS), and other parties. The following terms apply to
all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its doc-
umentation for any purpose, provided that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for
any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not
follow the licensing terms described here, provided that the new terms are clearly indicated on the first page
of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTA-
TION ARE PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Contents

1 Introduction 1

2 Tarballs 3

2.1 Source Tarball . 3

2.2 Documentation Tarball . 3

2.3 Standard Library Tarball . 4

2.4 Binary Tarballs . 4

2.4.1 Non-Linux Platforms . 4

3 RPMs 7

3.1 Binary RPMs . 7

3.2 Source RPM . 7

4 Check-List For Release Managers 9

1

Introduction

First, you need to download the sources. You can either download the source tarballs
from our FTP server, or you can check out the sources directly from our CVS server.

Here is how to get the sources of a particular release from the Mozart CVS archive. A
release is identified by a tag, e.g. mozart-1-2-3. In the following, I’ll write $REL for
the release tag. Use ssh, i.e. set environment variable CVS_RSH=ssh.

cvs -d :pserver:anoncvs@cvs.mozart-oz.org:/services/mozart/CVS get -r $REL mozart

Get yourself a cup of coffee, and by the time you’ve savoured it you have become the
proud owner of a copy of the Mozart sources. I will refer to the top directory containing
these sources as $SOURCE: it is typically called mozart unless you used option -d to
the CVS get command (which is unrelated to the -d option to the cvs command itself).
It is highly recommended to also get a copy of the Mozart Standard Library:

cvs -d :pserver:anoncvs@cvs.mozart-oz.org:/services/mozart/CVS get -r $REL mozart-stdlib

I will refer to the top directory containing the sources of the standard library as $STDLIB.

In order to build the release, you should create a separate build directory. I will call
it $BUILD and it should not be created in $SOURCE tree. Simplest is to create it as a
sibling of $SOURCE. Then you need to configure $BUILD: make very sure that no OZ
utilities are found in your shell’s search path and no OZ related variables are set in
your environment. Personally, I have defined shell aliases ozon and ozoff to switch
between having OZ utilities in my path and having a pristine environment blissfully
unaware of things Mozartian. A minimally parametrized configuration would be:

cd $BUILD

$SOURCE/configure

By default, this will set things up to install in the default location /usr/local/oz.
You can change this default using option -prefix=$PREFIX. A more complete invo-
cation of configure would look like:

$SOURCE --prefix=$PREFIX --with-stdlib=$STDLIB

and that’s the invocation I would recommend. Next, it’s a good idea to set up depen-
dencies in case you need to update the sources and then rebuild what needs rebuilding:

2 Chapter 1. Introduction

make depend

Now, you can build the system:

make

And optionally install it:

make install

or install it in a different installation directory $DIR:

make install PREFIX=$DIR

Note that it is not possible to skip the make step and directly invoke make install.
At the top level make is equivalent to make bootstrap. If you want to do it in one
command, then you need to type:

make bootstrap install

If you need to reconfigure, beware that configure builds a cache of configuration data
in $BUILD/config.cache. You may need to remove that.

In order to also build the documentation, you need to invoke configure with option:

--with-documentation=all

2

Tarballs

2.1 Source Tarball

This assumes that you have checked out the sources and configured a build directory
(see Chapter 1). The top level Makefile provides support for creating a source tar-
ball:

cd $BUILD

make src

This will result in the creation of file mozart-$VERSION.$DATE-src.tar.gz where
$VERSION is the release number and $DATE is the build date (the current date, or rather,
the date when you invoked configure). That’s it, you’re done.

2.2 Documentation Tarball

For this, you need to build and install the documentation. As mentioned earlier, this
requires that you configured using option -with-documents=all. Note that building
the documentation takes very long and you need additional software on your machine
(such as LaTeX, nsgmls, Ghostscript, the netpbm package, also java if you are going
to build the postscript and pdf documentation, and probably other things I forget).

Let’s assume that you configured, built and installed the system (I will not explain
here how to additionally create the Postscript and PDF documentation). The top level
Makefile contains support for creating a documentation tarball:

cd $BUILD

make doc

This will suck in all the installed documentation and create file mozart-$VERSION.$DATE-doc.tar.gz.
If you have installed the standard library, this tarball will also contain its documenta-
tion.

4 Chapter 2. Tarballs

2.3 Standard Library Tarball

If you have configured using -with-stdlib=$STDLIB, then you can create the stan-
dard library tarball with:

make std

This will only work after make install because it uses the installed ozengine and
core libraries. As result the following tarball is created:

• mozart-$VERSION.$DATE-$PLATFORM-std.tar.gz

2.4 Binary Tarballs

Here again, we assume that you have configured, built and installed the system. The
top level Makefile contains support for creating binary tarballs:

cd $BUILD

make bin

This will suck in from the installation directory all necessary files to include in the
binary tarballs. As a result, three tarballs are created:

• mozart-$VERSION.$DATE-$PLATFORM.tar.gz

• mozart-$VERSION.$DATE-$PLATFORM-contrib.tar.gz

• mozart-$VERSION.$DATE-$PLATFORM-internal.tar.gz

where $PLATFORM stands for your platform, i.e. the value returned by shell script:

$SOURCE/share/bin/ozplatform

You can ignore the last tarball. If you have installed the standard library, it will be
included in the first tarball.

2.4.1 Non-Linux Platforms

Mozart requires a number of libraries which are not necessarily available by default on
Non-Linux platforms. You will need to provide these libraries with the binary release.
There are 2 ways: using static linking or using shared object libraries. I will describe
the second way. Note, that the situation may be further complicated by the question of
whether your platform supports dynamic linking or not.

2.4. Binary Tarballs 5

2.4.1.1 Using Shared Object Libraries

The aim here is to provide both the compiled system together with the dynamic libraries
that it requires. Here is a little known fact: the scripts that invoke OZ utilities are
designed to modify the search path for dynamic libraries so that the linker also looks
first in:

$HOME/.oz/platform/$PLATFORM/lib

and then in

$PREFIX/platform/$PLATFORM/lib

where $PREFIX stands for the installation directory. Thus, the trick is to plunk the
necessary shared libraries into this last directory before building the binary tarballs.

Of course, the assumption is that you will be able to fetch the missing packages and
build or otherwise obtain shared object libraries for them. This is usually the case.

2.4.1.2 Tcl/Tk

This is frequently a pain in the rear. Check other documentation as well as $SOURCE/platform/wish/configure.in.

6 Chapter 2. Tarballs

3

RPMs

3.1 Binary RPMs

If your platform uses RPMs, then you are in luck. Download the source RPM from our
download page, become somebody really important (I mean root) and execute:

rpm --rebuild mozart-$VERSION.$DATE-src.rpm

This will create the binary RPMs in /usr/src/redhat/RPMS/i386.

3.2 Source RPM

In order to create the source RPM, you need to have already created or downloaded the
source, documentation, and standard library tarballs. Assuming that you have placed
them in $BUILD, become somebody important and execute:

$SOURCE/misc/create-rpm $BUILD $BUILD

Note that this will create both a source RPM and binary RPMs. They will be placed in
$BUILD or whatever directory you supplied as the second argument to create-rpm:

• mozart-$VERSION.$DATE-$REVISION.src.rpm

• mozart-$VERSION.$DATE-$REVISION.i386.rpm

• mozart-contrib-$VERSION.$DATE-$REVISION.i386.rpm

• mozart-doc-$VERSION.$DATE-$REVISION.i386.rpm

8 Chapter 3. RPMs

4

Check-List For Release Managers

This chapter is intended for release managers of the Mozart consortium. Below is the
very abbreviated list of steps to follow for creating a new release:

• bump up the version in file OZVERSION

• update version specific changes in doc/changes/main.sgml

• cut a new tag in the CVS. For example, if you wish to cut a tag for version 1.2.3
on the current release branch. You should check it out, cd to the directory of the
checked out version and issue the following command:

cvs tag -r mozart-1-2-3

• check out the standard library and also cut the same tag in it. Let’s call $STDLIB
the directory into which you checked it out.

• then you should configure, build and install the release:

$SOURCE/configure --with-stdlib=$STDLIB --with-documents=all

You can also supply -prefix=$PREFIX if you want to install elsewhere than the
default; this has no ill-effect.

• As stated above, you should then make followed by make install. If you did
not forget the -with-stdlib option, this will also build and install the standard
library.

• Now invoke make src doc bin std in order to create all the necessary tar
files. make bin creates a file README-$VERSION.$DATE-$PLATFORM which de-
scribes the important points about linking: i.e. what libraries emulator.exe
and tk.exe are dynamically linked against. Note that, depending on whether
you used -enable-static-linking or not, you should rename the tar and
README files accordingly so that multiple offerings for the same platform but
with different linking policies can be distinguished. My own preference is to add
-dynfull when dynamic linking is used and -dynless when -enable-static-linking
(and possibly -enable-modules-static - I normally specify both of them
when I am interested in a more statically linked distribution) was used instead.
For example, here are the names of the tar and README files for release 1.2.3
for the dynamically linked version of the mozart release for freebsd on the intel
architecture:

10 Chapter 4. Check-List For Release Managers

– README-1.2.3.20011121-freebsdelf-i486-dynfull

– mozart-1.2.3.20011121-freebsdelf-i486-dynfull-contrib.tar.gz

– mozart-1.2.3.20011121-freebsdelf-i486-dynfull.tar.gz

• now become root and invoke $SOURCE/misc/create-rpm $PWD $PWD. This
creates the source and binary rpms.

• Now you need to create and populate the ftp directory for the release. For
this, you need to be logged into the consortium’s ftp machine. Currently this
is grizzly in Saarbrücken. Become root:

perl $SOURCE/misc/mkftp -release=$VERSION -create

this creates the directory structure for the release. Use option -n to see what
mkftp would do without actually doing it.

perl $SOURCE/misc/mkftp -release=$VERSION -tar *.tar.gz README-*

this will install the tar and README files appropriately.

perl $SOURCE/misc/mkftp -release=$VERSION -rpm=redhat *.rpm

install the source and binary RPMs.

• Now you need to make the postscript and pdf documentation. cd to the build doc
directory and invoke make ps followed by make pdf. Finally do make installps

which installs the documentation in the global print directory of your installa-
tion. Now propagate this documentation to the ftp directory:

perl $SOURCE/misc/mkftp --release=$VERSION --doc=$PREFIX

